JPH0268795A - Memory circuit - Google Patents

Memory circuit

Info

Publication number
JPH0268795A
JPH0268795A JP63220918A JP22091888A JPH0268795A JP H0268795 A JPH0268795 A JP H0268795A JP 63220918 A JP63220918 A JP 63220918A JP 22091888 A JP22091888 A JP 22091888A JP H0268795 A JPH0268795 A JP H0268795A
Authority
JP
Japan
Prior art keywords
memory cell
power supply
reference voltage
supply voltage
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63220918A
Other languages
Japanese (ja)
Inventor
Emi Yoshimura
吉村 恵美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63220918A priority Critical patent/JPH0268795A/en
Publication of JPH0268795A publication Critical patent/JPH0268795A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control a power voltage supplied to a memory cell part and to reduce energy consumption at the time of holding data by impressing a prescribed reference voltage to the gate of a MOS transistor provided between the load resistance group of a memory cell and a power terminal. CONSTITUTION:A MOS transistor 21 is provided between a load resistance group 12 of a memory cell 1 and a power terminal 11, and the reference voltage generated from a reference voltage generating source 2 is impressed to the gate of the MOS transistor 21. By such a constitution, the power voltage of the memory cell 1 can be maintained fixedly low at the time of holding the data, and the energy consumption at the time of holding the data can be lowered. Thus, a necessity to increase the load resistance 12 of the memory cell 1 is eliminated, and a necessity to provide a circuit to lower the external power voltage is also eliminated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、メモリ回路、詳しくは、データ保持時の消費
電力の制御手段を備えたスタティック・ランダム・アク
セス・メモリ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a memory circuit, and more particularly to a static random access memory circuit equipped with means for controlling power consumption during data retention.

従来の技術 以下に従来のスタティック・ランダム・アクセス・メモ
リ(以下SRAMと略す)のメモリセルについて説明す
る。
2. Description of the Related Art A memory cell of a conventional static random access memory (hereinafter abbreviated as SRAM) will be explained below.

第3図は、SRAMのメモリセルを表わす図である。5
は印加電源端子、6は負荷抵抗、7,8はNチャンネル
トランジスタ、9は接地端子である。第3図に示すよう
に、抵抗を負荷としたNチャンネルトランジスタ対で構
成されたフリップ・フロップ回路で、1つのメモリセル
に相当する。
FIG. 3 is a diagram showing a memory cell of an SRAM. 5
is an applied power supply terminal, 6 is a load resistance, 7 and 8 are N-channel transistors, and 9 is a ground terminal. As shown in FIG. 3, this is a flip-flop circuit composed of a pair of N-channel transistors loaded with a resistor, and corresponds to one memory cell.

ここで、負荷抵抗は1個当たり約ITΩという高抵抗で
ある。
Here, each load resistor has a high resistance of about ITΩ.

第4図は、電源電圧とメモリセル中の電流との関係を表
したグラフである。横軸は電源電圧、縦軸は電流であり
、データ保持電流に相当する。
FIG. 4 is a graph showing the relationship between power supply voltage and current in a memory cell. The horizontal axis is the power supply voltage, and the vertical axis is the current, which corresponds to the data retention current.

トランジスタ7のドレイン電圧を下げるとトランジスタ
8がカットオフし、そのトレイン電圧は上がる。したが
って電流はトランジスタ7にだけ流れ、消費電力量はト
ランジスタ7に接続した抵抗に流れる電流により定まる
。データ保持時、第3図の抵抗6上に流れる電流値は第
4図に示すように、電源電圧を高くすると大きく、また
電源電圧を低くすると小さくなる。したがって電源電圧
をデータ保持時にも動作時の電源電圧に保つと抵抗上に
流れる電流量は多くなる。
Lowering the drain voltage of transistor 7 cuts off transistor 8 and increases its train voltage. Therefore, current flows only through transistor 7, and the amount of power consumption is determined by the current flowing through the resistor connected to transistor 7. When data is held, the value of the current flowing through the resistor 6 in FIG. 3 increases as the power supply voltage is increased, and decreases as the power supply voltage is decreased, as shown in FIG. 4. Therefore, if the power supply voltage is maintained at the power supply voltage during operation even when data is held, the amount of current flowing through the resistor increases.

発明が解決しようとする課題 従来の構成では、消費電力を下げるためには、負荷抵抗
の値を非常に太き(する必要がある。しかし、半導体装
置の製造方法にも限界があり、より高い抵抗値を得るこ
とが困難になっている。また、電源電圧を低くすると、
電流値が小さくなり、消費電力を下げることができるの
でS RAMに供給する電源電圧をデータ保持時には低
電圧に下げる回路をSRAM外部に備えたS RA M
らあるが、余分な回路が増えることになり使い難い。
Problems to be Solved by the Invention In conventional configurations, in order to reduce power consumption, it is necessary to make the load resistance extremely thick.However, there are also limitations to the manufacturing method of semiconductor devices, and It is difficult to obtain the resistance value.Also, when the power supply voltage is lowered,
The SRAM is equipped with a circuit outside the SRAM that lowers the power supply voltage supplied to the SRAM to a low voltage when data is retained, since the current value is smaller and power consumption can be lowered.
However, it increases the number of extra circuits and is difficult to use.

本発明は、SRAMにおいてデータ保持時にはメモリセ
ル部に供給する電源電圧を制御して消費電力を下げるこ
とを目的としている。
An object of the present invention is to reduce power consumption in an SRAM by controlling the power supply voltage supplied to a memory cell section when data is retained.

課題を解決するための手段 この目的を達成するために、本発明は、メモリセルの負
荷抵抗群と電源端子との関にMOSトランジスタを設け
、基準電圧発生源より発生させた基準電圧を上記MOS
トランジスタのゲートに印加する構成を有している。
Means for Solving the Problems In order to achieve this object, the present invention provides a MOS transistor between a load resistance group of a memory cell and a power supply terminal, and connects a reference voltage generated from a reference voltage generation source to the MOS transistor.
It has a configuration in which the voltage is applied to the gate of the transistor.

作用 この構成によって、データ保持時にメモリセルの電源電
圧を一定に低く保つことができ、それによって同電源電
圧をVCCとしたままデータ保持時の消費電力を下げる
ことができる。したがって、メモリセルの負荷抵抗を太
き(する必要がなくなり、また、外部の電源電圧を下げ
るための回路を備える必要もな(なる。
Effect: With this configuration, the power supply voltage of the memory cell can be kept constant and low during data retention, thereby reducing power consumption during data retention while keeping the same power supply voltage at VCC. Therefore, there is no need to increase the load resistance of the memory cell, and there is no need to provide a circuit for lowering the external power supply voltage.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明実施例SRAMの回路図である。第1図
において、1はメモリセル、2は基準電圧発生源であり
、Nチャンネルトランジスタ3段と抵抗及び電源により
構成され、この出力はメモリセル供給用トランジスタ2
1のゲートに接続される。3は基準電圧切り換え回路で
ありNチャンネルトランジスタとPチャンネルトランジ
スタ及び電源により構成される。また、11は電源、1
2.13は抵抗、20,21,22.23はNチャンネ
ルMOS)ランジスタ、24はPチャンネルMOSトラ
ンジスタ、14は接地端子を示している。なお、メモリ
セル中の電源はすべて基準電圧発生源1に接続し、抵抗
13の大きさは従来例のメモリセルの負荷抵抗と同等と
する。
FIG. 1 is a circuit diagram of an SRAM according to an embodiment of the present invention. In FIG. 1, 1 is a memory cell, and 2 is a reference voltage generation source, which is composed of three stages of N-channel transistors, a resistor, and a power supply.
Connected to gate 1. Reference numeral 3 denotes a reference voltage switching circuit, which is composed of an N-channel transistor, a P-channel transistor, and a power supply. Also, 11 is a power supply, 1
2.13 is a resistor, 20, 21, 22.23 are N-channel MOS transistors, 24 is a P-channel MOS transistor, and 14 is a ground terminal. Note that all the power supplies in the memory cells are connected to the reference voltage generation source 1, and the size of the resistor 13 is the same as the load resistance of the conventional memory cell.

第2図は本実施例における電源電圧とメモリセル中の電
流との関係を表わすグラフである。横軸は電源電圧、縦
軸は電流である。
FIG. 2 is a graph showing the relationship between the power supply voltage and the current in the memory cell in this embodiment. The horizontal axis is the power supply voltage, and the vertical axis is the current.

データ保持時、電源電圧をVCCとし基準電圧切り換え
回路入力端子4に電源電圧VCCを印加する。
When data is held, the power supply voltage is set to VCC, and the power supply voltage VCC is applied to the reference voltage switching circuit input terminal 4.

このとき、トランジスタ24はオフ、トランジスタ23
はオンとなり、トランジスタ22のしきい値電圧をvT
とすると負荷抵抗13の抵抗値を適当に選択することに
よりトランジスタ21のゲート電圧を3VT近傍に保つ
ことができる。このため、トランジスタ21のソース電
圧は約2VTとなり、第2図に示すように、電源電圧を
高くしてもメモリセルの電源電圧は一定となり電流値を
一定に小さく保つことができる。
At this time, transistor 24 is off, transistor 23
turns on, increasing the threshold voltage of transistor 22 to vT
Then, by appropriately selecting the resistance value of the load resistor 13, the gate voltage of the transistor 21 can be maintained near 3VT. Therefore, the source voltage of the transistor 21 is approximately 2 VT, and as shown in FIG. 2, even if the power supply voltage is increased, the power supply voltage of the memory cell remains constant, and the current value can be kept constant and small.

次に、電源電圧をVCCとし基準電圧切り換え回路入力
端子4にOvを印加する。このときトランジスタ24は
オン、トランジスタ23はオフとなり、トランジスタ2
1のゲート電圧は(VCCVT )になってメモリセル
はより安定な状態になり、動作時の内部ノイズに対して
も誤動作しなくなる。
Next, the power supply voltage is set to VCC and Ov is applied to the reference voltage switching circuit input terminal 4. At this time, transistor 24 is on, transistor 23 is off, and transistor 2
The gate voltage of 1 becomes (VCCVT), and the memory cell becomes more stable, and does not malfunction even in response to internal noise during operation.

また、動作電流が大きくメモリセルでの消費電流は無視
できる。なお、上記回路例では基準電圧発生源のNチャ
ンネルトランジスタ22を3段用いたが、2段もしくは
4段以上でも構わない。
In addition, the operating current is large and the current consumption in the memory cell can be ignored. In the above circuit example, three stages of N-channel transistors 22 as reference voltage generation sources are used, but two stages or four or more stages may be used.

以上のように、本実施例によれば基準電圧発生源を備え
たことにより電源電圧による電流の変化を制御でき、そ
の結果として電源電圧VCCを一定としたままでデータ
保持時における消費電力を下げることができる。また基
準電圧切り換え手段を備えたことにより、データ保持時
とデータアクセス時に同じ電源電圧を適用することがで
きる。
As described above, according to this embodiment, by providing a reference voltage generation source, it is possible to control the change in current due to the power supply voltage, and as a result, power consumption during data retention can be reduced while keeping the power supply voltage VCC constant. be able to. Furthermore, by providing the reference voltage switching means, the same power supply voltage can be applied during data retention and data access.

発明の効果 本発明によれば、メモリセルの負荷抵抗群と電源端子の
間にMOSトランジスタを設け、基準電圧発生源より発
生させた基準電圧を上記トランジスタのゲートに印加す
ることにより、データ保持時に電源電圧をVCCとした
ままで、メモリセルの電源電圧を低(保ち、その結果と
して消費電力を下げることができる。さらに基準電圧切
り換え手段を備えたことにより、電源電圧VCCを一定
としたまま、データアクセス時にはメモリセルの電源電
圧を高くすることができ、その結果、メモリセルのTL
源電圧をデータアクセス時七データ保持時で切り換える
ための回路が不必要にできる優れたメモリ回路を実現で
きるものである。
Effects of the Invention According to the present invention, a MOS transistor is provided between a load resistance group of a memory cell and a power supply terminal, and a reference voltage generated from a reference voltage generation source is applied to the gate of the transistor. While keeping the power supply voltage VCC, the power supply voltage of the memory cell can be kept low, resulting in lower power consumption.Furthermore, by providing a reference voltage switching means, while keeping the power supply voltage VCC constant, The power supply voltage of the memory cell can be increased during data access, and as a result, the TL of the memory cell
This makes it possible to realize an excellent memory circuit that eliminates the need for a circuit for switching the source voltage between data access and data retention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例メモリ回路の回路図、第2図は
本発明における電源電圧とメモリセル中電流の関係を表
わすグラフ、第3図は従来例のSRAMメモリセル回路
図、第4図は従来例の電源電圧とメモリセル中電流の関
係を表すグラフである。 1・・・・・・メモリセル、2・・・・・・基準電圧発
生源、3・・・・・・基準電圧切り換え回路、4・・・
・・・基準電圧切り換え回路入力端子、11・・・・・
・電源、12.13・・・・・・抵抗、20,21.2
2.23・・・・・・NチャンネルMOSトランジスタ
、24・・・・・・PチャンネルMOSトランジスタ、
14・・・・・・接地端子。 第1 図 ! 11−・ I2.13 20.21.22.23 メ  モ  リ  −  じ  jし 痔準電圧発生5 基厚電圧団り投え回路 基準電圧t7Jり捜え凹路λ力塙子 f  源 f氏  抗 N千せりネルMOSトランジッダ P + r ’Jネルトラソジズダ ゝ\/′
FIG. 1 is a circuit diagram of a memory circuit according to an embodiment of the present invention, FIG. 2 is a graph showing the relationship between power supply voltage and current in a memory cell in the present invention, FIG. 3 is a circuit diagram of a conventional SRAM memory cell, and FIG. The figure is a graph showing the relationship between power supply voltage and current in a memory cell in a conventional example. DESCRIPTION OF SYMBOLS 1...Memory cell, 2...Reference voltage generation source, 3...Reference voltage switching circuit, 4...
...Reference voltage switching circuit input terminal, 11...
・Power supply, 12.13... Resistance, 20, 21.2
2.23...N channel MOS transistor, 24...P channel MOS transistor,
14... Ground terminal. Figure 1! 11-・ I2.13 20.21.22.23 Memory - J I hemorrhoid standard voltage generation 5 Base voltage group dumping circuit reference voltage t7J Search concave path N Chiserinel MOS transistor P + r 'J Neltrasodizuda \/'

Claims (1)

【特許請求の範囲】[Claims]  メモリセルの負荷抵抗群と電源端子との間にMOSト
ランジスタを設け、前記MOSトランジスタのゲートに
所定の基準電圧を印加したことを特徴とするメモリ回路
1. A memory circuit characterized in that a MOS transistor is provided between a load resistance group of a memory cell and a power supply terminal, and a predetermined reference voltage is applied to the gate of the MOS transistor.
JP63220918A 1988-09-02 1988-09-02 Memory circuit Pending JPH0268795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63220918A JPH0268795A (en) 1988-09-02 1988-09-02 Memory circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63220918A JPH0268795A (en) 1988-09-02 1988-09-02 Memory circuit

Publications (1)

Publication Number Publication Date
JPH0268795A true JPH0268795A (en) 1990-03-08

Family

ID=16758583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220918A Pending JPH0268795A (en) 1988-09-02 1988-09-02 Memory circuit

Country Status (1)

Country Link
JP (1) JPH0268795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493997U (en) * 1990-12-21 1992-08-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493997U (en) * 1990-12-21 1992-08-14

Similar Documents

Publication Publication Date Title
US7589993B2 (en) Semiconductor memory device with memory cells operated by boosted voltage
US5189316A (en) Stepdown voltage generator having active mode and standby mode
US6031778A (en) Semiconductor integrated circuit
US7307907B2 (en) SRAM device and a method of operating the same to reduce leakage current during a sleep mode
US7382674B2 (en) Static random access memory (SRAM) with clamped source potential in standby mode
KR0155078B1 (en) Semiconductor circuit having cmos circuit for use in strong electric field
JP2003168735A (en) Semiconductor integrated circuit device
US7486586B2 (en) Voltage controlled static random access memory
JP2007150761A (en) Semiconductor integrated circuit, and method for reducing leakage current
JP2008104215A (en) Semiconductor integrated circuit device
JP2532662B2 (en) Supply voltage stabilization circuit for memory device
JP3554638B2 (en) Semiconductor circuit
JPH0268795A (en) Memory circuit
US5771198A (en) Source voltage generating circuit in semiconductor memory
JPH0793977A (en) Intermediate-voltage generation circuit of semiconductor memory device
JPH0528768A (en) Semiconductor device
US6590812B2 (en) Memory cells incorporating a buffer circuit and memory comprising such a memory cell
JP2000182377A (en) Semiconductor memory device
JPH0212694A (en) Semiconductor memory
KR960005797Y1 (en) Control circuit of semiconductor device
KR100206603B1 (en) Data output buffer in semiconductor memory
JP2004005403A (en) Half power supply voltage generator and semiconductor memory device
JPH03201292A (en) Semiconductor storage device
JP2011139535A (en) Semiconductor device
KR20060123985A (en) Semiconductor memory device