JPH026855A - Production of 1,3-dimethyladamantane, catalyst for production thereof and production of the same catalyst - Google Patents
Production of 1,3-dimethyladamantane, catalyst for production thereof and production of the same catalystInfo
- Publication number
- JPH026855A JPH026855A JP63249762A JP24976288A JPH026855A JP H026855 A JPH026855 A JP H026855A JP 63249762 A JP63249762 A JP 63249762A JP 24976288 A JP24976288 A JP 24976288A JP H026855 A JPH026855 A JP H026855A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- zeolite
- dimethyladamantane
- ion exchange
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 50
- CWNOIUTVJRWADX-UHFFFAOYSA-N 1,3-dimethyladamantane Chemical compound C1C(C2)CC3CC1(C)CC2(C)C3 CWNOIUTVJRWADX-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 68
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 67
- 239000010457 zeolite Substances 0.000 claims abstract description 67
- 238000005342 ion exchange Methods 0.000 claims abstract description 42
- 238000006317 isomerization reaction Methods 0.000 claims abstract description 32
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- FZDZWLDRELLWNN-UHFFFAOYSA-N 1,2,3,3a,4,5,5a,6,7,8,8a,8b-dodecahydroacenaphthylene Chemical compound C1CCC2CCC3C2C1CCC3 FZDZWLDRELLWNN-UHFFFAOYSA-N 0.000 claims abstract description 17
- 150000003839 salts Chemical class 0.000 claims abstract description 14
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 8
- 229910052718 tin Inorganic materials 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910021645 metal ion Inorganic materials 0.000 claims description 16
- RTPQXHZLCUUIJP-UHFFFAOYSA-N 1,2-dimethyladamantane Chemical compound C1C(C2)CC3CC1C(C)C2(C)C3 RTPQXHZLCUUIJP-UHFFFAOYSA-N 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 47
- 150000002500 ions Chemical class 0.000 abstract description 10
- 150000002739 metals Chemical class 0.000 abstract description 3
- 229910052793 cadmium Inorganic materials 0.000 abstract 1
- 239000000047 product Substances 0.000 description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 29
- 238000000354 decomposition reaction Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 23
- 239000007864 aqueous solution Substances 0.000 description 20
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 239000007789 gas Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- LPSXSORODABQKT-YNFQOJQRSA-N (3ar,4r,7s,7as)-rel-octahydro-1h-4,7-methanoindene Chemical compound C([C@H]1C2)C[C@H]2[C@@H]2[C@H]1CCC2 LPSXSORODABQKT-YNFQOJQRSA-N 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CWRYPZZKDGJXCA-UHFFFAOYSA-N acenaphthene Chemical compound C1=CC(CC2)=C3C2=CC=CC3=C1 CWRYPZZKDGJXCA-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000012847 fine chemical Substances 0.000 description 2
- 229920001002 functional polymer Polymers 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000011973 solid acid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 101100340271 Caenorhabditis elegans ida-1 gene Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 101100348017 Drosophila melanogaster Nazo gene Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 102100033213 Teneurin-1 Human genes 0.000 description 1
- HXGDTGSAIMULJN-UHFFFAOYSA-N acetnaphthylene Natural products C1=CC(C=C2)=C3C2=CC=CC3=C1 HXGDTGSAIMULJN-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000012194 insect media Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- -1 rare earth ions Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 102220278745 rs1554306608 Human genes 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 108010063973 teneurin-1 Proteins 0.000 description 1
- LPSXSORODABQKT-UHFFFAOYSA-N tetrahydrodicyclopentadiene Chemical compound C1C2CCC1C1C2CCC1 LPSXSORODABQKT-UHFFFAOYSA-N 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、高級な機能性高分子及び医薬品等の原料とし
て有用である1、3−ジメチルアダマンタンの製造用触
媒および本触媒を用いた1、3−ジメチルアダマンタン
の製造方法に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a catalyst for producing 1,3-dimethyladamantane, which is useful as a raw material for high-grade functional polymers and pharmaceuticals, and a method for producing 1,3-dimethyladamantane using the present catalyst. , relates to a method for producing 3-dimethyladamantane.
(従来の技術)
メチル基のないアダマンクンの製造方法としては、19
56年にシュライヤー(Sch Ieyer)らにより
エンド−テトラヒドロジシクロペンタジェンを無水塩化
アルミニウム(^1c13)触媒で異性化する方法(J
、 Am、 Chem、 Soc、、 79.3292
(1957))が発見されて以来、各種の酸触媒を用
い、炭素数10以上の三環式炭化水素を異性化する試み
が為されている。(Prior art) As a method for producing adamancune without a methyl group, 19
In 1956, Sch Ieyer et al. described a method for isomerizing endo-tetrahydrodicyclopentadiene using an anhydrous aluminum chloride (^1c13) catalyst (J
, Am, Chem, Soc,, 79.3292
(1957)), attempts have been made to isomerize tricyclic hydrocarbons having 10 or more carbon atoms using various acid catalysts.
初期のAlCl3触媒によるエンド−テトラヒドロジシ
クロペンタジェンの異性化で得られるアダマンタンの収
率は15〜20%程度と低く、かつ、極めて多くの副生
物が生成し、工業的にアダマンタンを製造する方法とし
ては有利とは言えなかった。The yield of adamantane obtained by the isomerization of endo-tetrahydrodicyclopentadiene using an initial AlCl3 catalyst is as low as 15-20%, and an extremely large amount of by-products are produced, making it difficult to produce adamantane industrially. It could not be said that it was advantageous.
その後、各種の改良が為されたが、その中ではエンド−
テトラヒドロジシクロペンタジェンのへ1C13触媒に
よるアダマンタンへの異性化で、溶媒として1.2−ジ
クロルエタンを用いることにより特異的に反応が促進さ
れ、収率が50%に向上するとともにレジンなどの副生
物の生成も僅かになるとする報告(特公昭5l−205
08)があり、注目に値する。After that, various improvements were made, among which
In the isomerization of tetrahydrodicyclopentadiene to adamantane using a 1C13 catalyst, the reaction is specifically promoted by using 1,2-dichloroethane as a solvent, improving the yield to 50% and reducing by-products such as resin. It is reported that the formation of
08) and is worthy of attention.
一方、ゼオライトのような通常の固体酸を触媒としたも
のでは、希土類イオン及びアルカリ土類イオンでイオン
交換されたY型ゼオライトに白金属元素などの金属を担
持した触媒(M/REVと略)を用いたものがある(特
公昭53−35944等)。この方法の場合、触媒が腐
食性がなく取り扱い容易であることが利点であるが、ア
ダマンクンの収率は20〜40%と低く、かつ、11□
と1101 との混合ガス加圧下で反応を行っているこ
と、さらに、触媒の組成が複雑で調製が困難であること
などが欠点である。On the other hand, a catalyst using a normal solid acid such as zeolite is a catalyst (abbreviated as M/REV) in which metals such as platinum elements are supported on Y-type zeolite that has been ion-exchanged with rare earth ions and alkaline earth ions. There are some using (Japanese Patent Publication No. 53-35944, etc.). The advantage of this method is that the catalyst is non-corrosive and easy to handle, but the yield of adamancune is as low as 20-40%, and 11□
Disadvantages include that the reaction is carried out under pressure with a mixed gas of 1101 and 1101, and that the composition of the catalyst is complex and difficult to prepare.
(発明が解決しようとする問題点)
しかしながら、アダマンクン類の中でもファインケミカ
ル原料として特に有用な1.3−ジメチルアダマンタン
を高収率で選択的に製造する方法は、現在知られていな
い。塩素処理(水素、塩化水素、塩化チオニルによる逐
次処理)したPt−Al□0.触媒が三環式炭化水素を
異性化する触媒として有効であることがII告されてい
る(J、八m、 Chem、 Soc。(Problems to be Solved by the Invention) However, there is currently no known method for selectively producing 1,3-dimethyladamantane in a high yield, which is particularly useful as a raw material for fine chemicals among adamuncnes. Chlorinated (sequential treatment with hydrogen, hydrogen chloride, and thionyl chloride) Pt-Al□0. It has been reported that the catalyst is effective as a catalyst for isomerizing tricyclic hydrocarbons (J, 8m, Chem, Soc.
93、2798 (1971))が、この場合Itch
5OCIzによる触媒の耐食性を有する前処理装置が
必要なこと、触媒の寿命が極めて短く触媒の再住關度が
大なること、および有毒なガスを扱う等、工業的に実施
するには問題がある。93, 2798 (1971)), but in this case Itch
There are problems in industrial implementation, such as the need for a pretreatment device that resists corrosion of the catalyst due to 5OCIz, the life of the catalyst being extremely short and the need for repopulation of the catalyst being large, and the handling of toxic gases. .
また、上記M/REV系触媒でパーヒドロアセナフテン
の異性化を行うと、収率19%で1,3−ジメチルアダ
マンタンが生成するとされているが(特公昭52427
06) 、パーヒドロアセナフテン転化率39%、1.
3−ジメチルアダマンタン選択率28%と低いばかりで
なく、分解生成物が19%も生成しており工業的に使用
できる水準ではない。さらに、この方法は反応時にHC
Iガスを用いているので装置の腐食などの問題も考えら
れ、多くの問題がある。Furthermore, it is said that when perhydroacenaphthene is isomerized using the above M/REV catalyst, 1,3-dimethyladamantane is produced with a yield of 19% (Japanese Patent Publication No. 52427
06), perhydroacenaphthene conversion rate 39%, 1.
Not only is the selectivity of 3-dimethyladamantane as low as 28%, but 19% of decomposition products are produced, which is not at a level that can be used industrially. Furthermore, this method uses HC during the reaction.
Since I gas is used, there are many problems such as corrosion of the equipment.
本発明者らは、既にパーヒドロアセナフテンを異性化し
、1.3−ジメチルアダマンタンを得る触媒としてAl
Cl3 と1.2−ジクロルエタンとから生成する錯体
が大変価れており、70〜80%の高収率で1,3−ジ
メチルアダマンタンを得ることができることを見出した
(特願昭6l−305290)、この触媒系は従来のも
のに比べて非常に高活性で工業的製造法としても満足し
うるちのであるが、触媒が使い捨てで経済性が悪いこと
、並びに反応方法がバッチ式に限られ生産性に劣るとい
う欠点もあった。The present inventors have already discovered that Al as a catalyst for isomerizing perhydroacenaphthene to obtain 1,3-dimethyladamantane.
It was discovered that the complex formed from Cl3 and 1,2-dichloroethane is very valuable and that 1,3-dimethyladamantane can be obtained with a high yield of 70 to 80% (Japanese Patent Application No. 61-305290). Although this catalyst system has much higher activity than conventional ones and is satisfactory as an industrial production method, it is not economical because the catalyst is disposable, and the reaction method is limited to a batch method, making production difficult. It also had the disadvantage of being inferior in gender.
高収率、高選択的に1.3−ジメチルアダマンタンを得
るために、本発明者らはゼオライトなどの固体酸触媒の
活性、選択性を向上させるとともに分解生成物を極力低
下させるべく、用いるゼオライトの種類及び種々の金属
イオンの添加効果、さらに反応条件等についても鋭意検
討した結果、13−ジメチルアダマンの収率が優れ、か
つ、分解生成物の少ない力虫媒系を見出し、本発明を完
成した。In order to obtain 1,3-dimethyladamantane in high yield and with high selectivity, the present inventors used zeolite to improve the activity and selectivity of solid acid catalysts such as zeolite, and to reduce decomposition products as much as possible. As a result of intensive studies on the types of 13-dimethyladamane, the effects of adding various metal ions, and the reaction conditions, we discovered a power insect medium system that provides an excellent yield of 13-dimethyladamane and produces few decomposition products, and completed the present invention. did.
従って、本発明は1.3−ジメチルアダマンタンを高収
率、高選択的に製造し、しかも分解生成物が少なく経済
性の良い触媒を提供することを目的とする。Therefore, an object of the present invention is to provide an economically efficient catalyst which can produce 1,3-dimethyladamantane in high yield and with high selectivity, and which produces few decomposition products.
(問題点を解決するだめの手段)
即ち、本発明は、^L Ni、、Cu、 Co、 Cr
XTi及びSnから選ばれた金属の少なくとも一種をゼ
オライトに担持せしめてなるパーヒドロアセナフテン異
性化による1、3−ジメチルアダマンタン製造用触媒、
および本触媒を用いた1、3−ジメチルアダマンタンの
製造方法である。(Another means to solve the problem) That is, the present invention solves the following problems: ^L Ni, Cu, Co, Cr
A catalyst for producing 1,3-dimethyladamantane by perhydroacenaphthene isomerization, comprising at least one metal selected from XTi and Sn supported on zeolite;
and a method for producing 1,3-dimethyladamantane using the present catalyst.
また、本発明方法は、この触媒を製造するに当たり、ゼ
オライトを八L Ni、 Cu、 Co、 CrXTi
及びSnから選ばれた金属イオンの内の少なくとも一種
の金属イオンでイオン交換すること、および/または前
記元素群から選ばれた金属塩の内の少なくとも一種の金
属塩を同ゼオライトに含浸担持することを特徴とする。In addition, in the method of the present invention, in producing this catalyst, the zeolite is 8L Ni, Cu, Co, CrXTi.
and/or ion exchange with at least one metal ion selected from Sn and/or impregnating and supporting the zeolite with at least one metal salt selected from the above element group. It is characterized by
また本発明は、パーヒドロアセナフテンの異性化により
1,3−ジメチルアダマンタンを製造するにあたり、触
媒としてAI、 Ni、 Cu、 Co、 Cr、 T
i及びSnから選ばれた金属イオンの内の少なくとも一
種の金属イオンでイオン交換および/または前記元素群
から選ばれた金属塩の内の少なくとも一種の金属塩を含
浸担持したゼオライトを用いることを特徴とする1、3
−ジメチルアダマンタンの製造方法を提供する。In addition, the present invention uses AI, Ni, Cu, Co, Cr, T as a catalyst in producing 1,3-dimethyladamantane by isomerizing perhydroacenaphthene.
It is characterized by using zeolite which is ion-exchanged with at least one metal ion selected from i and Sn and/or impregnated and supported with at least one metal salt selected from the above element group. 1, 3
- Provides a method for producing dimethyladamantane.
含浸担持する際に用いる金属塩としては、硫酸塩、塩化
物、硝酸塩など水溶性の塩であれば良く、何ら限定的で
はない。また、二種以上の金属イオンをイオン交換法に
よって担持する場合、イオン交換の順序は任意で良く、
さらに二種以上の金属イオンを含む溶液により、二種以
上の金属イオンをゼオライトに同時に担持しても良い。The metal salt used for impregnation and support may be any water-soluble salt such as sulfate, chloride, nitrate, etc., and is not limited in any way. Furthermore, when supporting two or more metal ions by an ion exchange method, the order of ion exchange may be arbitrary;
Furthermore, two or more metal ions may be simultaneously supported on the zeolite using a solution containing two or more metal ions.
本発明では、イオン交換法と含浸担持法とを組み合わせ
て触媒を製造する場合、イオン交換法でゼオライトに金
属イオンを担持した後、含浸法にて他の金属塩を担持す
るが、この担持処理順序を逆にしても実際上何ら問題は
ない。また、本発明の含浸担持法としては、金属塩水溶
液への浸消法、金属塩水溶液のスプレー散布法等、公知
の方法が含まれる。In the present invention, when producing a catalyst by combining the ion exchange method and the impregnation support method, metal ions are supported on zeolite by the ion exchange method, and then other metal salts are supported by the impregnation method. There is no practical problem in reversing the order. Further, the impregnating and supporting method of the present invention includes known methods such as a method of dipping into an aqueous metal salt solution and a method of spraying an aqueous metal salt solution.
本発明に用いられる原料のパーヒドロアセナフテンは通
常コールタール中に含まれるアセナフテンの水素化によ
って得られるが、他の方法により得られるパーヒドロア
セナフテンも使用することができる。The raw material perhydroacenaphthene used in the present invention is usually obtained by hydrogenating acenaphthene contained in coal tar, but perhydroacenaphthene obtained by other methods can also be used.
本発明に用いられる触媒は、特定のゼオライトの金属イ
オン交換体および/または金属塩含浸担持体を空気中、
あるいは不活性ガス中で焼成し、活性化したものである
。The catalyst used in the present invention is a specific zeolite metal ion exchanger and/or metal salt impregnated support in air.
Alternatively, it is activated by firing in an inert gas.
一般にゼオライトの酸特性はシリカ/アルミナ比が小さ
くなると酸強度は低下するが、酸点密度は増加すること
が知られている。本反応は骨格異性化反応であるため高
い酸点密度を有する触媒が好ましく、シリカ/アルミナ
比があまり大きくない、好ましくは、10以下のゼオラ
イトを触媒に用いるのが良い。しかしながら、そのよう
なゼオライトのII型をそのまま反応に用いると、酸強
度が弱いため十分な活性を示さない。このため、ゼオラ
イトの酸強度を増加させることを目的として種々の金属
イオン交換体および/または金属塩含浸担持体を調製し
、その触媒活性や選択性を検討した結果、八1、Ni、
Cu、 Go、、Cr、、TiおよびSnから選ばれ
た金属の内の少なくとも一種の金属イオンおよび/また
は金属塩を担持したものが特に高い活性を示すことを見
出した。It is generally known that the acid properties of zeolite are such that as the silica/alumina ratio decreases, the acid strength decreases, but the acid site density increases. Since this reaction is a skeletal isomerization reaction, a catalyst having a high acid site density is preferable, and a zeolite having a silica/alumina ratio of not so large, preferably 10 or less, is used as a catalyst. However, if such type II zeolite is used as it is in the reaction, it does not exhibit sufficient activity because of its weak acid strength. Therefore, with the aim of increasing the acid strength of zeolite, various metal ion exchangers and/or metal salt-impregnated supports were prepared and their catalytic activities and selectivities were investigated.
It has been found that those carrying at least one metal ion and/or metal salt selected from Cu, Go, Cr, Ti, and Sn exhibit particularly high activity.
本発明では、これら7種の金属から選ばれた金属イオン
および/または金属塩の内の少なくとも一種を担持する
ことが必須であり、例えばアルカリ金属イオンで交換し
たゼオライトでは、パーヒドロアセナフテン異性化反応
に対する活性をほとんど示さなかった。金属イオンの交
換率は、限定的ではないが、10%以上が好ましい。金
属塩担持の場合も、やはり限定的ではないが金属塩とし
て1.5〜15重量%が良い。また、用いるゼオライト
はtl −Y型、Na−Y型、X型のゼオライトの何れ
も用いることができるが、より高い収率で1.3ジメチ
ルアダマンクンを得るにはH−Y型を用いる方が良い。In the present invention, it is essential to support at least one metal ion and/or metal salt selected from these seven types of metals. For example, in zeolite exchanged with alkali metal ions, perhydroacenaphthene isomerization It showed almost no reaction activity. Although the exchange rate of metal ions is not limited, it is preferably 10% or more. In the case of supporting a metal salt, it is preferable to carry the metal salt in an amount of 1.5 to 15% by weight, although this is not limited. In addition, the zeolite to be used can be any of the tl-Y type, Na-Y type, and is good.
なお、触媒の形状は粉末状、粒状など任意である。The shape of the catalyst may be arbitrary, such as powder or granules.
本発明に用いられる触媒は適当な活性化処理を行う必要
があり、何ら活性化処理を行わなければ、反応は全く進
行しない。活性化処理としては通常の加熱焼成で良いが
、焼成温度は300〜700°Cおよび焼成時間は1〜
IO時間が好ましい。焼成時の雰囲気は空気あるいは不
活性ガスの何れでも良い。The catalyst used in the present invention must be subjected to appropriate activation treatment, and the reaction will not proceed at all if no activation treatment is performed. As the activation treatment, normal heating and firing may be used, but the firing temperature is 300-700°C and the firing time is 1-100°C.
IO time is preferred. The atmosphere during firing may be air or an inert gas.
触媒は、パーヒドロアセナフテンに対し重量比で1/4
〜4/1倍量になるように用いれば良いが、生産性や経
済性の観点から特に172〜2/1倍量が好ましい。反
応はパーヒドロアセナフテンが気化しないよう不活性ガ
スあるいは水素ガス中で3〜50atm 、好ましくは
5〜30a Lmに加圧して行う。The catalyst has a weight ratio of 1/4 to perhydroacenaphthene.
It may be used in an amount of ~4/1 times, but from the viewpoint of productivity and economy, an amount of 172 to 2/1 times is particularly preferred. The reaction is carried out under pressure of 3 to 50 atm, preferably 5 to 30 atm, in an inert gas or hydrogen gas so that perhydroacenaphthene does not vaporize.
圧力が3atm未満あるいは50a Lmを超えると反
応速度が低下してしまい好ましくない。また、気相にH
CIやllBrなどのガスを共存させなくとも十分に高
い収率で1,3−ジメチルアダマンタンが生成するので
経済的であるばかりでなく、装置の腐食等の問題もなく
実用的である。If the pressure is less than 3 atm or more than 50 a Lm, the reaction rate will decrease, which is not preferable. In addition, H
Since 1,3-dimethyladamantane is produced in a sufficiently high yield even without the coexistence of gases such as CI and 11Br, it is not only economical but also practical without problems such as equipment corrosion.
異性化の反応温度は150〜300℃、特に200〜2
70℃が好ましい。150℃未満では反応速度が極めて
遅<、300°Cを超えると分解生成物が多量に生成し
てしまい、経済的でない。反応時間は反応温度にもよる
が1−10時間が良い。例えば、反応温度250℃では
、2〜4時間が適当である。The reaction temperature for isomerization is 150 to 300°C, especially 200 to 2
70°C is preferred. If the temperature is lower than 150°C, the reaction rate is extremely slow; if it exceeds 300°C, a large amount of decomposition products will be produced, which is not economical. The reaction time is preferably 1 to 10 hours, although it depends on the reaction temperature. For example, at a reaction temperature of 250°C, 2 to 4 hours is appropriate.
本触媒の活性は長時間にわたり維持されるが、長期の使
用にともない次第にコーク状物質が表面に付着する。そ
のようになった触媒は、空気中、あるいは不活性ガスで
希釈したH 2ガス雰囲気下、200〜600℃で2〜
20時間加熱することによって、付着したコーク状物質
は完全に除去され、触媒活性は完全に再化される。Although the activity of this catalyst is maintained for a long time, coke-like substances gradually adhere to the surface with long-term use. The resulting catalyst can be heated at 200-600°C in air or under an H2 gas atmosphere diluted with an inert gas.
By heating for 20 hours, the attached coke-like substance is completely removed and the catalyst activity is completely regenerated.
本発明では適当な反応条件を選択することにより、高い
選択率で1,3−ジメチルアダマンタンが生成するので
、目的物である1、3−ジメチルアダマンタンを減圧蒸
留により容易、かつ、高純度に分離することができる。In the present invention, 1,3-dimethyladamantane is produced with high selectivity by selecting appropriate reaction conditions, so the target product, 1,3-dimethyladamantane, can be easily separated with high purity by vacuum distillation. can do.
次に、本発明の効果を明確にするため代表的な実施例を
示す。実施例1〜21は本発明による触媒を用いた場合
を、比較例1.2は本発明による金属を担持しない場合
を、比較例3はゼオライトとじてシリカ/アルミナ比の
大なるゼオライトを用いた場合を示す。Next, typical examples will be shown to clarify the effects of the present invention. Examples 1 to 21 are cases in which the catalyst according to the present invention is used, Comparative Example 1.2 is a case in which the metal according to the present invention is not supported, and Comparative Example 3 is a case in which a zeolite with a high silica/alumina ratio is used as the zeolite. Indicate the case.
なお、本発明の実施例2〜21および比較例1〜3にお
ける触媒の調製時の焼成条件は実施例1と同一条件とし
た。The firing conditions for preparing the catalysts in Examples 2 to 21 of the present invention and Comparative Examples 1 to 3 were the same as in Example 1.
(実施例)
丸l土
濃度0.5Nの八ICl3 ’ 6 tlzO水溶液4
30m1に5iO273,7重量%、Δ120321.
8重量%、Nazo 3.6重量%の組成を有するH
−Y型ゼオライト(シリカ/アルミナ比5.7) 30
gを加え、70〜80℃で2.5時間攪拌した。ついで
、このスラリーを濾過し、得られたケーキ状物をIA’
の純水で洗浄した。さらに前記操作を2度繰り返し行い
、AIイオン交tAHYゼオライトを得た。次に、この
全量を磁製蒸発皿に入れ、マンフル炉を用い、空気中4
50°Cで2時間焼成した。(Example) 8 ICl3'6 tlzO aqueous solution 4 with a soil concentration of 0.5N
5iO273.7% by weight in 30ml, Δ120321.
H with a composition of 8% by weight, Nazo 3.6% by weight
-Y type zeolite (silica/alumina ratio 5.7) 30
g and stirred at 70 to 80°C for 2.5 hours. Then, this slurry was filtered, and the resulting cake-like material was IA'
Washed with pure water. Furthermore, the above operation was repeated twice to obtain AI ion exchanged tAHY zeolite. Next, put this entire amount into a porcelain evaporating dish, use a manful furnace, and immerse it in air for 4 hours.
It was baked at 50°C for 2 hours.
焼成済の上記触媒5gとパーヒドロアセナフテン(以下
、P)IAと略す)5gとを内容積30ccのステンレ
ス製オートクレーブに入れ、窒素置換後、If、ガスに
よって15atmに加圧した後、予め、約250℃に加
熱されたサンドバス中に反応容器を入れ、振盪を開始し
た。反応はオートクレーブ内部の温度を250±5℃に
保持し、2.5時間行った。5 g of the calcined catalyst and 5 g of perhydroacenaphthene (hereinafter abbreviated as P)IA) were placed in a stainless steel autoclave with an internal volume of 30 cc, and after being purged with nitrogen and pressurized to 15 atm with If gas, the following steps were taken: The reaction container was placed in a sand bath heated to about 250°C, and shaking was started. The reaction was carried out for 2.5 hours while maintaining the temperature inside the autoclave at 250±5°C.
反応終了後、反応容器を水中に投入し急冷させた後、残
ガスをパージし、常圧にもどした。反応生成物から触媒
を濾過によって除去した後、生成物をガスクロマトグラ
フにて分析した結果、pH/lの転化率100%、1.
3−ジメチルアダマンタン(以下、1.3−叶へと略す
)の選択率は50.5%であった。After the reaction was completed, the reaction vessel was put into water and rapidly cooled, and then residual gas was purged and the pressure was returned to normal pressure. After removing the catalyst from the reaction product by filtration, the product was analyzed by gas chromatography, and the results showed that the conversion rate of pH/l was 100%, 1.
The selectivity of 3-dimethyladamantane (hereinafter abbreviated as 1.3-Kano) was 50.5%.
他の生成物の選択率は1.3−DMA以外のジメチルア
ダマンクンとエチルアダマンクン(これらを合わ一1゛
て以下、R−Ad+nと略す)とが合計で44.1%で
分解生成物は5.4%であった。The selectivity for other products was 44.1% in total for dimethyladamancune and ethyladamancune (hereinafter referred to as R-Ad+n) other than 1.3-DMA. was 5.4%.
1施■↓
反応の雰囲気ガスにN2を用いて加圧した以外は実施例
1と同様にしてPIIA異性化反応を行ったところ、I
’ll八転化へ100%、選択率は、1.3−DM八へ
9.5%、R−八dm 44.3%、分解生成物6.2
%であった。1 test ■↓ When the PIIA isomerization reaction was carried out in the same manner as in Example 1 except that N2 was used as the reaction atmosphere gas and pressurized, I
100% to 'll 8 conversion, selectivity is 9.5% to 1.3-DM 8, R-8 dm 44.3%, decomposition products 6.2
%Met.
次長−例」−
ゼオライトのイオン交換を、濃度0.5NのN1(NO
3)z・611□0水溶液を用いて調製したNiイオン
交換H−Y型ゼオライト(シリカ/アルミナ比5.7)
を用いた以外は実施例1と同様にして異性化反応を行っ
た。P II A転化率100%、選択率は、1.3−
D?I八4へ、8%、トへdm 53.7%、分解生成
物3.5%であった。Deputy Director - Example - Ion exchange of zeolite is carried out using N1 (NO
3) Ni ion exchange H-Y type zeolite prepared using z・611□0 aqueous solution (silica/alumina ratio 5.7)
The isomerization reaction was carried out in the same manner as in Example 1 except that . P II A conversion rate 100%, selectivity 1.3-
D? 8% for I84, 53.7% for DM, and 3.5% for decomposition products.
天川lボt
ゼオライトのイオン交換を、濃度0.5N(7)Cu(
C1laCOO) 2 ・lho水溶液を用いて調製し
たC u t +イオン交換H−Y型ゼオライトを用い
た以外は、実施例1と同様にして、円μ異性化反応を行
った。Tenkawa L Bot Ion exchange of zeolite is carried out at a concentration of 0.5N(7)Cu(
Circular μ isomerization reaction was carried out in the same manner as in Example 1, except that C u t + ion exchange H-Y type zeolite prepared using C1laCOO) 2 .lho aqueous solution was used.
PIIA転化率100%、選択率は、1.3−DMA
50.8%、R−Adm 45.7%、分解生成物3.
5%であった。PIIA conversion rate 100%, selectivity 1.3-DMA
50.8%, R-Adm 45.7%, decomposition products 3.
It was 5%.
実施韮j
ゼオライトのイオン交換を、濃度0.5NのCo(No
:l) z ・611zO水溶液を用いて調製したCo
”+イオン交換11−Y型ゼオライト−を用いた以外は
、実施例1と同様にして、円IA異性化反応を行った。Ion exchange of zeolite was carried out using Co (No.
:l) Co prepared using z ・611zO aqueous solution
A circular IA isomerization reaction was carried out in the same manner as in Example 1 except that ion exchange 11-Y type zeolite was used.
PIIA転化率100%、選択率は、1.3−DMA
37゜1%、R−Adm 59.8%、分解生成物3.
1%であった。PIIA conversion rate 100%, selectivity 1.3-DMA
37°1%, R-Adm 59.8%, decomposition products 3.
It was 1%.
天1」住
ゼオライトのイオン交換を、濃度0.5NのCr(N(
h)3’ 9 tlzO水溶液を用いて調製したCr3
+イオン交換1]−Y型ゼオライトを用いた以外は実施
例1と同様にしてPIIA異性化反応を行った。Ion exchange of Ten1's zeolite was carried out using Cr(N() with a concentration of 0.5N.
h) Cr3 prepared using 3' 9 tlzO aqueous solution
+Ion Exchange 1] A PIIA isomerization reaction was carried out in the same manner as in Example 1 except that -Y type zeolite was used.
P11A転化率100%、選択率は、1.3−DMA4
2.1%、R−へdm 52.2%、分解生成物5.7
%であった。P11A conversion rate 100%, selectivity 1.3-DMA4
2.1%, R-hedm 52.2%, decomposition products 5.7
%Met.
実九M↑
濃度0.15NのTi(SO4)z ・411z058
0 mlに濃塩酸5 mlを加えた水溶液にシリカ/ア
ルミナ比が5.7であるH −Y型ゼオライト30gを
加えるTi4+イオン交換操交換−回だけ行って調製し
たTi”イオン交換H−Y型ゼオライトを用いた以外は
、実施例1と同様にして円1^異性化反応を行った。P
IIA転化率100%、選択率は、1.3−DMA 4
4.2%、R−八dm52.2%、分解生成物3.6%
であった。Jiku M↑ Ti(SO4)z with concentration 0.15N ・411z058
Ti" ion exchange H-Y type prepared by adding 30 g of H-Y type zeolite with a silica/alumina ratio of 5.7 to an aqueous solution in which 5 ml of concentrated hydrochloric acid was added to 0 ml of Ti4+ ion exchange operation. A circular 1^ isomerization reaction was carried out in the same manner as in Example 1 except that zeolite was used.P
IIA conversion rate 100%, selectivity 1.3-DMA 4
4.2%, R-8dm 52.2%, decomposition products 3.6%
Met.
次瀞M工
濃度0.15Nの51(SO,)、 ・nf1,o(平
均値n−2)580 mlにシリカ/アルミナ比が5.
7である11−Y型ゼオライト30gを加えるSn’+
イオン交換操作を一回だけ行って調製したSn 4 +
イオン交換H−Y型ゼオライトを用いた以外は、実施例
1と同様にしてPIIA異性化反応を行った。円1転化
率100%、選択率は、1.3−DMA 50.9%、
P−八dm 44.7%、分解生成物4.4%であった
。51 (SO,) with a concentration of 0.15N, ・nf1,o (average value n-2) 580 ml with a silica/alumina ratio of 5.
Add 30g of 11-Y type zeolite which is 7.Sn'+
Sn 4 + prepared by performing only one ion exchange operation
A PIIA isomerization reaction was carried out in the same manner as in Example 1 except that ion exchange H-Y type zeolite was used. Yen 1 conversion rate 100%, selectivity 1.3-DMA 50.9%,
P-8dm was 44.7%, and decomposition products were 4.4%.
夫柑■ユ
濃度0.5 NのAICh・611゜0水溶液820−
にシリカ/アルミナ比が4.8である!]−Y型ゼオラ
イト30gを加えて調製した旧イオン交換H−Y型ゼオ
ライトを用いた以外は実施例1と同様にしてPIIA異
性化反応を行った。PIIA転化率100%、選択率は
、1.3−DMA 56.4%、P−八dm 38.9
%、分解生成物4.7%であった。AICh・611゜0 aqueous solution 820-
The silica/alumina ratio is 4.8! PIIA isomerization reaction was carried out in the same manner as in Example 1 except that old ion exchange H-Y type zeolite prepared by adding 30 g of -Y type zeolite was used. PIIA conversion rate 100%, selectivity 1.3-DMA 56.4%, P-8dm 38.9
%, and the decomposition products were 4.7%.
天1」側
濃度0.5 NのNi (NO3) t ・611zO
水溶液820mff1にシリカ/アルミナ比が4.8で
あるH −Y型ゼオライト30gを加えて調製したNi
イオン交交換−Y型ゼオライトを用いた以外は、実施例
1と同様にして円1へ異性化反応を行った。P)IA転
化率100%、選択率は、1.3−DMA 52.6%
、R−^dm 43.3%、分解生成物4.1%であっ
た。Ni (NO3) t 611zO with a concentration of 0.5 N on the top side
Ni prepared by adding 30 g of H-Y type zeolite with a silica/alumina ratio of 4.8 to 820 mff1 of an aqueous solution.
The isomerization reaction to circle 1 was carried out in the same manner as in Example 1 except that ion exchange Y-type zeolite was used. P) IA conversion rate 100%, selectivity 1.3-DMA 52.6%
, R-^dm 43.3%, and decomposition products 4.1%.
爽ル缶−イダ1≦1≦1
濃度0.INの^lcl+ ・61120水溶液43M
にシリカ/アルミナ比が5.7であるH −Y型ゼオラ
イト30gを加えるAIイオン交換操作を一回だけ行っ
て、へl交換率が40%になるようにして調製したへ!
イオン交換H−Y型ゼオライトを用いた以外は実施例1
と同様にしてPIIA異性化反応を行った。PIIA転
化率100%、選択率は、1.3−DMA50.0%、
R−八dIl146.1%、分解生成物3.9%であっ
た。Sour can - Ida 1≦1≦1 Concentration 0. IN^lcl+ ・61120 aqueous solution 43M
The AI ion exchange operation was performed only once by adding 30 g of H-Y type zeolite with a silica/alumina ratio of 5.7 to the helium, and the hel exchange rate was 40%.
Example 1 except that ion exchange H-Y type zeolite was used.
PIIA isomerization reaction was carried out in the same manner as described above. PIIA conversion rate 100%, selectivity 1.3-DMA 50.0%,
The R-8dIl content was 146.1%, and the decomposition products were 3.9%.
次ml其
濃度0.15NのN1(NO:+)z ・611!O水
溶液5901nlにシリカ/アルミナ比が5.6である
Na−Y型ゼオライト30gを加えて調製したNiイオ
ン交換Na−Y型ゼオライトを用いた以外は実施例1と
同様にしてPIIA異性化反応を行った。PIIA転化
率100%、選択率は1.3−DMA34.1%、P−
八dm 61.9%、分解生成物4.0%であった。Next ml its concentration 0.15N N1(NO:+)z ・611! The PIIA isomerization reaction was carried out in the same manner as in Example 1, except that Ni ion exchange Na-Y type zeolite prepared by adding 30 g of Na-Y type zeolite with a silica/alumina ratio of 5.6 to 5901 nl of O aqueous solution was used. went. PIIA conversion rate 100%, selectivity 1.3-DMA 34.1%, P-
8 dm was 61.9%, and decomposition products were 4.0%.
↓し1文]列↓
金属イオン交換操作を何も行っていないH−Y型ゼオラ
イト(シリカ/アルミナ比5.7)を用いた以外は実施
例1と同様にしてPH^異性化反応を行った。Pl+八
転へ率71.8%、選択率は、1.3−DMA14.4
%、R−八dm 2(i、4%、分解生成物4.2%で
あった。↓ 1 sentence] Column ↓ The PH^ isomerization reaction was carried out in the same manner as in Example 1, except that H-Y type zeolite (silica/alumina ratio 5.7) without any metal ion exchange operation was used. Ta. Pl+8 turn rate 71.8%, selection rate is 1.3-DMA14.4
%, R-8 dm 2 (i, 4%, decomposition products 4.2%).
几士■生圀
濃度0.5NのMCI水溶液にシリカ/アルミナ比が5
.7であるl−1−Y型ゼオライトを加えるにイオン交
換操作を3回行って調製したにイオン交換11−Y型ゼ
オライトを用いた以外は実施例1と同様にして円!へ異
性化反応を行った。PIIA転化率0.1%であった。几士■ Ikukai MCI aqueous solution with a concentration of 0.5N and a silica/alumina ratio of 5
.. The process was repeated in the same manner as in Example 1, except that ion-exchanged 11-Y type zeolite, which was prepared by adding 1-1-Y type zeolite (7) and ion-exchange operation three times, was used. An isomerization reaction was carried out. The PIIA conversion rate was 0.1%.
此Jfd津よ
シリカ/アルミナ比が14.0である超安定型H−Yゼ
オライトを用いた以外は実施例1と同様にしてP)IA
異性化反応を行った。PHA転化率52.4%、選択率
は1.3−DMA 6.4%、R−Adm 30.1%
、分解生成物2.1%であった。P) IA was carried out in the same manner as in Example 1 except that ultra-stable H-Y zeolite with a silica/alumina ratio of 14.0 was used.
An isomerization reaction was performed. PHA conversion rate 52.4%, selectivity 1.3-DMA 6.4%, R-Adm 30.1%
, decomposition products were 2.1%.
実施U
ゼオライトのイオン交換を、濃度0.INの八ICI:
l ・6 HzO水溶液210mff1を用いてへ13
+″イオンの交換率を20%としたH−Y型ゼオライト
を調製し、これを乾燥後、濃度0.INのC0(NO3
) t ・611zO水溶液860 ml T: Co
” ”イオン交換を行い、H−Y型ゼオライトのイオ
ン交換率が八I ” 20%、Co”80%とした二種
金属イオン交換体を調製した。これを用いた以外は、実
施例1と同様にしてpHA異性化反応を行った。P11
八転化率100%、選択率は、1.3−DMA 54.
9%、R−Adm 41.5%、分解生成物4.6%で
あった。Implementation U Ion exchange of zeolite was carried out at a concentration of 0. IN 8 ICI:
l ・6 HzO aqueous solution 210mff1 to 13
H-Y type zeolite with an exchange rate of +'' ions of 20% was prepared, and after drying, CO(NO3) with a concentration of 0.IN was prepared.
) t ・611zO aqueous solution 860 ml T: Co
A bimetallic ion exchanger was prepared by carrying out ion exchange so that the ion exchange rate of H-Y type zeolite was 20% for 8I and 80% for Co. A pHA isomerization reaction was carried out in the same manner as in Example 1 except that this was used. P11
Eight conversion rate: 100%, selectivity: 1.3-DMA 54.
9%, R-Adm 41.5%, and decomposition products 4.6%.
夷旧胆
ゼオライトのイオン交換を、濃度0.I Nの5n(S
O4) t ・n 1120 (平均値n−2)水溶液
210mZを用いてSn”イオンの交換率を20%とし
たH−Y型ゼオライトを調製し、これを乾燥後、濃度0
.INの八ICh・611□0水溶液860−でΔ13
+イオン交換を行い、11− Y型ゼオライトのイオン
交換率がSn”20%、AI”80%とした二種金属イ
オン交換体を調製した。これを用いた以外は、実施例1
と同様にしてpH^異性化反応を行った。pH八転へ率
100%、選択率は1.3−DMA57.2%、R−八
dm 41.0%、分解生成物4.4%であった。Ion exchange of old bile zeolite was carried out at a concentration of 0. 5n(S
O4) t・n 1120 (average value n-2) Using an aqueous solution of 210 mZ, H-Y type zeolite was prepared with a Sn" ion exchange rate of 20%, and after drying,
.. IN 8ICh・611□0 aqueous solution 860- Δ13
+ ion exchange was performed to prepare a bimetallic ion exchanger in which the ion exchange rate of 11-Y type zeolite was 20% for Sn and 80% for AI. Example 1 except for using this
A pH^isomerization reaction was carried out in the same manner as above. The pH conversion rate was 100%, the selectivity was 57.2% for 1.3-DMA, 41.0% for R-8dm, and 4.4% for decomposition products.
夫應桝■
実施例13と同様にして調製したへ13゛イオンの交換
率が20%の14−Y型ゼオライトを調製し、これを乾
燥後、濃度0.INのN1(NO3)z・611□0水
溶液860m1でN12+イオン交換を行い、+1−
Y型ゼオライトのイオン交換率がAI”20%、旧2゛
80%とじた二種金属イオン交換体を調製した。これを
用いた以外は、実施例1と同様にしてPIIA異性化反
応を行った。PIIA転化率100%、選択率は1.3
−DMA44.4%、R−Adm 49.1%、分解生
成物4.0%であった。■ A 14-Y type zeolite prepared in the same manner as in Example 13 with an exchange rate of 13゛ ions of 20% was prepared, and after drying, the concentration was reduced to 0. Perform N12+ ion exchange with 860ml of IN N1(NO3)z・611□0 aqueous solution, +1-
A bimetal ion exchanger was prepared in which the ion exchange rate of Y-type zeolite was 20% for AI and 80% for 2.PIIA isomerization reaction was carried out in the same manner as in Example 1 except that this was used. PIIA conversion rate was 100%, selectivity was 1.3.
-DMA was 44.4%, R-Adm was 49.1%, and decomposition products were 4.0%.
ス去l汁述
実施例15とはイオン交換順序を逆にして、■1Y型ゼ
オライトのイオン交換を、まずNi!+でイオン交換率
が20%としたものを乾燥後、AI”−(オン交換を行
い、11− Y型ゼオライトのイオン交換率\
がN i !”20%、Al”80%とした二種金属イ
オン交換体を調製した。これを用いた以外は、実施例1
と同様にしてPIIA異性化反応を行った。pH八転へ
率100%、選択率は1.3−DMA 55.1%、R
−Adm 39.5%、分解生成物4.4%であった。The order of ion exchange was reversed from that of Example 15, and ■1 Y-type zeolite was ion-exchanged first with Ni! After drying the ion exchange rate of 20% with +, AI''-(on exchange was performed, and the ion exchange rate of 11- Y type zeolite was Ni!''20% and Al''80%. A metal ion exchanger was prepared.Example 1 except that this was used.
PIIA isomerization reaction was carried out in the same manner as described above. pH conversion rate 100%, selectivity 1.3-DMA 55.1%, R
-Adm was 39.5%, and decomposition products were 4.4%.
叉隻炭且
N1(N(h)z ・ 6 HzO9,42g と 八
ICl3 ・611□0 1.74gとを810m1の
水に溶かした水溶液を用いて、■1Y型ゼオライトのイ
オン交換率がNi”60%、AI”20%とした二種金
属イオン同時交換体を調製した。Using an aqueous solution in which 9.42 g of charcoal N1 (N(h)z 6 HzO and 1.74 g of 8ICl3 611□0 were dissolved in 810 ml of water, the ion exchange rate of ■1Y type zeolite was Ni" A dual metal ion simultaneous exchanger containing 60% and 20% AI was prepared.
これを用いた以外は、実施例1と同様にしてr’llA
異性化反応を行った。円祐転化率100%、選択率は、
1.3−DMA 47.5%、R−Adm 47.3%
、分解生成物3.9%であった。r'llA in the same manner as in Example 1 except that this was used.
An isomerization reaction was performed. Enyu conversion rate is 100%, selection rate is
1.3-DMA 47.5%, R-Adm 47.3%
, the decomposition products were 3.9%.
尖泡桝刊
濃度0.INのTi(S04)z・41120水溶液2
80−にH−Y型ゼオライトを加え、このスラリーを室
温にて一時間攪拌した後、攪拌を停止した。次に、オイ
ルバスにて加熱し、水を蒸発させた後、焼成し、担持率
が5.6重量%である11− Y型ゼオライトのTi
(504) v含浸担持体を調製した。これを用いた以
外は実施例1と同様にしてPIIA異性化反応を行った
。PIIA転化率100%、選択率は、1.3−DMA
29.4%、R−へdm 58.3%、分解生成物3.
2%であった。Senpai box concentration 0. IN Ti(S04)z・41120 aqueous solution 2
After adding H-Y type zeolite to 80- and stirring this slurry at room temperature for one hour, stirring was stopped. Next, it was heated in an oil bath to evaporate the water, and then calcined to form Ti of 11-Y type zeolite with a loading rate of 5.6% by weight.
(504) A v-impregnated support was prepared. PIIA isomerization reaction was carried out in the same manner as in Example 1 except that this was used. PIIA conversion rate 100%, selectivity 1.3-DMA
29.4%, R-hedm 58.3%, decomposition products 3.
It was 2%.
去茄貨−リ
ン農度0.INの^ICI+・611□0水溶液380
−を用いた以外は実施例18と同様にして触媒を調製し
、担持率が12.8重量%であるH−Y型ゼオライトの
AICh含浸担持体を得た。これを用いた以外は実施例
1と同様にしてPIIA異性化反応を行った。Leftover currency - phosphorus agricultural index 0. IN^ICI+・611□0 aqueous solution 380
A catalyst was prepared in the same manner as in Example 18, except that - was used, and an AICh-impregnated support of H-Y type zeolite with a supporting rate of 12.8% by weight was obtained. PIIA isomerization reaction was carried out in the same manner as in Example 1 except that this was used.
PIIA転化率100%、選択率は1.3−DMA 3
2.9%、P−Adm 60.5%、分解生成物2.8
%であった。PIIA conversion rate 100%, selectivity 1.3-DMA3
2.9%, P-Adm 60.5%, decomposition products 2.8
%Met.
尖旌炭刈
実施例13と同様にして調製したAI”イオンの交換率
が20%のH−Y型ゼオライトを乾燥後、濃度0、IN
の7i(SO4)z・4H30水溶液280−を用いて
、実施例18と同様にしてAI’°イオンの交換率が2
0%のH−Y型ゼオライトにTi (SO4) を担持
率が5.6重量%であるイオン交換法と含浸法の組合わ
せ触媒を得た。これを用いた以外は、実施例1と同様に
してpHA異性化反応を行った。PI(A転化率100
%、選択率は1.3−DMA 51.4%、ト^dm
44.8%、分解生成物3.7%であった。After drying H-Y type zeolite with an exchange rate of 20% of AI" ions prepared in the same manner as in Example 13, the concentration was 0, IN
Using the 7i(SO4)z・4H30 aqueous solution 280-, the exchange rate of AI'° ions was set to 2 in the same manner as in Example 18.
A catalyst was obtained by combining the ion exchange method and the impregnation method in which Ti (SO4) was supported at 5.6% by weight on 0% H-Y type zeolite. A pHA isomerization reaction was carried out in the same manner as in Example 1 except that this was used. PI (A conversion rate 100
%, selectivity is 1.3-DMA 51.4%, t^dm
44.8%, and decomposition products 3.7%.
ハ遺」
実施例15と同様にして調製したH −Y型ゼオライト
のイオン交換率がAI”20%、Ni”80%とした二
種金属イオン交換体に実施例18と同様なTi(SO4
)z含浸処理を行って得たイオン交換法と含浸法の組み
合わせによる三元素担持触媒を用いた以外は、実施例1
と同様にしてPIIA異性化反応を行った。円1八転化
率100%、選択率は、1.3−DMA60.6%、R
−Adm 30.9%、分解生成物5.4%であった。The same Ti (SO4
) Example 1 except that a three-element supported catalyst obtained by a combination of ion exchange method and impregnation method obtained by performing Z impregnation treatment was used.
PIIA isomerization reaction was carried out in the same manner as described above. Yen 18 conversion rate 100%, selectivity 1.3-DMA60.6%, R
-Adm was 30.9%, and decomposition products were 5.4%.
以上の本発明の実施例および比較例を、第1表および第
2表に一括して示す。The above examples and comparative examples of the present invention are collectively shown in Tables 1 and 2.
(発明の効果)
1.3−ジメチルアダマンタンのジカルボン酸やジオー
ルはポリエステル、ポリイミド等高級な機能性高分子の
原料として適していること、また医薬品、香料など各種
ファインケミカル原料としての有用性は知られている。(Effect of the invention) It is known that dicarboxylic acids and diols such as 1.3-dimethyladamantane are suitable as raw materials for high-grade functional polymers such as polyester and polyimide, and that they are useful as raw materials for various fine chemicals such as pharmaceuticals and fragrances. ing.
しかし、1,3−ジメチルアダマンタンを工業的に有利
に製造する方法がなかったため、現在これは非常に高価
なもので、そのため、誘導体等の開発があまり進んでい
なかった。本発明は、高活性・高選択性を示し、さらに
取り扱いが容易で再生利用可能な1,3−ジメチルアダ
マンタン製造用触媒および本触媒を用いた1、3−ジメ
チルアダマンタンの製造方法を提供するものであり、こ
れにより、1.3−ジメチルアダマンタンを高収率で比
較的大量に、安全に、かつ、安価に提供できるようにな
り、その工業的意義は非常に大きい。However, since there was no industrially advantageous method for producing 1,3-dimethyladamantane, it is currently very expensive, and as a result, the development of derivatives and the like has not made much progress. The present invention provides a catalyst for producing 1,3-dimethyladamantane that exhibits high activity and selectivity, is easy to handle, and is recyclable, and a method for producing 1,3-dimethyladamantane using the present catalyst. This makes it possible to provide 1,3-dimethyladamantane in a relatively large amount at a high yield, safely, and at low cost, which has great industrial significance.
Claims (4)
ら選ばれた金属の少なくとも一種をゼオライトに担持せ
しめてなるパーヒドロアセナフテン異性化による1,3
−ジメチルアダマンタン製造用触媒。(1) 1,3 by perhydroacenaphthene isomerization in which zeolite supports at least one metal selected from Al, Ni, Cu, Co, Cr, Ti, and Sn.
-Catalyst for producing dimethyladamantane.
i及びSnから選ばれた金属イオンの内の少なくとも一
種の金属イオンでイオン交換および/または同ゼオライ
トにAl、Ni、Cu、Co、Cr、Ti及びSnから
選ばれた金属塩の内の少なくとも一種の金属塩を含浸担
持することを特徴とするパーヒドロアセナフテン異性化
による1,3−ジメチルアダマンタン製造用触媒の製造
方法。(2) Zeolite is Al, Ni, Cu, Co, Cr, T
Ion exchange with at least one metal ion selected from i and Sn and/or at least one metal salt selected from Al, Ni, Cu, Co, Cr, Ti and Sn on the zeolite 1. A method for producing a catalyst for producing 1,3-dimethyladamantane by perhydroacenaphthene isomerization, which comprises impregnating and supporting a metal salt.
ジメチルアダマンタンを製造するにあたり、請求項1記
載の触媒を用いることを特徴とする1,3−ジメチルア
ダマンタンの製造方法。(3) By isomerizing perhydroacenaphthene, 1,3-
A method for producing 1,3-dimethyladamantane, which comprises using the catalyst according to claim 1 in producing dimethyladamantane.
ジメチルアダマンタンを製造するにあたり、触媒として
Al、Ni、Cu、Co、Cr、Ti及びSnから選ば
れた金属イオンの内の少なくとも一種の金属イオンでイ
オン交換および/またはAl、Ni、Cu、Co、Cr
、Ti及びSnから選ばれた金属塩の内の少なくとも一
種の金属塩を含浸担持したゼオライトを用いることを特
徴とする1,3−ジメチルアダマンタンの製造方法。(4) By isomerizing perhydroacenaphthene, 1,3-
In producing dimethyladamantane, ion exchange and/or Al, Ni, Cu, Co, Cr
, Ti, and Sn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63249762A JPH026855A (en) | 1987-10-05 | 1988-10-05 | Production of 1,3-dimethyladamantane, catalyst for production thereof and production of the same catalyst |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62-249721 | 1987-10-05 | ||
JP24972187 | 1987-10-05 | ||
JP63249762A JPH026855A (en) | 1987-10-05 | 1988-10-05 | Production of 1,3-dimethyladamantane, catalyst for production thereof and production of the same catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH026855A true JPH026855A (en) | 1990-01-11 |
Family
ID=26539440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63249762A Pending JPH026855A (en) | 1987-10-05 | 1988-10-05 | Production of 1,3-dimethyladamantane, catalyst for production thereof and production of the same catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH026855A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5332237A (en) * | 1990-07-26 | 1994-07-26 | Taiho Kogyo Co., Ltd. | Metal gasket with welded shim |
US5427388A (en) * | 1992-06-09 | 1995-06-27 | Japan Metal Gasket Co., Ltd. | Metallic gasket |
WO2002048077A1 (en) * | 2000-12-11 | 2002-06-20 | Idemitsu Petrochemical Co., Ltd. | Process for producing adamantane compound |
CN111701600A (en) * | 2020-07-02 | 2020-09-25 | 沧州那瑞化学科技有限公司 | Catalyst for preparing 1-bromo-3, 5-dimethyl adamantane and application thereof |
-
1988
- 1988-10-05 JP JP63249762A patent/JPH026855A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5332237A (en) * | 1990-07-26 | 1994-07-26 | Taiho Kogyo Co., Ltd. | Metal gasket with welded shim |
US5385354A (en) * | 1990-07-26 | 1995-01-31 | Taiho Kogyo Co., Ltd. | Metal gasket |
US5393076A (en) * | 1990-07-26 | 1995-02-28 | Taiho Kogyo Co., Ltd. | Metal gasket with base plate having coatings of diverse thicknesses |
US5472217A (en) * | 1990-07-26 | 1995-12-05 | Taiho Kogyo Co., Ltd. | Metal gasket |
US5427388A (en) * | 1992-06-09 | 1995-06-27 | Japan Metal Gasket Co., Ltd. | Metallic gasket |
WO2002048077A1 (en) * | 2000-12-11 | 2002-06-20 | Idemitsu Petrochemical Co., Ltd. | Process for producing adamantane compound |
EP1342708A4 (en) * | 2000-12-11 | 2004-03-31 | Idemitsu Petrochemical Co | Process for producing adamantane compound |
CN111701600A (en) * | 2020-07-02 | 2020-09-25 | 沧州那瑞化学科技有限公司 | Catalyst for preparing 1-bromo-3, 5-dimethyl adamantane and application thereof |
CN111701600B (en) * | 2020-07-02 | 2023-06-06 | 沧州那瑞化学科技有限公司 | Catalyst for preparing 1-bromo-3, 5-dimethyl adamantane and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Choudary et al. | Chromium-pillared clay as a catalyst for benzylic oxidation and oxidative deprotection of benzyl ethers and benzylamines: a simple and convenient procedure | |
EP0589490B1 (en) | Dimethylnaphthalene isomerization | |
US4199478A (en) | Method for preparing metal-carbonyl clusters immobilized in zeolite, as heterogeneous catalysts | |
JPH021416A (en) | Preparation of 2-ethylhexanol by hydrogenating 2-ethylhexenal in liquid phase, and catalyst used therein | |
JPH026855A (en) | Production of 1,3-dimethyladamantane, catalyst for production thereof and production of the same catalyst | |
US4188281A (en) | Two-stage production of olefins utilizing a faujasite structure zeolite in hydrogenation stage | |
EP1342708A1 (en) | Process for producing adamantane compound | |
US3673267A (en) | Isomerization of cyclohexane in the presence of a mordenite catalyst | |
US4962260A (en) | Preparation of a dimethylnaphthalene | |
Laidlaw et al. | Benzoylation of substituted arenes using Zn-and Fe-exchanged zeolites as catalysts | |
US3792100A (en) | Process for the vapor phase catalytic isomerization of xylenes | |
JPH06287151A (en) | Isomerization of dimethylnaphthalene | |
JPH0394831A (en) | Production of 1,3-dimethyladamantane, catalyst for the production and production of the catalyst | |
US4606326A (en) | Ionically polymer-bound transition metal complex for photochemical conversion of light energy | |
US5073670A (en) | Preparation of a dimethyltetralin | |
US3816535A (en) | Process for the catalytic isomerization of unsaturated ketones | |
JPH04317743A (en) | Catalyst for use in production of alkyladamantanes and method for production thereof using said catalyst | |
US4115463A (en) | Production of cycloalkylaromatics | |
EP1342709B1 (en) | Process for producing adamantane compound | |
US5118892A (en) | Preparation of a dimethylnaphthalene | |
JPS60246333A (en) | Preparation of adamantane | |
JPH1081693A (en) | Decarboxylation of 2-ketoaldonic acid | |
US5958823A (en) | Hydrocarbon conversion catalyst composition and processes therefor and therewith | |
JPH02235826A (en) | Preparation of alkyladamantane | |
JP2987420B2 (en) | Method for producing branched hydrocarbon |