JPH0268144A - Preparation of catalyst for hydrogenating reaction - Google Patents

Preparation of catalyst for hydrogenating reaction

Info

Publication number
JPH0268144A
JPH0268144A JP63221528A JP22152888A JPH0268144A JP H0268144 A JPH0268144 A JP H0268144A JP 63221528 A JP63221528 A JP 63221528A JP 22152888 A JP22152888 A JP 22152888A JP H0268144 A JPH0268144 A JP H0268144A
Authority
JP
Japan
Prior art keywords
metal
catalyst
reaction
particles
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63221528A
Other languages
Japanese (ja)
Other versions
JP2707626B2 (en
Inventor
Takayoshi Uematsu
上松 敬禧
Masaru Uemura
植村 勝
Kenji Kasano
笠野 健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKYOWA PETROCHEM CO Ltd
Original Assignee
SHINKYOWA PETROCHEM CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKYOWA PETROCHEM CO Ltd filed Critical SHINKYOWA PETROCHEM CO Ltd
Priority to JP63221528A priority Critical patent/JP2707626B2/en
Publication of JPH0268144A publication Critical patent/JPH0268144A/en
Application granted granted Critical
Publication of JP2707626B2 publication Critical patent/JP2707626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a metal supported oxide composition ultrafine particle catalyst controlled in the physical properties and activity thereof and excellent in life by spraying a solution containing a metal element becoming a carrier and a metal element becoming an active seed in a heated oxidizing atmosphere and subsequeutly reducing the formed particles. CONSTITUTION:A metal element becoming a carrier such as Zr, Al or Ti and a metal salt becoming an active seed such as Ni, Cu or Fe are dissolved in water or in a water-containing solvent and this metal element-containing solution is sprayed into a heated oxidizing atmosphere to obtain ultrafine metal oxide particles having a spherical or hollow spherical shape and a particle size of about 1mum or less. Subsequently, these particles are subjected to reducing treatment in a hydrogen atmosphere and the metal oxide becoming the active seed in the ultrafine metal oxide particles is reduced to obtain a metal supported oxide composite ultrafine particle catalyst. This catalyst has high activity and durability and suppresses side reaction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水素化反応用触媒の製造法に関し、さらに詳し
くは、金属担持酸化物複合超微粒子からなる水素化反応
用触媒の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a catalyst for a hydrogenation reaction, and more particularly, to a method for producing a catalyst for a hydrogenation reaction comprising ultrafine metal-supported oxide composite particles.

し従来の技術] 金属微粒子は、近年電子材料、磁性材料、光学材料、セ
ラミックス等の分野で、その利用が急速に高まっている
。金属超微粒子を触媒材料として活用しようとする試み
も種々なされている。例えば、化学的方法や物理的方法
或はそれらの併用法で調製された粒径数十〜数百人(数
10−3〜数10−2μm)の金属を反応液中に懸濁さ
せて液相反応用触媒として利用する試みがある〔野田ら
、8化、1984.1017E。また、粒径10〜10
0人の金属粒子を表面積の大きな金属酸化物等の担体表
面上に分散、担持させた、主として固気相不均−系反応
に用いられる金属担持触媒についても種々検討されてい
る〔例えば、高須ら、8化、1984.1o17E。
BACKGROUND ART Metal fine particles have recently been rapidly used in the fields of electronic materials, magnetic materials, optical materials, ceramics, and the like. Various attempts have been made to utilize ultrafine metal particles as catalyst materials. For example, a metal with a particle size of several tens to hundreds of particles (several 10-3 to several 10-2 μm) prepared by a chemical method, a physical method, or a combination thereof is suspended in a reaction solution. There is an attempt to use it as a reciprocal catalyst [Noda et al., 8th Edition, 1984.1017E. Also, particle size 10-10
Various studies have also been conducted on metal-supported catalysts, which are mainly used in solid-gas phase heterogeneous reactions, in which metal particles are dispersed and supported on the surface of a support such as a metal oxide with a large surface area [for example, Takasu et al. et al., 8th edition, 1984.1o17E.

固体触媒は、一般に活性成分の表面積が大きいほど活性
が高くなる。金属超微粒子触媒は、活性成分となる金属
の粒径が十分に小さいので活性成分の表面積が大きく、
その結果触媒単位重量当りの活性点の数が多いという特
徴を有する。さらに金属超微粒子触媒は、担体との間で
特異的な相互作用を発現し易いため、高活性及び高選択
性を有する触媒として多くの注目を集めている。
In general, the activity of a solid catalyst increases as the surface area of the active ingredient increases. Ultrafine metal particle catalysts have a sufficiently small particle size of the metal that serves as the active component, so the surface area of the active component is large.
As a result, the catalyst is characterized by a large number of active sites per unit weight of the catalyst. Furthermore, ultrafine metal particle catalysts are attracting a lot of attention as catalysts with high activity and high selectivity because they tend to exhibit specific interactions with carriers.

[発明が解決しようとする課題] しかるに、金属超微粒子は、上記のように化学反応用触
媒として優れた特徴を有し、興味深い触媒素材であるが
、その調製が必ずしも容易ではないという欠点を有する
。即ち、金属超微粒子触媒は、反応の目的に応じて金属
粒子の粒径とその分布を正確に制御して調製する必要が
あるが、金属粒子の粒径とその分布を正確に制御するこ
とは容易ではない。
[Problems to be Solved by the Invention] However, although ultrafine metal particles have excellent characteristics as catalysts for chemical reactions as described above and are an interesting catalyst material, they have the disadvantage that they are not necessarily easy to prepare. . In other words, it is necessary to prepare ultrafine metal particle catalysts by accurately controlling the particle size and distribution of the metal particles depending on the purpose of the reaction, but it is difficult to precisely control the particle size and distribution of the metal particles. It's not easy.

また、金属超微粒子触媒は、表面反応性が高いことから
、副反応も起こり易く、耐久性も比較的悪い。特に、固
気相不均−系反応のように比較的高い温度条件下で用い
られる金属担持触媒では、超微粒子金属間の融着、焼結
、担体との反応等による金属担持触媒の変質が起き易い
。しかし、従来、表面反応性を高いままに保ち、かつ副
反応が抑制され、耐久性も良い触媒を調製することは困
難であった。
Further, since the metal ultrafine particle catalyst has high surface reactivity, side reactions are likely to occur and durability is relatively poor. In particular, with metal-supported catalysts used under relatively high temperature conditions such as in solid-gas phase heterogeneous reactions, deterioration of the metal-supported catalyst may occur due to fusion between ultrafine metal particles, sintering, reaction with the support, etc. Easy to wake up. However, conventionally, it has been difficult to prepare a catalyst that maintains high surface reactivity, suppresses side reactions, and has good durability.

そこで、本発明の目的は、触媒の物性と活性を容易に制
御することができ、かつ寿命に優れた金属担持酸化物、
複合超微粒子触媒を製造することができる方法を提供す
ることにある。
Therefore, an object of the present invention is to provide a metal-supported oxide that can easily control the physical properties and activity of the catalyst and has an excellent lifetime.
An object of the present invention is to provide a method capable of producing a composite ultrafine particle catalyst.

[課題を解決するための手段] 本発明は、担体となるべき金属元素と活性種となるべき
金属元素とをそれぞれ一種以上含有する溶液を加熱酸化
雰囲気中に噴霧し、得られた酸化物を還元処理すること
を含む水素化反応用触媒の製造法に関する。
[Means for Solving the Problems] The present invention involves spraying a solution containing at least one type of metal element to be a carrier and one or more types of metal elements to be an active species into a heated oxidizing atmosphere, and then spraying the resulting oxide into a heated oxidizing atmosphere. The present invention relates to a method for producing a hydrogenation reaction catalyst including reduction treatment.

上記の本発明によれば、高活性で、耐久性に優れた金属
担持酸化物複合超微粒子触媒を極めて容易に製造するこ
とができる方法である。
According to the present invention, a highly active and durable metal-supported oxide composite ultrafine particle catalyst can be produced extremely easily.

以下本発明について説明する。The present invention will be explained below.

本発明において用いられる活性種となるべき金属元素と
しては、例えばNi、Cu、Fe5Co、Cr、Mo及
びAg等の金属元素を挙げることができ、特にNiであ
ることが好ましい。これらの金属元素は、硝酸塩、硫酸
塩等の無機塩、塩化物或は酸塩化物等のハロゲン化物、
酢酸塩、しゅう酸塩等の有機酸塩として、加熱酸化雰囲
気中に噴霧する溶液に用いる。
Examples of the metal element to serve as an active species used in the present invention include metal elements such as Ni, Cu, Fe5Co, Cr, Mo, and Ag, with Ni being particularly preferred. These metal elements include inorganic salts such as nitrates and sulfates, halides such as chlorides and acid chlorides,
Used as organic acid salts such as acetates and oxalates in solutions sprayed into heated oxidizing atmospheres.

一方、担体となるべき金属元素としては、例えばZr5
At、Ti5Si等の金属元素を挙げることができる。
On the other hand, as a metal element to be a carrier, for example, Zr5
Examples include metal elements such as At and Ti5Si.

これらの金属元素は、硝酸塩、硫酸塩、塩化物或は酸塩
化物等の無機塩、蟻酸塩、酢酸塩、しゅう酸塩等の有機
酸塩として、加熱酸化雰囲気中に噴霧する溶液に用いる
These metal elements are used as inorganic salts such as nitrates, sulfates, chlorides, or acid chlorides, and organic acid salts such as formates, acetates, and oxalates in a solution sprayed into a heated oxidizing atmosphere.

これらの金属塩等は水または水を含有する溶媒に溶解し
て触媒調製に供せられる。尚、溶解に際し必要な場合に
は水素イオン濃度を調整する。また、溶解に際し、アル
コール、アセトン等の有機溶媒を添加することもできる
。本発明の方法によれば、溶液中に含有される担体とな
るべき金属元素と活性種となるべき金属元素とのを混合
比を変えることによって、容易で且つ正確に、しかも任
意に活性金属の担持量を変えることができる。溶液中に
含有される担体となるべき金属元素と活性種となるべき
金属元素とのを混合比(原子比)は、例えば100:1
〜4:1、好ましくは30:1〜6:1とすることが適
当である。さらに、担体となるべき金属元素及び活性種
となるべき金属元素の溶液中の濃度を適宜選ぶことによ
って最終的に得られる金属担持酸化物複合超微粒子触媒
の粒子径の調節も容易に行うことができる。担体となる
べき金属元素及び活性種となるべき金属元素の溶液中の
濃度は、例えば0.01〜5mol/j!、好ましくは
0.03〜1mol/j!とすることが適当である。
These metal salts and the like are dissolved in water or a solvent containing water and used for catalyst preparation. Note that the hydrogen ion concentration is adjusted if necessary during dissolution. Further, during dissolution, an organic solvent such as alcohol or acetone may be added. According to the method of the present invention, by changing the mixing ratio of the metal element to serve as a carrier and the metal element to serve as an active species contained in a solution, it is possible to easily and accurately add active metals as desired. The loading amount can be changed. The mixing ratio (atomic ratio) of the metal element to serve as a carrier and the metal element to serve as an active species contained in the solution is, for example, 100:1.
-4:1, preferably 30:1 - 6:1 is suitable. Furthermore, by appropriately selecting the concentrations of the metal element to serve as a support and the metal element to serve as an active species in the solution, it is possible to easily adjust the particle size of the ultimately obtained metal-supported oxide composite ultrafine particle catalyst. can. The concentration of the metal element to be a carrier and the metal element to be an active species in the solution is, for example, 0.01 to 5 mol/j! , preferably 0.03 to 1 mol/j! It is appropriate to

このようにして調製した、担体となるべき金属元素と活
性種となるべき金属元素とを含有する溶液を加熱酸化雰
囲気中に噴霧する。加熱酸化には例えば管状の反応装置
が用いられる。この反応装置は、前記金属元素を含有す
る溶液の液滴挿入部、加熱酸化雰囲気を形成する反応部
及び生成した超微粒子複合金属酸化物を回収する回収部
とからなる。担体となるべき金属元素と活性種となるべ
き金属元素を含有する溶液(通常の場合は水溶液)は小
液滴として、酸素を含有する気体と共に反応部へ噴霧さ
れる。酸素を含有する気体としては、通常は空気を使用
するのが好都合である。反応部の温度は金属の種類によ
って異なるが、例えば300〜1500℃、好ましくは
500〜1200℃とすることが適当である。反応部へ
噴霧された金属元素を含有する溶液は酸素を含有する気
体の存在下において瞬時に蒸発、乾燥、反応、焼成等さ
れて、酸化物粒子が生成する。溶液が噴霧されると、溶
液中の水分が急激に蒸発し体積膨張を来すので、反応部
は減圧に保のが望ましい。また、生成した金属酸化物粒
子間の融着を防ぐためにも、減圧に保つのが望ましい。
The thus prepared solution containing the metal element to serve as a carrier and the metal element to serve as an active species is sprayed into a heated oxidizing atmosphere. For example, a tubular reactor is used for thermal oxidation. This reaction device consists of a droplet insertion section for a solution containing the metal element, a reaction section that forms a heated oxidizing atmosphere, and a recovery section that recovers the produced ultrafine particle composite metal oxide. A solution (usually an aqueous solution) containing a metal element to serve as a carrier and a metal element to serve as an active species is sprayed in the form of small droplets to the reaction zone together with a gas containing oxygen. As oxygen-containing gas it is usually convenient to use air. Although the temperature of the reaction section varies depending on the type of metal, it is appropriate to set it to, for example, 300 to 1500°C, preferably 500 to 1200°C. The solution containing the metal element sprayed into the reaction section is instantaneously evaporated, dried, reacted, fired, etc. in the presence of an oxygen-containing gas to produce oxide particles. When a solution is sprayed, water in the solution rapidly evaporates, causing volumetric expansion, so it is desirable to maintain the reaction area at reduced pressure. Furthermore, it is desirable to maintain the pressure at reduced pressure in order to prevent fusion between the generated metal oxide particles.

減圧の程度には特に制限はないが、例えば約20〜7 
Q Qtorrとすることが適当である。生成した微粒
子複合金属酸化物は、反応部出口に設けられたフィルタ
ーで補集される。
There is no particular limit to the degree of pressure reduction, but for example, about 20 to 7
Q It is appropriate to set it to Qtorr. The generated particulate composite metal oxide is collected by a filter provided at the outlet of the reaction section.

以上のようにして真球状のまたは中空球状の1μm以下
の粒径を有する金属酸化物超微粒子が得られる。得られ
た金属酸化物超微粒子は、次いで還元処理に付す。還元
処理の一例を示せば次のようである。流通式あるいは回
分式反応装置に上記の方法で得られた金属酸化物超微粒
子を充填し、水素雰囲気下で300〜600℃において
0.5〜30時間、好ましくは1〜10時間還元する。
In the manner described above, ultrafine metal oxide particles having a particle size of 1 μm or less and having a true spherical shape or a hollow spherical shape are obtained. The obtained ultrafine metal oxide particles are then subjected to a reduction treatment. An example of the reduction process is as follows. The ultrafine metal oxide particles obtained by the above method are packed into a flow-type or batch-type reactor, and reduced in a hydrogen atmosphere at 300 to 600°C for 0.5 to 30 hours, preferably 1 to 10 hours.

その際の圧力には特に制限はない。このようにして金属
酸化物超微粒子中の活性種となるべき金属の酸化物の一
部又は全部を還元して、金属担持酸化物複合超微粒子触
媒を得る。
There is no particular limit to the pressure at that time. In this way, part or all of the metal oxide that is to become an active species in the metal oxide ultrafine particles is reduced to obtain a metal-supported oxide composite ultrafine particle catalyst.

本発明の方法により得られる金属担持酸化物複合超微粒
子触媒は、Ni、Cu、Fe、Co、Cr、Mo及びA
g等の活性金属を、ZrO2、A1□03、Tie、、
SiO□等の金属酸化物等の構造体の表面及び内部に均
一に保持した、粒径が1μm以下のいわゆるサブミクロ
ンオーダーの微粒子である。活性金属成分は、反応、焼
成の際に担体中に固溶体あるいは高分散複合酸化物の形
態で保持され、次いで還元処理を施して金属/金属酸化
物複合体を形成している。尚、理論に拘泥する意図はな
いが、本発明による触媒の活性金属成分は、担体となる
Zr0z、Al2O3、T 102.5i02等の単一
金属酸化物または多成分金属複合酸化物の生成と同時に
担体の表面及び内部に取り込まれるので、担体に均質に
分散しており、これを還元処理することにより、活性金
属種は、その粒成長が抑制され、超微粒担体上にクラス
ター状態で高分散、安定化しているものと考えられる。
The metal supported oxide composite ultrafine particle catalyst obtained by the method of the present invention contains Ni, Cu, Fe, Co, Cr, Mo and A
Active metals such as ZrO2, A1□03, Tie, etc.
These are so-called submicron-order fine particles with a particle size of 1 μm or less that are uniformly held on the surface and inside of a structure such as a metal oxide such as SiO□. The active metal component is retained in the carrier in the form of a solid solution or highly dispersed composite oxide during reaction and firing, and is then subjected to reduction treatment to form a metal/metal oxide composite. It should be noted that, without intending to be bound by theory, the active metal component of the catalyst according to the present invention can be formed at the same time as a single metal oxide or multi-component metal composite oxide such as Zr0z, Al2O3, T102.5i02, etc., which serves as a support. Since the active metal species are taken into the surface and inside of the carrier, they are homogeneously dispersed in the carrier. By reducing the active metal species, their grain growth is suppressed, and the active metal species are highly dispersed in clusters on the ultrafine carrier. It is thought that it has stabilized.

その結果、本発明による触媒は、均質で優れた活性、安
定性並びに耐久性を示す。
As a result, the catalyst according to the invention exhibits homogeneous and excellent activity, stability and durability.

以上のような方法によって調製された金属担持酸化物複
合超微粒子触媒は、水素化反応用触媒として最適である
。例えば、脂肪族不飽和炭化水素(例えば、エチレン、
プロピレン、ブテン、ブタジェン、イソプレン等)、脂
環式不飽和炭化水素(例えば、シクロペンテン、シクロ
ヘキセン、メチルシクロヘキセン、シクロペンタジェン
等)及び側鎖に不飽和の置換基を有する芳香族炭化水素
(例エバ、スチレン、フェニルアセチレン等)の水素化
反応用触媒として最適である。
The metal-supported oxide composite ultrafine particle catalyst prepared by the method described above is optimal as a catalyst for hydrogenation reactions. For example, aliphatic unsaturated hydrocarbons (e.g. ethylene,
propylene, butene, butadiene, isoprene, etc.), alicyclic unsaturated hydrocarbons (e.g., cyclopentene, cyclohexene, methylcyclohexene, cyclopentadiene, etc.), and aromatic hydrocarbons having unsaturated substituents in their side chains (e.g., , styrene, phenylacetylene, etc.).

水素化反応の形式としては、回分式、連続式等いずれで
もよく、反応条件としては、反応温度は一30〜200
℃とすることが適当であり、反応圧力は減圧〜50kg
/cdするこが適当である。反応時間は任意に選択でき
る。また、反応の際に水素及び不飽和炭化水素に不活性
な溶媒又は希釈剤(例えばメタノール、エタノーノベn
−へキサン、シクロヘキサン、ベンゼン、窒素ガス、炭
酸ガス等)を使用することもできる。
The type of hydrogenation reaction may be either batchwise or continuous, and the reaction conditions include a reaction temperature of -30 to 200℃.
℃ is appropriate, and the reaction pressure is reduced to 50 kg.
/cd is appropriate. The reaction time can be selected arbitrarily. Additionally, a solvent or diluent inert to hydrogen and unsaturated hydrocarbons (e.g. methanol, ethanol, etc.) may be used during the reaction.
-hexane, cyclohexane, benzene, nitrogen gas, carbon dioxide gas, etc.) can also be used.

[発明の効果コ 本発明の方法によれば、均質で低温活性と寿命に優れた
水素化反応用触媒を得ることができる。
[Effects of the Invention] According to the method of the present invention, it is possible to obtain a homogeneous hydrogenation reaction catalyst having excellent low-temperature activity and long life.

本発明の方法は、噴霧した微小液滴を空気または酸素気
流中で焼成し、次いで得られた酸化物を還元処理に付す
ものであり、極めて容易な方法である。さらに、本発明
の方法によれば、触媒粒子径や活性金属の担持量の調節
も簡単に行うことができる。
The method of the present invention is an extremely easy method in which the sprayed microdroplets are fired in air or an oxygen stream, and then the obtained oxide is subjected to a reduction treatment. Furthermore, according to the method of the present invention, the catalyst particle diameter and the amount of active metal supported can be easily adjusted.

[実施例コ 以下に実施例を掲げて本発明を更に詳細に説明する。[Example code] The present invention will be explained in more detail below with reference to Examples.

実施例1 0.5 mol / 1のZ r O(N 03)2 
・2 H20水溶液と0.093 mol/ (lのN
 i  (NO3)2 ’ 6820水溶液を1=1で
混合した。超音波振動子を用いて前記金属の混合水溶液
をミストとし空気と共に、内径25mm、長さ1mの石
英製の反応管へ導入した。反応管は前段と後段に分け、
前後の蒸発、乾燥部は600℃、後段の反応部は100
0℃とした。系内は約20 Qtorrに保ち、生成し
たニッケル担持酸化物複合超微粒子(以下5−Ni0/
ZrCh と略記する)を反応管出口に設けたフィルタ
ーで捕集した。
Example 1 0.5 mol/1 Z r O(N 03)2
・2 H20 aqueous solution and 0.093 mol/(l of N
i (NO3)2' 6820 aqueous solution was mixed in a ratio of 1=1. Using an ultrasonic vibrator, the mixed aqueous solution of the metals was made into a mist and introduced together with air into a quartz reaction tube having an inner diameter of 25 mm and a length of 1 m. The reaction tube is divided into a front stage and a rear stage.
The temperature is 600℃ for the evaporation and drying sections before and after, and 100℃ for the rear reaction section.
The temperature was 0°C. The system was maintained at approximately 20 Qtorr, and the generated nickel-supported oxide composite ultrafine particles (hereinafter 5-Ni0/
(abbreviated as ZrCh) was collected by a filter provided at the outlet of the reaction tube.

走査型電子顕微鏡による二次電子像は、生成粒子の形状
は表面の滑らかな真球状を示しく第1図の写真を参照)
、粒径分布を測定した結果は、表1の通りであった。ま
た、得られた5−Ni0/Zr0hを水素流140 r
nf!/min 、昇温速度10℃/min、測定温度
範囲30−1000℃の条件で水素による昇温反応試験
(TPR)に付した結果、後述する比較例1に示した含
浸法によるニッケル担持酸化物超微粒子(i−Ni0/
Zr0h)とは明らかに異なった挙動を示した。即ち、
S−N iO/ZrO2では1−Ni0/ZrChの場
合より約100℃高い300℃付近に、Ni酸化物の還
元による水の生成ピークが観察された。
A secondary electron image taken using a scanning electron microscope shows that the particles produced are perfectly spherical with smooth surfaces (see the photo in Figure 1).
The results of measuring the particle size distribution are shown in Table 1. In addition, the obtained 5-Ni0/Zr0h was heated in a hydrogen flow of 140 r
nf! /min, a heating rate of 10°C/min, and a measurement temperature range of 30-1000°C. The results of a temperature-promoted reaction test (TPR) using hydrogen showed that the nickel-supported oxide obtained by the impregnation method shown in Comparative Example 1 described below Ultrafine particles (i-Ni0/
ZrOH) showed clearly different behavior. That is,
In S-NiO/ZrO2, a peak of water production due to reduction of Ni oxide was observed at around 300°C, which is about 100°C higher than in 1-Ni0/ZrCh.

実施例2 0.5 mol/ 1のZ r O(NOs)2・2 
H20水溶液と0.0.5 mol/ RのN 1 (
N 03) 2 ・5 H2Q水溶液をl:1で混合し
た。実施例1と同一の反応装置を使用し、実施例1と同
一の条件下で反応を行い、N1担持酸化物複合超微粒子
を得た。
Example 2 0.5 mol/1 Z r O(NOs)2.2
H20 aqueous solution and 0.0.5 mol/R of N1 (
N 03) 2 .5 H2Q aqueous solution was mixed in l:1 ratio. Using the same reaction apparatus as in Example 1, the reaction was carried out under the same conditions as in Example 1 to obtain N1-supported oxide composite ultrafine particles.

走査型電子顕微鏡による二次電子像は、得られたNi担
持酸化物複合超微粒子の形状が表面の滑らかな真球状で
あることを示し、粒径分布を測定した結果は、表1の通
りであった。
A secondary electron image using a scanning electron microscope showed that the shape of the obtained Ni-supported oxide composite ultrafine particles was a perfect sphere with a smooth surface, and the results of measuring the particle size distribution were as shown in Table 1. there were.

実施例3 0.5mol/fのA I  (NO3)2 ・9 H
20水溶液と0.04 mol/ 1のN 1  (N
 03) 2 ・6 H20水溶液を2:1に混合した
。実施例1と同一の反応装置を使用し、実施例1と同一
の条件下で反応を行い、Ni担持酸化物複合超微粒子を
えた(以下S−N i O/ A 1203)。
Example 3 0.5 mol/f A I (NO3)2 ・9 H
20 aqueous solution and 0.04 mol/1 N 1 (N
03) 2.6 H20 aqueous solution was mixed at a ratio of 2:1. Using the same reaction apparatus as in Example 1, the reaction was carried out under the same conditions as in Example 1 to obtain Ni-supported oxide composite ultrafine particles (hereinafter referred to as S-N i O/A 1203).

走査型電子顕微鏡による二次電子像は(第2図の写真を
参照)、得られたNi担持酸化物複合超微粒子の形状が
真球状であることを示し、粒度分布を測定した結果は、
表1の通りであった。
A secondary electron image taken by a scanning electron microscope (see the photograph in Figure 2) showed that the shape of the obtained Ni-supported oxide composite ultrafine particles was truly spherical, and the results of measuring the particle size distribution showed that
It was as shown in Table 1.

実施例4 TiC1<を2N  MCIに溶かして0.125mo
l/47の溶液を調製した。これとは別にNi(:l。
Example 4 Dissolve TiC1< in 2N MCI to make 0.125 mo
A solution of l/47 was prepared. Apart from this, Ni (:l.

のO,L 25 mat/ l水溶液を調製し、先のT
i/HCI溶液と8:1で混合した。実施例1と同一の
反応装置を使用し、温度条件は、蒸発、乾燥部を600
℃、反応部を800℃とした。
Prepare an O,L 25 mat/l aqueous solution of
Mixed 8:1 with i/HCI solution. The same reaction apparatus as in Example 1 was used, and the temperature conditions were 600 °C for the evaporation and drying parts.
The temperature of the reaction section was 800°C.

得られたNi担持酸化物複合超微粒子(以下S−N i
 O/ T iO2)の走、査型電子顕微鏡による二次
電子像(第3図の写真を参照)は、その形状が真球状で
あることを示し、粒度分布を測定した結果は、表1の通
りであった。
The obtained Ni-supported oxide composite ultrafine particles (hereinafter referred to as S-N i
The secondary electron image (see the photograph in Figure 3) of O/TiO2) by scanning electron microscope shows that the shape is truly spherical, and the results of measuring the particle size distribution are as shown in Table 1. It was on the street.

実施例5 実施例1で調製した5−Ni○/ZrChlOOmgを
閉鎖循環型反応装置に充填し、脱気しながら300℃ま
で昇温し、この温度で1時間保持した。
Example 5 5-Ni○/ZrChlOOmg prepared in Example 1 was charged into a closed circulation reactor, heated to 300° C. while degassing, and held at this temperature for 1 hour.

次に、同一温度で水素を3 Q Qtorr導入し、1
.5時間保持した後、0℃まで冷却した。次いで、シス
−2−ブテンと水素を各300torrずつ導入し1時
間混合させた後、0℃で水素化反応の反応速度を求めた
。反応速度及び別の一酸化炭素及び水素の吸着試験で求
めた活性サイト数から表面金属当りの反応速度(ターン
オーバー頻度、mmol・g−car’・lTl1ロー
1)を表2に示した。比較例2の結果と比較して、数百
倍の活性が認められた。
Next, 3 Q Qtorr of hydrogen was introduced at the same temperature, and 1
.. After holding for 5 hours, it was cooled to 0°C. Next, cis-2-butene and hydrogen were introduced at 300 torr each and mixed for 1 hour, and then the reaction rate of the hydrogenation reaction was determined at 0°C. Table 2 shows the reaction rate (turnover frequency, mmol·g-car'·lTl1 rho1) per surface metal based on the reaction rate and the number of active sites determined by another carbon monoxide and hydrogen adsorption test. Compared to the results of Comparative Example 2, several hundred times more activity was observed.

水素還元前後のX線回折パターンを比較した結果、水素
還元後のニッケル担持酸化物複合超微粒子触媒では、N
iOのピークが消失しているのを確S忍した。
As a result of comparing the X-ray diffraction patterns before and after hydrogen reduction, the nickel-supported oxide composite ultrafine particle catalyst after hydrogen reduction showed that N
I was sure that the iO peak had disappeared.

実施例6 実施例2で調製したs−N io/Z rO20,5g
をガラス製の連続流通式反応装置に充填し、400℃に
おいて水素気流中で2時間還元した。
Example 6 s-N io/Z rO20.5g prepared in Example 2
was charged into a glass continuous flow reactor, and reduced at 400° C. in a hydrogen stream for 2 hours.

次は、60℃においてシス−2−ブテンと水素をモル比
1:5、空間速度(GH3V) 300 h−1の条件
で120時間流通し、シス−2−ブテンの水素化反応を
行った。
Next, a hydrogenation reaction of cis-2-butene was carried out by flowing cis-2-butene and hydrogen at 60°C for 120 hours at a molar ratio of 1:5 and a space velocity (GH3V) of 300 h-1.

その結果、ブタンへの転化率は、反応開始から10時間
までは平均99.8%、10時間から30時間までは平
均99.5%、30時間から50時間までは平均99.
1%、50時間から80時間までは平均99.0%、8
0時間から120時間までは平均98.5%であり、触
媒の耐久性は極めて良好であった。
As a result, the conversion rate to butane was 99.8% on average from the start of the reaction up to 10 hours, 99.5% on average from 10 to 30 hours, and 99.5% on average from 30 to 50 hours.
1%, average 99.0% from 50 hours to 80 hours, 8
The average durability from 0 to 120 hours was 98.5%, and the durability of the catalyst was extremely good.

実施例7 実施例3で調製したs−N i O/A 12030.
5gを実施例6と同一の反応装置に充填し、実施例6と
同一条件で水素還元した。次いで、実施例6と同一条件
でシス−2−ブテンの水素化反応を行つた0 その結果、反応開始から10時間までのブタンへの平均
転化率は、99.9%であった。
Example 7 s-N i O/A 12030 prepared in Example 3.
5 g was charged into the same reaction apparatus as in Example 6, and hydrogen reduction was performed under the same conditions as in Example 6. Next, a hydrogenation reaction of cis-2-butene was carried out under the same conditions as in Example 6. As a result, the average conversion rate to butane from the start of the reaction to 10 hours was 99.9%.

実施例8 実施例4で調製したs  N i O/ T i020
.5gを実施例6と同一の反応装置に充填し、実施例6
と同一条件で水素還元した。次いで、実施例6と同一条
件でシス−2−ブテンの水素化反応を行った。
Example 8 sN i O/T i020 prepared in Example 4
.. 5 g was charged into the same reactor as in Example 6, and
Hydrogen reduction was performed under the same conditions as above. Next, hydrogenation reaction of cis-2-butene was carried out under the same conditions as in Example 6.

その結果、反応開始から10時間までのブタンへの平均
転化率は、99.4%であった。
As a result, the average conversion rate to butane from the start of the reaction to 10 hours was 99.4%.

比較例1 実施例1と同一の反応装置を使用し、0.093mol
/j!のN 1  (NO*)2・6H20水溶液を用
いずニQ、 5 mol/ 12のZ r O(NO3
)2 ・2 H20水溶液のみを実施例1と同一の条件
下で処理した。
Comparative Example 1 Using the same reaction apparatus as Example 1, 0.093 mol
/j! 5 mol/12 of Z r O(NO3
)2.2 Only the H20 aqueous solution was treated under the same conditions as in Example 1.

得られたZrCh粒子を蒸留水中に分散させ、ニッケル
濃度が15wt%になるように0.093mol/j2
のN i  (NO3)2 ’ 6 H20水溶液を加
え、撹拌しながら加熱、蒸発、乾燥させた。次いで、電
気炉を用いて、空気雰囲気下において450℃で4時間
焼成した。この様にして含浸法によってニッケル担持金
属酸化物超微粒子(以下1−Ni0/ZrO2と略記す
る)を得た。
The obtained ZrCh particles were dispersed in distilled water, and the nickel concentration was 0.093 mol/j2 so that the nickel concentration was 15 wt%.
An aqueous solution of N i (NO3)2'6H20 was added thereto, and the mixture was heated, evaporated, and dried while stirring. Next, it was fired at 450° C. for 4 hours in an air atmosphere using an electric furnace. In this way, nickel-supported metal oxide ultrafine particles (hereinafter abbreviated as 1-Ni0/ZrO2) were obtained by the impregnation method.

得られた1−Nip/ZrCh走査型電子顕微鏡による
二次電子像(第4図の写真を参照)は真球状ではあった
が、金属の含浸によると思われる粗い表面を示した。粒
径分布を測定した結果は、表1の通りであった。また、
得られた1−N10/ZrO2を実施例1と同一の反応
装置、条件で昇温反応試験(TPR)に付した結果、2
00℃付近に、水の生成ピークが観察された。
The obtained secondary electron image of the 1-Nip/ZrCh obtained by a scanning electron microscope (see the photograph in FIG. 4) was perfectly spherical, but showed a rough surface that was thought to be due to metal impregnation. The results of measuring the particle size distribution are shown in Table 1. Also,
The obtained 1-N10/ZrO2 was subjected to a temperature-programmed reaction test (TPR) using the same reaction apparatus and conditions as in Example 1. As a result, 2
A water production peak was observed around 00°C.

比較例2 比較例1で調製したi  N iO/ Z r 02を
実施例3と同一の反応装置を用いて、実施例3と同一の
条件で水素還元した後、シス−2−ブテンの水素化反応
を行った。
Comparative Example 2 After hydrogen reduction of iN iO/Zr 02 prepared in Comparative Example 1 using the same reaction apparatus as in Example 3 and under the same conditions as in Example 3, hydrogenation of cis-2-butene was performed. The reaction was carried out.

反応結果から求めた表面金属当りの反応速度(ターンオ
ーバー頻度、mrnol −g−cat−’ −+++
in−’)を表2に示した。
Reaction rate per surface metal (turnover frequency, mrnol -g-cat-' -+++
in-') are shown in Table 2.

第 図No. figure

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は、触媒の粒子構造を示す写真である。 第 図 第 図 第 図 1 to 4 are photographs showing the particle structure of the catalyst. No. figure No. figure No. figure

Claims (2)

【特許請求の範囲】[Claims] (1)担体となるべき金属元素と活性種となるべき金属
元素とをそれぞれ一種以上含有する溶液を加熱酸化雰囲
気中に噴霧し、得られた酸化物を還元処理することを含
む水素化反応用触媒の製造法。
(1) For a hydrogenation reaction that involves spraying a solution containing at least one type of metal element to serve as a carrier and one or more types of metal element to serve as an active species into a heated oxidizing atmosphere, and reducing the resulting oxide. Catalyst manufacturing method.
(2)活性種となるべき金属元素がニッケルである請求
項(1)記載の製造法。
(2) The manufacturing method according to claim (1), wherein the metal element to be the active species is nickel.
JP63221528A 1988-09-05 1988-09-05 Method for producing catalyst for hydrogenation reaction Expired - Fee Related JP2707626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63221528A JP2707626B2 (en) 1988-09-05 1988-09-05 Method for producing catalyst for hydrogenation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63221528A JP2707626B2 (en) 1988-09-05 1988-09-05 Method for producing catalyst for hydrogenation reaction

Publications (2)

Publication Number Publication Date
JPH0268144A true JPH0268144A (en) 1990-03-07
JP2707626B2 JP2707626B2 (en) 1998-02-04

Family

ID=16768128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63221528A Expired - Fee Related JP2707626B2 (en) 1988-09-05 1988-09-05 Method for producing catalyst for hydrogenation reaction

Country Status (1)

Country Link
JP (1) JP2707626B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116901A (en) * 1991-07-24 1993-05-14 Hideo Kameyama Method for reforming methanol
WO2000035581A1 (en) * 1998-12-17 2000-06-22 Petroleum Energy Center Catalyst for hydrodesulfurization isomerization of light hydrocarbon oil, method for preparation thereof, and method for hydrodesulfurization isomerization of light hydrocarbon oil using the catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180437A (en) * 1982-03-26 1983-10-21 アンステイテユ・フランセ・デユ・ペトロ−ル Manufacture of mixture of methanol and higher alcohol from synthetic gas
JPS60139340A (en) * 1983-12-06 1985-07-24 ユニリーバー ナームローゼ ベンノートシヤープ Manufacture of transition metal-silicate catalyst
JPS61120641A (en) * 1984-11-19 1986-06-07 Asahi Chem Ind Co Ltd Production of catalyst for liquefying coal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180437A (en) * 1982-03-26 1983-10-21 アンステイテユ・フランセ・デユ・ペトロ−ル Manufacture of mixture of methanol and higher alcohol from synthetic gas
JPS60139340A (en) * 1983-12-06 1985-07-24 ユニリーバー ナームローゼ ベンノートシヤープ Manufacture of transition metal-silicate catalyst
JPS61120641A (en) * 1984-11-19 1986-06-07 Asahi Chem Ind Co Ltd Production of catalyst for liquefying coal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116901A (en) * 1991-07-24 1993-05-14 Hideo Kameyama Method for reforming methanol
WO2000035581A1 (en) * 1998-12-17 2000-06-22 Petroleum Energy Center Catalyst for hydrodesulfurization isomerization of light hydrocarbon oil, method for preparation thereof, and method for hydrodesulfurization isomerization of light hydrocarbon oil using the catalyst

Also Published As

Publication number Publication date
JP2707626B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
KR101292489B1 (en) Catalyst for producing carbon nanotubes by means of the decomposition of gaseous carbon compounds on a heterogeneous catalyst
RU2299851C2 (en) Method of the selective manufacture of the ordered carbonic nanotubes in the boiling bed
US6221805B1 (en) Catalyst support and catalyst and process for producing the same
US5532199A (en) Carrier-supported catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids and process for preparing the same
US4764498A (en) Silica-containing shaped articles and a process for their preparation
JP4539655B2 (en) Method for producing metal oxide catalyst
JP2009526726A (en) Method for continuous production of catalyst
JPS60216844A (en) Silver catalyst for producing ethylene oxide
EP0574895B1 (en) Carrier-supported catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids, and process for preparing the same
TW200932354A (en) Process for the preparation of a catalyst for the production of carbon nanotubes
CN109622000A (en) A kind of base metal selective hydrocatalyst of acetylene and its preparation method and application
KR100336001B1 (en) Method for producing a cycloolefin
JPH01194941A (en) Oxidation of carbon monoxide and production of catalyst therefor
JPH03106447A (en) Method of manufacturing catalyst and its precursor suitable for preparation of hydrocarbon from carbon monoxide and hydrogen and said catalyst
WO2023035532A1 (en) Preparation method for la1-xmn1+xo3
JPH05329368A (en) Silver catalyst for ethylene oxide production and its preparation
JP2007061763A (en) Oxide catalyst for production of methacrolein, its manufacturing method and manufacturing method of methacrolein using it
KR20030014149A (en) A Process for the Epoxidation of Hydrocarbons
JPH0268144A (en) Preparation of catalyst for hydrogenating reaction
JP2010131487A (en) Catalyst for manufacturing carbon nanotube, method for manufacturing carbon nanotube using the same, and method for manufacturing catalyst
CN115624970B (en) Catalyst for continuous liquid-phase hydrogenation reduction of nitro compounds in micro-fixed bed, and preparation method and application thereof
CN103752335A (en) Fe2O3/Silicalite-1 molecular sieve nanowire and synthesis method and application thereof
JPH0134222B2 (en)
JP2004044064A (en) Method for producing vapor-phase growth carbon fiber
JP4791203B2 (en) Method for producing oxide catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees