JPH0267732A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0267732A
JPH0267732A JP21831288A JP21831288A JPH0267732A JP H0267732 A JPH0267732 A JP H0267732A JP 21831288 A JP21831288 A JP 21831288A JP 21831288 A JP21831288 A JP 21831288A JP H0267732 A JPH0267732 A JP H0267732A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
silicon film
metal silicide
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21831288A
Other languages
Japanese (ja)
Inventor
Yoichi Tamaoki
玉置 洋一
Nobuyoshi Kobayashi
伸好 小林
Yukihiro Onouchi
享裕 尾内
Kazuhiko Sagara
和彦 相良
Yoshio Honma
喜夫 本間
Toru Nakamura
徹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21831288A priority Critical patent/JPH0267732A/en
Publication of JPH0267732A publication Critical patent/JPH0267732A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To use a metal silicide film, having stable shape and characteristic, as a base lead-out electrode by causing the material composition of the base lead-out electrode to be a three layer film consisting of a polycrystalline silicon film/a metal silicide film/a polycrystalline silicon film. CONSTITUTION:When the material composition of a base lead-out electrode is such that said electrode is a three layer film consisting of a polycrystalline silicon film 10/a metal silicide film 11/a polycrystalline silicon film 12, even if thermal oxidation if effected, the polycrystalline silicon film 12, the uppermost layer, is oxidized to form an oxide film 15 for isolating both of an emitter and the base lead-out electrodes and the metal silicide film 11 is not oxidized, so that the problem as to consumption of the polycrystalline silicon film 10 and generation of stress at the interface can be eliminated. Further, because the lowermost polycrystalline silicon film 10 exists, the impurity diffusion for a tie-base into a monocrystalline silicon region 3 can be carried out from the polycrystalline silicon film 10 as usual, so that the controllability of electrical characteristics is maintained in good state. Moreover, the problem due to direct contact between the metal silicide film 11 and the monocrystalline silicon region 3 can also be eliminated. As the metal silicide film 11, silicide of a high melting point metal such as tungsten, titanium, etc., or silicide of a low melting point metal such as platinum is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の構造に関し、特にバイポーラト
ランジスタを有する高性能集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of semiconductor devices, and more particularly to high performance integrated circuits having bipolar transistors.

〔従来の技術〕[Conventional technology]

バイポーラ型の集積回路を高性能化するためには、寄生
容量の低減とベース抵抗の低減が必要である。そのため
、ベース電極を多結晶シリコンを用いてベース領域の側
壁から取り出す5rcos(サイド ウオール ベース
 コンタクト ストラフチャ: Sidewall B
a5e Contact 5tructure)トラン
ジスタのベース取出し多結晶シリコン上に金属シリサイ
ド膜を形成して、寄生容量とベース抵抗の低減を計る方
法が提案されている。
In order to improve the performance of bipolar integrated circuits, it is necessary to reduce parasitic capacitance and base resistance. Therefore, 5rcos (Sidewall base contact structure: Sidewall B) is used to extract the base electrode from the sidewall of the base region using polycrystalline silicon.
a5e Contact 5structure) A method has been proposed for reducing parasitic capacitance and base resistance by forming a metal silicide film on polycrystalline silicon from which the base of a transistor is taken out.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来素子において、ベース取出し電極は、金属シリ
サイド膜とその下の多結晶シリコン膜の2層膜で形成さ
れている。そして、ベース取出し電極のパターンを上記
2層膜で作成した後、熱酸化を行なって能動領域周辺の
多結晶シリコン膜上と金属シリサイド膜上に絶縁膜を形
成し、エミッタ電極とベース電極の電気的分離を行なっ
ている。
In the conventional element described above, the base lead-out electrode is formed of a two-layer film of a metal silicide film and a polycrystalline silicon film thereunder. After creating a pattern for the base lead-out electrode using the above two-layer film, thermal oxidation is performed to form an insulating film on the polycrystalline silicon film and the metal silicide film around the active region, and the emitter and base electrodes are electrically connected to each other. We are doing a separation of things.

ところが、金属シリサイド膜を酸化すると、下層の多結
晶シリコン中のシリコンが消費されて金属シリサイド膜
上に酸化膜(SiOz)が形成されるため、下地多結晶
シリコン膜の膜厚が減少すると同時に不純物濃度が低下
したり金属シリサイド膜が剥れたりし、形状と特性の安
定したベース取り出し電極を再現性良く形成することが
難しいという問題があった。
However, when the metal silicide film is oxidized, the silicon in the underlying polycrystalline silicon is consumed and an oxide film (SiOz) is formed on the metal silicide film, which reduces the thickness of the underlying polycrystalline silicon film and at the same time increases the concentration of impurities. There were problems in that the concentration decreased and the metal silicide film peeled off, making it difficult to form a base extraction electrode with stable shape and characteristics with good reproducibility.

本発明の目的は、上記従来素子の問題点を解決し、形状
と特性の安定した金属シリサイド膜をベース取り出し電
極に用いたトランジスタを実現する素子構造を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an element structure that solves the problems of the conventional elements and realizes a transistor using a metal silicide film with stable shape and characteristics as a base lead-out electrode.

〔ia題を解決するための手段〕[Means to solve the ia problem]

上記目的は、ベース取り出し電極の材料構成を多結晶シ
リコン膜/金属シリサイド膜/多結晶シリコン膜の3層
膜とすることにより、達成される、〔作用〕 ベース取出し電極の材料構成を多結晶シリコン膜/金属
シリサイドIll/多結晶シリコン膜の3層膜とすると
、熱酸化を行なっても上層の多結晶シリコン膜が酸化さ
れてエミッタ取出し電極とベース取出し電極とを分離す
るための酸化膜が形成され、金属シリサイド膜は酸化さ
れないので、下層の多結晶シリコン膜が消費されたり、
界面に異常な応力が発生して膜がふくれたり剥れたりす
る問題が無くなる。また、下層の多結晶シリコン膜の存
在によって、単結晶シリコン領域へのつなぎベース用不
純物拡散を従来通り多結晶シリコン膜から行なうことが
できるので、電気的特性の制御性を良好に保つことがで
き、さらに金属シリサイド膜が直接単結晶領域と接する
ことによる問題(応力の発生、不純物の再分布等)が無
くなる。
The above object is achieved by making the material composition of the base extraction electrode a three-layer film of polycrystalline silicon film/metal silicide film/polycrystalline silicon film. [Operation] The material composition of the base extraction electrode is polycrystalline silicon film. If it is a three-layer film of film/metal silicide Ill/polycrystalline silicon film, even if thermal oxidation is performed, the upper polycrystalline silicon film will be oxidized and an oxide film will be formed to separate the emitter lead-out electrode and the base lead-out electrode. Since the metal silicide film is not oxidized, the underlying polycrystalline silicon film is consumed, and the metal silicide film is not oxidized.
This eliminates the problem of the film blistering or peeling due to abnormal stress occurring at the interface. Furthermore, due to the presence of the underlying polycrystalline silicon film, impurity diffusion for the bonding base into the single-crystalline silicon region can be performed from the polycrystalline silicon film as before, making it possible to maintain good controllability of electrical characteristics. Furthermore, problems caused by the metal silicide film being in direct contact with the single crystal region (generation of stress, redistribution of impurities, etc.) are eliminated.

〔実施例1〕 以下、本発明を高性能バイポーラ集積回路に適用した実
施例を示す、第1図は本発明を用いて製造した5ICO
8型トランジスタの断面図である。
[Example 1] Hereinafter, an example in which the present invention is applied to a high-performance bipolar integrated circuit will be shown. Fig. 1 shows a 5ICO manufactured using the present invention.
FIG. 2 is a cross-sectional view of an 8-type transistor.

以下、第2図〜第7図の工程断面図に従ってその製造工
程を説明する。
Hereinafter, the manufacturing process will be explained according to the process sectional views shown in FIGS. 2 to 7.

まず、第2図に示すように、P型シリコン基板1にアン
チモン等の不純物を拡散してコレクタ用のN十型拡散層
2を形成し、その上にエピタキシャル成長法によりシリ
コン・エピタキシャル成長層3を形成し、さらに熱酸化
により5ift膜4゜CVD (化学気相成長)法によ
り5iaNa膜5および5iOz膜6を順次形成した後
1通常のホトリソグラフィーおよびドライエツチング技
術を用いてこの3層膜4〜6を加工した。
First, as shown in FIG. 2, an impurity such as antimony is diffused into a P-type silicon substrate 1 to form an N0 type diffusion layer 2 for the collector, and a silicon epitaxial growth layer 3 is formed thereon by an epitaxial growth method. Then, a 5ift film 4 was formed by thermal oxidation, and a 5iaNa film 5 and a 5iOz film 6 were sequentially formed by CVD (chemical vapor deposition). was processed.

次に、露出したエピタキシャル層3を1/2〜3/4エ
ツチングした後、熱酸化を行なって20〜50nm程度
の薄い5iOz膜7を形成し、CVD法で5iaN+膜
を全面に被着した後、ドライエツチングを行なってパタ
ーンの側壁のみに51gNa膜を残し、この5iaNt
膜をマスクにして底面のシリコンを熱酸化して厚い5i
Oz[8(膜厚200〜500nm)を形成し側壁に残
った5iaN4膜を除去した(第3図)。
Next, after etching the exposed epitaxial layer 3 by 1/2 to 3/4, thermal oxidation is performed to form a thin 5iOz film 7 of about 20 to 50 nm, and a 5iaN+ film is deposited on the entire surface by CVD. , dry etching was performed to leave a 51gNa film only on the sidewalls of the pattern, and this 5iaNt
Using the film as a mask, the bottom silicon is thermally oxidized to form a thick 5i
Oz[8 (film thickness: 200 to 500 nm) was formed, and the 5iaN4 film remaining on the sidewalls was removed (FIG. 3).

次に、エミッタを形成すべき凸形パターンのみホトレジ
ストで開孔し、Sio2膜をウェットエツチングして側
壁部のSio2膜7を除去し、シリコンとのコンタクト
孔9を形成した。5isNa膜5をサイドエツチングし
た後、多結晶シリコン膜10を堆積しイオン打込み法で
ボロンをドーピングした。
Next, only a convex pattern in which an emitter was to be formed was opened using photoresist, and the Sio2 film was wet-etched to remove the Sio2 film 7 on the side wall portion, and a contact hole 9 with silicon was formed. After side etching the 5isNa film 5, a polycrystalline silicon film 10 was deposited and doped with boron by ion implantation.

次に、タングステンシリサイド膜(あるいはモリブデン
サイド膜等の高融点シリサイド膜)11をスパッタ蒸着
法(あるいはCVD法)で形成し、再びイオン打込み法
でボロンをドーピングした。
Next, a tungsten silicide film (or a high melting point silicide film such as a molybdenum side film) 11 is formed by sputter deposition (or CVD), and boron is doped again by ion implantation.

さらに、その上に多結晶シリコン膜12を堆積し、イオ
ン打込み法でボロンのドーピングを行なった(第4図)
Furthermore, a polycrystalline silicon film 12 was deposited thereon, and boron doping was performed by ion implantation (Figure 4).
.

ここで、多結晶シリコン膜10の膜厚は第4図のような
形状にするために5iaNi膜5の膜厚の1/2以上必
要で、およそ70〜200nmが適している。また、シ
リサイド11111の膜厚は抵抗値の点からは厚い方が
良いが1段差の発生や加工性の観点から余り厚く出来な
い、およそ、100〜300nmが適している。また、
多結晶シリコン膜12の膜厚は後の酸化工程で下地のシ
リサイド膜が酸化されないことが必要条件である。次の
酸化工程では、5iaNa膜5と同じ膜厚の多結晶シリ
コン膜を完全に酸化しなければならない。したがって、
多結晶シリコン膜12は1. OO〜300nmが適し
ている。また、10〜12の膜へのドーピングはイオン
打込み以外にも膜形成時に行なう方法もある。また、イ
オン打込みは3回に分けずに加速電圧を変えて打込むこ
とにより、2回あるいは1回に減すことも可能である。
Here, the thickness of the polycrystalline silicon film 10 needs to be 1/2 or more of the thickness of the 5iaNi film 5 to form the shape shown in FIG. 4, and is suitably about 70 to 200 nm. Further, the film thickness of the silicide 11111 is preferably approximately 100 to 300 nm, which is better from the viewpoint of resistance value, but cannot be made too thick from the viewpoint of generation of one-step difference and workability. Also,
The thickness of the polycrystalline silicon film 12 is required to ensure that the underlying silicide film is not oxidized in the subsequent oxidation step. In the next oxidation step, the polycrystalline silicon film having the same thickness as the 5iaNa film 5 must be completely oxidized. therefore,
The polycrystalline silicon film 12 is 1. A range of OO to 300 nm is suitable. In addition to ion implantation, there is also a method for doping the films 10 to 12 at the time of film formation. Furthermore, the ion implantation can be reduced to two or one implantation by changing the acceleration voltage instead of dividing the ion implantation into three implantation steps.

次に、パターンの凹部にホトレジスト膜を埋込み、それ
をマスクにして凸部の多結晶シリコン膜12、シリサイ
ド膜11.多結晶シリコン膜10を順にエツチングして
平坦化した(第5図)。
Next, a photoresist film is buried in the concave portions of the pattern, and using the photoresist film as a mask, the polycrystalline silicon film 12, silicide film 11, etc. in the convex portions are filled. The polycrystalline silicon film 10 was sequentially etched and planarized (FIG. 5).

次に、5iOz膜6を除去した後、ホトレジスト膜13
でベース電極パターンを形成し、多結晶シリコン膜12
とシリサイド膜11を選択エツチングした。ここで下地
の多結晶シリコン膜10はエツチングしても良いが、残
しておくと表面の段差が小さくなる(第6図)。
Next, after removing the 5iOz film 6, the photoresist film 13 is removed.
A base electrode pattern is formed using polycrystalline silicon film 12.
Then, the silicide film 11 was selectively etched. Here, the underlying polycrystalline silicon film 10 may be etched, but if it is left, the level difference on the surface will be reduced (FIG. 6).

次に、レジスト膜13を除去した後、熱酸化を行なって
多結晶シリコン膜12の表面に5iOz膜14を形成し
た。このとき、ベース電極パターンのない部分もシリコ
ンが酸化されて5iOz膜8が厚くなって5iOz膜1
5が形成される。さらに、この熱酸化(通常800℃以
上)工程で、前記タングステンシリサイド膜11の抵抗
率は100μΩ・―以下に低減された。また、酸化等の
熱処理によって多結晶シリコン膜10の中のボロンがエ
ピタキシャル成長層3に拡散して、つなぎベース領域1
6を形成する。次に、コレクタ取出し用のN形の拡散層
17を形成した後1表面のSi○2膜18(SiOz膜
4のままか、あるいはS i Ox膜4を除去して再酸
化した膜)を通してボロンをイオン打込みし、真性ベー
ス領域19を形成した(第7図)。
Next, after removing the resist film 13, thermal oxidation was performed to form a 5iOz film 14 on the surface of the polycrystalline silicon film 12. At this time, silicon is also oxidized in the part where there is no base electrode pattern, and the 5iOz film 8 becomes thicker, so that the 5iOz film 1
5 is formed. Further, in this thermal oxidation process (usually at 800° C. or higher), the resistivity of the tungsten silicide film 11 was reduced to 100 μΩ·- or less. Further, due to heat treatment such as oxidation, boron in the polycrystalline silicon film 10 is diffused into the epitaxial growth layer 3, and the connecting base region 1
form 6. Next, after forming an N-type diffusion layer 17 for extracting the collector, boron is injected through the SiO2 film 18 (either the SiOz film 4 as it is or the SiOx film 4 removed and reoxidized). was ion-implanted to form an intrinsic base region 19 (FIG. 7).

次に、エミッタ領域周辺の5iOz膜18をエツチング
した後、多結晶シリコン膜2oを形成し、ここからエミ
ッタの不純物(ヒ素)を拡散してエミッタ拡散層21を
形成した。そして、パッシベーション膜22を形成し、
コンタクト用の孔開けを行なって、ベース電[i+23
.エミッタt!24゜コレクタ電極25を形成し、トラ
ンジスタが完成したく第1図)。
Next, after etching the 5iOz film 18 around the emitter region, a polycrystalline silicon film 2o was formed, from which an emitter impurity (arsenic) was diffused to form an emitter diffusion layer 21. Then, a passivation film 22 is formed,
Drill a hole for the contact and connect the base electrode [i+23
.. Emitter t! A 24° collector electrode 25 is formed to complete the transistor (Fig. 1).

〔実施例2〕 次に、本発明をベースコンタクトを能動領域の上部から
取る構造のバイポーラ・トランジスタに適用した実施例
を第8図〜第11図に従って説明する。
[Embodiment 2] Next, an embodiment in which the present invention is applied to a bipolar transistor having a structure in which the base contact is made from above the active region will be described with reference to FIGS. 8 to 11.

エピタキシャル成長層3の形成までは実施例1と同様な
ので説明は省略する。その後1通常の選択酸化法を用い
て素子分離用の5iOz膜26を形成し、エミッタ形成
領域27上の5iOz膜を除去し、コレクタ形成領域上
に5iOz膜28を残した(第8図)。
The steps up to the formation of the epitaxial growth layer 3 are the same as in Example 1, so the explanation will be omitted. Thereafter, a 5iOz film 26 for element isolation was formed using a conventional selective oxidation method, and the 5iOz film 28 on the emitter formation region 27 was removed, leaving the 5iOz film 28 on the collector formation region (FIG. 8).

次に、多結晶シリコン膜10を形成しボロンをドーピン
グした後、タングステンシリサイド膜11を形成しボロ
ンをドーピングし、さらに多結晶シリコン膜12を形成
してボロンをドーピングした。そして、熱酸化あるいは
CVD法でS i Ox膜29を形成し、ホトレジスト
でベース電極パターンとエミッタ孔30を形成し、4層
膜29゜12.11.10を順にエツチングした。次に
表面をわずかに酸化した後、開孔部30を通してボロン
をイオン打込みし、真性ベース領域31を形成した。こ
のとき、多結晶シリコン膜10からもボロンが拡散する
ため、つなぎベース領域32が形成される(第9図)。
Next, after forming a polycrystalline silicon film 10 and doping it with boron, a tungsten silicide film 11 was formed and doped with boron, and then a polycrystalline silicon film 12 was formed and doped with boron. Then, a SiOx film 29 was formed by thermal oxidation or CVD, a base electrode pattern and an emitter hole 30 were formed using photoresist, and the four-layer film 29°12.11.10 was etched in order. Next, after slightly oxidizing the surface, boron ions were implanted through the openings 30 to form an intrinsic base region 31. At this time, since boron is also diffused from the polycrystalline silicon film 10, a connecting base region 32 is formed (FIG. 9).

次に、CVD法でSiO2膜を堆積した後ドライエツチ
ングでエッチバックし、4層膜の側壁に5iOz膜33
を残した。また、コレクタ部にはN型拡散yri17を
形成した。次に、エミッタ部に多結晶シリコン膜34を
形成し、ヒ素のイオン打込みと熱処理を行なってエミッ
タ拡散層21を形成した(第10図)。
Next, a SiO2 film was deposited using the CVD method, and then etched back using dry etching to form a 5iOz film 33 on the sidewalls of the four-layer film.
left behind. Further, an N-type diffusion yri17 was formed in the collector portion. Next, a polycrystalline silicon film 34 was formed in the emitter portion, and arsenic ion implantation and heat treatment were performed to form an emitter diffusion layer 21 (FIG. 10).

その後、パッシベーション膜22を形成し、コンタクト
を開孔して、金属電極(ベース23.エミッタ24.コ
レクタ25)を形成し、トランジスタを完成した(第1
1図)。
Thereafter, a passivation film 22 was formed, contacts were opened, metal electrodes (base 23, emitter 24, collector 25) were formed, and the transistor was completed (first
Figure 1).

以上2つの実施例では金属シリサイド膜11としてタン
グステンシリサイドを用いているが、この材料としては
他に、チタン、モリブデン、タンタル、コバルト等の高
融点金属シリサイドあるいは白金、パラジウムなどの低
融点シリサイドを用いることが可能である。
In the above two embodiments, tungsten silicide is used as the metal silicide film 11, but other materials include high melting point metal silicides such as titanium, molybdenum, tantalum, and cobalt, or low melting point silicides such as platinum and palladium. Is possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、金属シリサイド膜をベース取出し電極
に用いたトランジスタを安定に製造できるようになり、
ベース抵抗が従来技術によるものとの比で172〜1/
3に減少した。その結果、集積回路の動作速度が30〜
50%向上した。
According to the present invention, it becomes possible to stably manufacture a transistor using a metal silicide film as a base extraction electrode,
The base resistance is 172 to 1/ compared to that of the conventional technology.
It decreased to 3. As a result, the operating speed of integrated circuits is 30 ~
Improved by 50%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の実施例を示すバイポーラトラ
ンジスタの断面図、第2図〜第7図は、第1図のトラン
ジスタの製造工程を示す断面図、第8図〜第11図は、
本発明の第2の実施例であるバイポーラトランジスタの
製造工程を示す断面図である。 1・・・Si基板、2・・・コレクタ埋込層、3・・・
エピタキシャル成長層、4,6,7,8,14,15゜
18.26,28,29.33・=SiOz膜、5・・
・5iaN4膜、10,12,20.34・・・多結晶
シリコン膜、11・・・金属シリサイド膜、19゜31
・・・真性ベース領域、16.32・・・つなぎベース
領域。 下 図 篤 図 第 図 ■ 図 冨 図 葛 lθ 図 茅 図
FIG. 1 is a sectional view of a bipolar transistor showing a first embodiment of the present invention, FIGS. 2 to 7 are sectional views showing the manufacturing process of the transistor shown in FIG. 1, and FIGS. 8 to 11. teeth,
FIG. 7 is a cross-sectional view showing the manufacturing process of a bipolar transistor according to a second embodiment of the present invention. 1... Si substrate, 2... Collector buried layer, 3...
Epitaxial growth layer, 4,6,7,8,14,15°18.26,28,29.33・=SiOz film, 5・・
・5iaN4 film, 10, 12, 20.34... Polycrystalline silicon film, 11... Metal silicide film, 19°31
...Intrinsic base region, 16.32...Tether base region. Figure below Atsushi Diagram■ Figure Tomizu Kuzu lθ Diagram Kaya

Claims (1)

【特許請求の範囲】 1、金属シリサイド膜を用いて電極を取り出す構造を有
する半導体集積回路において、上記取り出し膜が多結晶
シリコン膜/金属シリサイド膜/多結晶シリコン膜の3
層膜で構成されていることを特徴とする半導体集積回路
。 2、金属シリサイド膜として、タングステン、チタン、
モルブデン、タンタル、コバルト等の高融点金属のシリ
サイド膜、あるいは、白金、パラジウム等の低抵抗シリ
サイド膜を用いることを特徴とする特許請求の範囲第1
項記載の半導体集積回路。
[Claims] 1. In a semiconductor integrated circuit having a structure in which an electrode is taken out using a metal silicide film, the lead-out film is a polycrystalline silicon film/metal silicide film/polycrystalline silicon film.
A semiconductor integrated circuit characterized by being composed of layered films. 2. As metal silicide film, tungsten, titanium,
Claim 1, characterized in that a silicide film of a high-melting point metal such as molybdenum, tantalum, or cobalt, or a low-resistance silicide film such as platinum or palladium is used.
Semiconductor integrated circuit described in Section 1.
JP21831288A 1988-09-02 1988-09-02 Semiconductor integrated circuit Pending JPH0267732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21831288A JPH0267732A (en) 1988-09-02 1988-09-02 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21831288A JPH0267732A (en) 1988-09-02 1988-09-02 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0267732A true JPH0267732A (en) 1990-03-07

Family

ID=16717874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21831288A Pending JPH0267732A (en) 1988-09-02 1988-09-02 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0267732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298779A (en) * 1991-02-13 1994-03-29 France Telecom-Establissement Autonome De Droit Public Collector of a bipolar transistor compatible with MOS technology
US5323032A (en) * 1991-09-05 1994-06-21 Nec Corporation Dual layer epitaxtial base heterojunction bipolar transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298779A (en) * 1991-02-13 1994-03-29 France Telecom-Establissement Autonome De Droit Public Collector of a bipolar transistor compatible with MOS technology
US5323032A (en) * 1991-09-05 1994-06-21 Nec Corporation Dual layer epitaxtial base heterojunction bipolar transistor

Similar Documents

Publication Publication Date Title
EP0236632A2 (en) Formation of diffused buried layers
JPS63193562A (en) Manufacture of bipolar transistor
JPH10270579A (en) Semiconductor device and manufacture thereof
JPS6256670B2 (en)
US4860086A (en) Semiconductor device
JPH08195433A (en) Semiconductor device and its manufacture
JPH0267732A (en) Semiconductor integrated circuit
EP0102075B1 (en) Semiconductor device with a multilayer structure
JP3114675B2 (en) Method for manufacturing semiconductor device
JPH0778833A (en) Bipolar transistor and its manufacture
JP2000323665A (en) Manufacture of semiconductor device
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JP2000068368A (en) Manufacture of semiconductor device
JP2523557B2 (en) Semiconductor device
JP2794571B2 (en) Manufacturing method of bipolar transistor
JPH0750769B2 (en) Method for manufacturing semiconductor device
JPS62264643A (en) Manufacture of semiconductor device
JPS63119264A (en) Semiconductor device
JPS6258667B2 (en)
JPH11307646A (en) Semiconductor device and manufacture thereof
JPS6369268A (en) Semiconductor device and manufacture thereof
JPS63175465A (en) Bipolar integrated circuit
JP2001015523A (en) Semiconductor device and its manufacture
JPH0319343A (en) Manufacture of semiconductor device
JPH02203535A (en) Manufacture of semiconductor device