JPH026769B2 - - Google Patents

Info

Publication number
JPH026769B2
JPH026769B2 JP21179181A JP21179181A JPH026769B2 JP H026769 B2 JPH026769 B2 JP H026769B2 JP 21179181 A JP21179181 A JP 21179181A JP 21179181 A JP21179181 A JP 21179181A JP H026769 B2 JPH026769 B2 JP H026769B2
Authority
JP
Japan
Prior art keywords
polyester
terephthalic acid
glycol
polycondensation
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21179181A
Other languages
Japanese (ja)
Other versions
JPS58109532A (en
Inventor
Tetsuo Matsumoto
Mihoko Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP21179181A priority Critical patent/JPS58109532A/en
Publication of JPS58109532A publication Critical patent/JPS58109532A/en
Publication of JPH026769B2 publication Critical patent/JPH026769B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】 本発明はポリエステルの製造方法、特に高重合
度で、色調の優れたポリエステルを短時間で製造
する方法に関するものである。 従来より、ポリエステル、特にポリエチレンテ
レフタレート又はエチレンテレフタレート単位を
主たる構成単位とするポリエステルは優れた諸性
質を有するため、繊維、フイルム、その他の成型
品等に広く用いられてきている。 ポリエチレンテレフタレートを製造するには、
通常、ジメチルテレフタレートとエチレングリコ
ールとをエステル交換反応させるか、テレフタル
酸とエチレングリコールとを直接エステル化反応
させることにより、ビス―(β―ヒドロキシエチ
ル)テレフタレート及び/又はその低重合体を形
成させ、次いで重縮合反応させることにより、所
望の性状のポリエステルとする方法によつて製造
されている。 しかしながら、重縮合工程、中でも最終重縮合
工程においては、通常、280℃ないし300℃という
高温が必要とされるため、例えば、極限粘度0.6
以上のポリエステルを得るためには必ずといつて
よいほど熱分解反応その他の副反応が伴う結果、
普通は黄色に着色したり、カルボキシル末端基濃
度やジエチレングリコール結合の含有量が増大す
るなどして、ポリエステルの物理的諸性質が損な
われることとなる。 また、通常の場合、最終重縮合反応終了後、溶
融ポリエステルは重縮合反応器より吐出冷却さ
れ、まず、チツプ状に切断される。しかるのち、
乾燥され、次いで再溶融されて一定の滞留時間の
後、種々の目的に応じて、繊維、フイルムあるい
はプラスチツク成型品等に加工される。 また、最近では重縮合反応器より吐出後、冷却
してチツプ化することなく、ただちに一定の滞留
時間の後、種々の用途に応じて、繊維、フイルム
あるいはプラスチツク成型品等に加工される、い
わゆる直接法も増えている。 これらの過程には必ず一定の滞留時間が必要で
あることはいうまでもなく、この間にポリエステ
ルは熱分解反応等によつて黄色に着色し、得られ
る製品の商品価値を著しく低下させたり、カルボ
キシル末端基濃度やジエチレングリコール結合含
有量が増加することにより、熱に対する安定性が
悪くなり所望の機械的性質が得られなくなつたり
する。 本発明者らは、かかる諸性質の劣化のない高重
合度のポリエステルを製造すべく鋭意研究した結
果本発明に到達したものである。 すなわち、本発明はテレフタル酸又はこれを主
とする二官能性カルボン酸あるいはそれらのエス
テル形成性誘導体と、エチレングリコール又はこ
れを主とするグリコールあるいはそれらのエステ
ル形成性誘導体とからポリエステルを製造するに
あたり、下記の一般式で表される単位からなる有
機ポリマグネシオシロキサンを存在させることを
特徴とするポリエステルの製造方法を要旨とする
ものである。 ―−[Si(R1)(R2)―O―Mg―O]−― 〔R1,R2はアルキル基又はアリール基を示す。〕 このような有機ポリマグネシオシロキサンは、
例えばジハロシランと水酸化マグネシウムとをエ
ーテル溶媒中で窒素流通下に加熱すれば比較的容
易に得られる。 有機ポリマグネシオシロキサンの添加量はポリ
エステルの用途に応じて異なるが、一般には生成
ポリエステル100重量部に対し0.01ないし10重量
部が適当である。この範囲より添加量が少ないと
添加効果が実質上認められず、また、この範囲よ
り添加量が多いと得られるポリエステルはゲル状
となつたりするため好ましくない。かかる化合物
の添加時期はエステル交換又はエステル化工程の
前又は途中あるいは重縮合工程の前又は途中のい
ずれの時期でもよいが、重縮合反応の開始前が好
適である。また、添加形態としては固体のまま添
加してもよいし、グリコールのスラリー又はアセ
トン等の溶液とするなど適宜選べばよい。 本発明において酸成分は、テレフタル酸又はそ
のアルキルエステル、フエニルエステルのような
エステル形成性誘導体を主たる対象とするが、そ
の一部(通常30モル%未満)を、例えばメチルテ
レフタル酸、イソフタル酸、メチルイソフタル
酸、5―ナトリウムスルホイソフタル酸、フタル
酸、ジフエニルジカルボン酸、ジフエニルスルホ
ンジカルボン酸、ジフエノキシエタンジカルボン
酸、ナフタリンジカルボン酸、アジピン酸、セパ
シン酸、P―ヒドロキシエトキシ安息香酸又はこ
れらのエステル形成性誘導体等の1種以上でおき
かえてもよい。一方、グリコール成分はエチレン
グリコール又はエチレンオキシドのようなエチレ
ングリコールのエステル形成性誘導体を主たる対
象とするが、その一部(通常30モル%以下)を例
えばプロピレングリコール、テトラメチレングリ
コール、トリエチレングリコール、ジエチレング
リコール、ポリエチレングリコール、1,4―シ
クロヘキサンジメタノール、1,4―シクロヘキ
サンジオール、1,4―ビス―ヒドロキシエトキ
シベンゼン等の脂肪族、芳香族、脂環族等のジオ
ール化合物又はこれらのエステル形成性誘導体等
の1種以上でおきかえてもよい。 これら二官能性カルボン酸とグリコールとから
ポリエステルを製造するには公知の任意の方法が
適用できる。例えばジメチルテレフタレートとエ
チレングリコールとをエステル交換反応させる
か、テレフタル酸とエチレングリコールとを直接
エステル化反応させるかあるいはテレフタル酸と
エチレンオキシドとを付加反応させるかして、ビ
ス―(β―ヒドロキシエチル)テレフタレート及
び/又はその低重合体を形成させ、次いで重縮合
反応させて所定の性状とする。これらの反応を行
うにあたり、通常の場合触媒が用いられる。特に
重縮合反応には触媒が必要で重縮合反応用触媒と
しては、例えばアンチモン化合物、ゲルマニウム
化合物、チタン化合物、スズ化合物が好適であ
り、特に三酸化アンチモンがよく用いられてい
る。これらの触媒のほか、例えばエステル交換又
はエステル化工程が実質上終了したところで、必
要に応じ、ほかの添加剤、例えば、安定剤、顔
料、染料、蛍光増白剤、核剤、重合促進剤、易滑
剤、増量剤等を添加することも可能である。 生成ポリエステルの重合度は特に制限はない
が、実用上好ましいのは、フエノール―四塩化エ
タン(1対1)の混合溶媒に溶解し、20℃で測定
した溶液粘度より求めた極限粘度(以下〔η〕と
記す)で0.4ないし1.2の範囲である。 以上、述べたごとく本発明の方法によれば高重
合度のポリエステルを製造するに際し、色相の悪
化、特に重縮合反応中あるいは重縮合反応後の処
理過程で生ずるポリエステルの着色増加現象やカ
ルボキシル末端基及びジエチレングリコール結合
含有量の増加現象が防止され、繊維、フイルム、
その他の成型品として使用する際の商品価値を極
めて向上させることができる。さらには通常の重
縮合過程及び重縮合後の後処理過程の全所要時間
を短縮することができることは、従来予想されな
かつた効果である。 以下、実施例によつて本発明をさらに具体的に
説明するが、本発明はこれら実施例によつてなん
ら限定されるものでないことはいうまでもないこ
とである。 実施例中に「部」とあるのは重量部を表し、色
調はポリエステルをチツプ状に成形したのち、
150℃で2時間熱処理したものを色差計でL、a、
bの値を測定したものである。L値は明るさの度
合で、大きい程よく、a値は赤緑系色相の度合
で、大きい程赤味を帯び、0に近い程よく、また
b値は黄青系の色相の度合で、大きい程黄味を帯
び特に小さくならない限り、小さい方がよい。 カルボキシル末端基濃度(COOH)はペンジ
ルアルコール中で1/10規定の水酸化カリウム溶
液で滴定して求めたもので、低い程好ましい。 ジエチレングリコール結合の濃度(DEG)は
メタノール還流下で2時間分解し、ガスクロマト
グラフイーで分析定量したもので、通常は低い方
が好ましい。 実施例で用いたポリマグネシオジフエニルシロ
キサンの合成は次の方法によつた。 水酸化マグネシウムとジフエニルジクロロシラ
ンをモル比で1対1でジ―n―ブチルエーテル
中、140℃で24時間窒素流通下で反応させた。得
られた反応液から溶媒のジ―n―ブチルエーテル
を減圧蒸留で除去し、残つた樹脂状物をアセトン
と水で洗浄し、淡褐色の沈殿を得た。 得られた物質を元素分析したところC44.3%、
H4.2%、Si19%、Mg1.0%の値が得られた。 アセトン溶媒中でこの物質の数平均分子量を
Vapour Pressure Osmometerで測定したとこ
ろ、約3160であつた。 また、この物質の赤外吸収スペクトルを第1図
に示す。第1図において、3060cm-1と3030cm-1
ベンゼン環C−Hに基づく吸収が、1595cm-1
1420cm-1、1190cm-1、1020cm-1、990cm-1、730cm
-1及び695cm-1にSi−φ(φはフエニル基)に基づ
く吸収が、1100〜1000cm-1にSi−Oに基づく吸収
及び1130cm-1にSi―O―Mgに基づく吸収が認め
られ、この物質は、−〔Si(φ2)―O〕−単位と−〔
(Si(φ2)―O―Mg―O〕−単位とからなり、前者
が主体をなし後者が部分的に含まれるポリマグネ
シオジフエニルシロキサンと認められる。 なお、この物質の融点はDSC測定の結果370℃
以上であつた。 実施例 1〜6 テレフタル酸とエチレングリコールのエステル
化反応により得られたビス―(β―ヒドロキシエ
チル)テレフタレート及びその低重合体100部に
三酸化アンチモンをテレフタル酸1モルに対し2
×10-4モルと前述のポリマグネシオジフエニルシ
ロキサンを表1に示す添加量で加えて試験を行つ
た。添加剤の添加後徐々に減圧加熱し、最終的に
内温が285℃、最終到達真空度0.1mmHg以下とな
し、90分間重縮合した。 得られたポリエチレンテレフタレートの性状は
表1記載のとおりであつた。 比較例 1 ポリマグネシオフエニルシロキサンを添加しな
いこと以外は実施例1と全く同様にして実験し
た。 比較例 2 実施例4において得られたポリエチレンテレフ
タレートとほぼ同じ〔η〕のものが得られるまで
重縮合したこと以外は比較例1と同様に重縮合し
た。 参考例 1,2 ポリマグネシオジフエニルシロキサンの代わり
にポリジフエニルシロキサン又は水酸化マグネシ
ウムを添加したこと以外は実施例1と同一条件で
重縮合した。 上記比較例及び参考例の結果を表1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyester, particularly a method for producing polyester with a high degree of polymerization and excellent color tone in a short time. BACKGROUND ART Polyesters, particularly polyethylene terephthalate or polyesters whose main constituent units are ethylene terephthalate units, have been widely used in fibers, films, and other molded products because of their excellent properties. To produce polyethylene terephthalate,
Usually, bis-(β-hydroxyethyl) terephthalate and/or its low polymer is formed by transesterifying dimethyl terephthalate and ethylene glycol or directly esterifying terephthalic acid and ethylene glycol, The polyester is then produced by a polycondensation reaction to obtain a polyester with desired properties. However, in the polycondensation process, especially in the final polycondensation process, a high temperature of 280°C to 300°C is usually required.
In order to obtain the above-mentioned polyesters, thermal decomposition reactions and other side reactions are inevitably involved.
Usually, the physical properties of the polyester are impaired, such as yellow coloration, increased carboxyl end group concentration, and increased content of diethylene glycol bonds. Further, in the usual case, after the final polycondensation reaction is completed, the molten polyester is discharged from the polycondensation reactor and cooled, and first, it is cut into chips. Afterwards,
It is dried, then remelted and, after a certain residence time, processed into fibers, films, plastic moldings, etc., depending on various purposes. In addition, recently, after being discharged from a polycondensation reactor, it is processed into fibers, films, plastic molded products, etc. for various purposes immediately after a certain residence time without being cooled or chipped. Direct methods are also on the rise. It goes without saying that these processes always require a certain residence time, and during this time the polyester is colored yellow due to thermal decomposition reactions, etc., which significantly reduces the commercial value of the resulting product and increases carboxyl content. As the terminal group concentration and diethylene glycol bond content increase, stability against heat deteriorates and desired mechanical properties may not be obtained. The present inventors have arrived at the present invention as a result of intensive research aimed at producing a polyester with a high degree of polymerization that does not suffer from such deterioration of various properties. That is, the present invention relates to the production of polyester from terephthalic acid, a difunctional carboxylic acid mainly composed of terephthalic acid, or an ester-forming derivative thereof, and ethylene glycol, a glycol mainly composed of terephthalic acid, or an ester-forming derivative thereof. The gist of this invention is a method for producing polyester, which is characterized by the presence of an organic polymagnesiosiloxane consisting of units represented by the following general formula. --[Si( R1 )( R2 )-O-Mg-O]-- [ R1 and R2 represent an alkyl group or an aryl group. ] Such organic polymagnesiosiloxane is
For example, it can be obtained relatively easily by heating dihalosilane and magnesium hydroxide in an ether solvent under nitrogen flow. The amount of organic polymagnesiosiloxane added varies depending on the intended use of the polyester, but is generally 0.01 to 10 parts by weight per 100 parts by weight of the polyester produced. If the amount added is less than this range, the effect of the addition will not be substantially observed, and if the amount added is more than this range, the resulting polyester may become gel-like, which is not preferable. The compound may be added before or during the transesterification or esterification step, or before or during the polycondensation step, but is preferably added before the start of the polycondensation reaction. Further, the addition form may be selected as appropriate, such as adding as a solid or as a glycol slurry or a solution such as acetone. In the present invention, the acid component is mainly ester-forming derivatives such as terephthalic acid or its alkyl esters and phenyl esters. , methyl isophthalic acid, 5-sodium sulfoisophthalic acid, phthalic acid, diphenyl dicarboxylic acid, diphenyl sulfone dicarboxylic acid, diphenoxyethane dicarboxylic acid, naphthalene dicarboxylic acid, adipic acid, sepacic acid, P-hydroxyethoxybenzoic acid or It may be replaced with one or more of these ester-forming derivatives. On the other hand, the glycol component is mainly ethylene glycol or ester-forming derivatives of ethylene glycol such as ethylene oxide, but a portion (usually 30 mol% or less) of the glycol component is used as propylene glycol, tetramethylene glycol, triethylene glycol, diethylene glycol, etc. , aliphatic, aromatic, alicyclic diol compounds such as polyethylene glycol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediol, 1,4-bis-hydroxyethoxybenzene, or ester-forming derivatives thereof You may replace it with one or more of the following. Any known method can be applied to produce polyester from these difunctional carboxylic acids and glycols. For example, by transesterifying dimethyl terephthalate and ethylene glycol, by directly esterifying terephthalic acid and ethylene glycol, or by addition reacting terephthalic acid and ethylene oxide, bis-(β-hydroxyethyl) terephthalate is produced. and/or a low polymer thereof is formed and then subjected to a polycondensation reaction to obtain predetermined properties. Catalysts are usually used to carry out these reactions. In particular, a catalyst is required for the polycondensation reaction, and suitable catalysts for the polycondensation reaction include, for example, antimony compounds, germanium compounds, titanium compounds, and tin compounds, and antimony trioxide is particularly often used. In addition to these catalysts, other additives such as stabilizers, pigments, dyes, optical brighteners, nucleating agents, polymerization accelerators, It is also possible to add lubricants, fillers, etc. There are no particular restrictions on the degree of polymerization of the resulting polyester, but it is practically preferable to have an intrinsic viscosity (hereinafter referred to as [ η) is in the range of 0.4 to 1.2. As described above, when producing a polyester with a high degree of polymerization, according to the method of the present invention, there is a problem with deterioration of the hue, especially the phenomenon of increased coloration of the polyester that occurs during or after the polycondensation reaction, and the carboxyl terminal group. and diethylene glycol bond content increase phenomenon is prevented, and fibers, films,
It is possible to significantly improve the commercial value when used as other molded products. Furthermore, the ability to shorten the total time required for the normal polycondensation process and post-polycondensation post-treatment process is an effect that was not previously expected. Hereinafter, the present invention will be explained in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples in any way. In the examples, "parts" represent parts by weight, and the color tone is determined by molding polyester into chips.
After heat-treated at 150℃ for 2 hours, it was measured with a color difference meter as L, a,
The value of b was measured. The L value is the degree of brightness, the higher the better. The a value is the degree of the red-green hue, the higher the reddish, the closer to 0 the better. The b value is the degree of the yellow-blue hue, the higher the better. The smaller the better, unless it becomes yellowish and particularly small. The carboxyl terminal group concentration (COOH) was determined by titration with a 1/10 normal potassium hydroxide solution in pendyl alcohol, and the lower the concentration, the better. The concentration of diethylene glycol bonds (DEG) is determined by decomposing the sample under refluxing methanol for 2 hours and analyzing and quantifying it by gas chromatography, and the lower the value, the better. The polymagnesiodiphenylsiloxane used in the examples was synthesized by the following method. Magnesium hydroxide and diphenyldichlorosilane were reacted at a molar ratio of 1:1 in di-n-butyl ether at 140° C. for 24 hours under nitrogen flow. The solvent di-n-butyl ether was removed from the resulting reaction solution by vacuum distillation, and the remaining resinous material was washed with acetone and water to obtain a light brown precipitate. Elemental analysis of the obtained material revealed C44.3%,
Values of H4.2%, Si19%, and Mg1.0% were obtained. The number average molecular weight of this substance in acetone solvent is
When measured with a Vapour Pressure Osmometer, it was approximately 3160. Moreover, the infrared absorption spectrum of this substance is shown in FIG. In Figure 1, absorption based on benzene ring C-H is at 3060cm -1 and 3030cm -1 , 1595cm -1 ,
1420cm -1 , 1190cm -1 , 1020cm -1 , 990cm -1 , 730cm
-1 and 695 cm -1 absorption based on Si-φ (φ is phenyl group), 1100 to 1000 cm -1 absorption based on Si-O, and 1130 cm -1 based on Si-O-Mg absorption, This substance has −[Si(φ 2 )−O]− units and −[
It is recognized as polymagnesiodiphenylsiloxane, which consists of (Si(φ 2 )-O-Mg-O]- units, with the former being the main component and the latter partially included. The melting point of this substance was determined by DSC measurement. Result of 370℃
That's all. Examples 1 to 6 Antimony trioxide was added to 100 parts of bis-(β-hydroxyethyl) terephthalate and its low polymer obtained by the esterification reaction of terephthalic acid and ethylene glycol in an amount of 2 to 1 mole of terephthalic acid.
A test was carried out by adding the above-mentioned polymagnesiodiphenylsiloxane in the amount shown in Table 1. After the addition of the additives, the mixture was heated under reduced pressure gradually until the internal temperature was 285°C and the final vacuum degree was 0.1 mmHg or less, and polycondensation was carried out for 90 minutes. The properties of the obtained polyethylene terephthalate were as shown in Table 1. Comparative Example 1 An experiment was carried out in exactly the same manner as in Example 1 except that polymagnesiophenylsiloxane was not added. Comparative Example 2 Polycondensation was carried out in the same manner as in Comparative Example 1, except that polycondensation was carried out until a polyethylene terephthalate substantially the same as [η] obtained in Example 4 was obtained. Reference Examples 1 and 2 Polycondensation was carried out under the same conditions as in Example 1, except that polydiphenylsiloxane or magnesium hydroxide was added instead of polymagnesiodiphenylsiloxane. Table 1 shows the results of the above comparative examples and reference examples. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で使用したポリマグネ
シオジフエニルシロキサンの赤外吸収スペクトル
図である。
FIG. 1 is an infrared absorption spectrum diagram of polymagnesiodiphenylsiloxane used in Examples of the present invention.

Claims (1)

【特許請求の範囲】 1 テレフタル酸又はこれを主とする二官能性カ
ルボン酸あるいはそれらのエステル形成性誘導体
とエチレングリコール又はこれを主とするグリコ
ールあるいはそれらのエステル形成性誘導体とか
らポリエステルを製造するにあたり、下記の一般
式で表される単位からなる有機ポリマグネシオシ
ロキサンを存在させることを特徴とするポリエス
テルの製造方法。 ―−[Si(R1)(R2)―O―Mg―O]−― 〔R1,R2はアルキル基又はアリール基を示す。〕
[Claims] 1. Polyester is produced from terephthalic acid, a difunctional carboxylic acid mainly composed of terephthalic acid, or an ester-forming derivative thereof, and ethylene glycol, a glycol mainly composed of terephthalic acid, or an ester-forming derivative thereof. A method for producing a polyester, characterized in that an organic polymagnesiosiloxane consisting of units represented by the following general formula is present. --[Si( R1 )( R2 )-O-Mg-O]-- [ R1 and R2 represent an alkyl group or an aryl group. ]
JP21179181A 1981-12-24 1981-12-24 Production of polyester Granted JPS58109532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21179181A JPS58109532A (en) 1981-12-24 1981-12-24 Production of polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21179181A JPS58109532A (en) 1981-12-24 1981-12-24 Production of polyester

Publications (2)

Publication Number Publication Date
JPS58109532A JPS58109532A (en) 1983-06-29
JPH026769B2 true JPH026769B2 (en) 1990-02-13

Family

ID=16611663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21179181A Granted JPS58109532A (en) 1981-12-24 1981-12-24 Production of polyester

Country Status (1)

Country Link
JP (1) JPS58109532A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459113B2 (en) 2004-03-08 2008-12-02 Eastman Chemical Company Process of making a container from polyester polymer particles having a small surface to center intrinsic-viscosity gradient
US20060047102A1 (en) 2004-09-02 2006-03-02 Stephen Weinhold Spheroidal polyester polymer particles
US8557950B2 (en) 2005-06-16 2013-10-15 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates

Also Published As

Publication number Publication date
JPS58109532A (en) 1983-06-29

Similar Documents

Publication Publication Date Title
TWI618730B (en) Preparation method of polyester resin
JP3438072B2 (en) Method for producing copolyester resin using titanium dioxide / silicon dioxide coprecipitate catalyst in suspension in glycol
JP2006511688A (en) Ester-modified dicarboxylate polymer
US4131601A (en) Process for the preparation of polyesters
KR20200017203A (en) Polyester resin and preparation method of the same
JPH026769B2 (en)
JP3108047B2 (en) Method for producing polyester resin
EP0119731B1 (en) Copolyester of polyethylene terephthalate, process for making it and its use in producing molded articles
KR930010563B1 (en) Producing method of polyester co-polymer
US4547563A (en) Copolyester of polyethylene terephthalate and bis (4-beta hydroxy ethoxy phenyl) sulfone
JPS62292833A (en) Polyester polycarbonate elastomer
JPH11130856A (en) Production of polyester resin
JPS60250028A (en) Production of polyester
JPS6364449B2 (en)
JPS6333489B2 (en)
KR970009428B1 (en) Process for the polyester
JPS6254130B2 (en)
JPS62197417A (en) Production of polyester
KR0182367B1 (en) Process for preparing polyester resin
JPS60166320A (en) Production of polyester
JPH06263851A (en) Copolyester
JPH0141651B2 (en)
JPS6314741B2 (en)
EP0107503A1 (en) Use of polyethylene terephthalate copolyester in forming films and moulded articles
JPS598288B2 (en) Arylene ester cage