JPH0267179A - Rewritable optical recording medium and erasure method thereof - Google Patents

Rewritable optical recording medium and erasure method thereof

Info

Publication number
JPH0267179A
JPH0267179A JP63219026A JP21902688A JPH0267179A JP H0267179 A JPH0267179 A JP H0267179A JP 63219026 A JP63219026 A JP 63219026A JP 21902688 A JP21902688 A JP 21902688A JP H0267179 A JPH0267179 A JP H0267179A
Authority
JP
Japan
Prior art keywords
layer
recording
recording medium
rewritable optical
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63219026A
Other languages
Japanese (ja)
Inventor
Katsuji Hattori
服部 勝治
Hirotoshi Niiguchi
新口 博俊
Toru Yamamoto
徹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63219026A priority Critical patent/JPH0267179A/en
Publication of JPH0267179A publication Critical patent/JPH0267179A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To make the size of a pit (recording data part) stable and to reduce the remainder at the time of erasure by constituting the first layer of a recording layer of a porous layer and the second layer thereof of a layer held in a form of a pit by thermal deformation due to light energy. CONSTITUTION:A glass substrate having a guide groove formed thereto is used as a substrate 11 and a layer 12 consisting of an org. dye and a binder is formed on the substrate 12 by spin coating and a porous layer 13 is next formed on the layer 12 using silicone rubber. When the optical recording medium thus constituted is rotated and irradiated with laser beam to perform recording, the layer 12 being the second layer is thermally deformed to generate a layer 21 of the org. dye and the binder having a pit formed thereto. At this time, in the porous layer 13, the edge built up on the circumference of the pit is forcibly fixed in a cooled state and a porous layer 22 having a dome-shape protruberance formed thereto is held. Regeneration is performed by projecting laser power beam and reding the intensity change of reflected beam and erasure is performed by the irradiation with laser power beam and the recording layer smoothly returns to the original flat shape.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光で情報の記録、再生、消去を行うデーターフ
ァイルやデジタルオーディオディスクなどに使われる光
ディスク、光カード、光テープなどの書換え可能な光記
録媒体およびその消去法に関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to rewritable optical recording such as optical disks, optical cards, and optical tapes used for data files and digital audio disks that record, reproduce, and erase information using light. It is about media and how to eliminate them.

従来の技術 近年、光ディスクは高密度、大容量2高速アクセス等の
利点のためにデーターファイル等に応用されつつある。
2. Description of the Related Art In recent years, optical disks have been increasingly being applied to data files due to their advantages such as high density, large capacity, and high speed access.

さらに、データの記録のために光力−1や光テープの形
で使用されつつある。本発明はこれらのいずれの光記録
媒体にも関するが、以下光ディスクで記述する。
Furthermore, it is being used in the form of optical power-1 and optical tape for recording data. Although the present invention relates to any of these optical recording media, the optical disc will be described below.

光ディスクには大きく分けて三つのタイプがあ予め書き
込まれた情報を再生だけするWOタイプ5予め書き込ま
れた情報に加えて新たな情報を書き込める追記型タイプ
、書き込みも消去も繰り返し行える書換え可能型タイプ
である。もっともニーズの多いのは書換え可能型タイプ
のもので、本発明もこのタイプに関するものである。
There are three main types of optical discs: the WO type, which only plays back pre-written information; the write-once type, which allows new information to be written in addition to the pre-written information; and the rewritable type, which can be repeatedly written and erased. It is. The most needed type is the rewritable type, and the present invention also relates to this type.

書換え可能型タイプにも何種類かの方式がある。There are several types of rewritable types.

1ノ−グー光の熱を利用して光記録媒体に相転移(結晶
相澤アモルコアス相)を起こし、光の反射率変化を読み
取る相変化タイプ、キュリー温度以上にレーザー光で磁
性膜を加熱し、磁場の印加によりピット(情報記録部)
の磁化方向を変え、カー効果による偏光角変化を読み取
る光磁気タイプ。
1. Phase change type that uses the heat of light to cause a phase transition (crystalline amorphous phase) in the optical recording medium and read the change in light reflectance.The magnetic film is heated with laser light above the Curie temperature. Pit (information recording section) created by applying a magnetic field
A magneto-optical type that changes the magnetization direction and reads changes in polarization angle due to the Kerr effect.

有機色素の光吸収による吸収波長帯のソフトを利用した
フォトクロミズムタイプ、レーザー光の熱を用いてドー
ム状の隆起や穴の形の変形を発生させたり消去したりす
る二層タイプのもの等がある。
There are photochromic types that use software in the absorption wavelength range due to the light absorption of organic dyes, and two-layer types that use the heat of laser light to create and erase dome-shaped bumps and hole-shaped deformations. .

相変化タイプのものは、線速の遅い時に光記録媒体の熱
伝導率が大きいためにピットかにじんで大きくなる欠点
を持−つ。光磁気タイプは拐料コスl−が高く、光学系
も複雑になる欠点が、またフォトクロミズムタイプでは
信号の経時劣化を生じる欠点を持つ。本発明は二層タイ
プに関するものである。
The phase change type has the disadvantage that when the linear velocity is slow, the thermal conductivity of the optical recording medium is high, so that the pits become smudged. The magneto-optical type has the disadvantage that the optical cost is high and the optical system is complicated, and the photochromism type has the disadvantage that the signal deteriorates over time. The present invention relates to a two-layer type.

このタイプのものには記録層の第二層が有機色素を含ん
だポリマー層と第一層が無機セラミック層とからなる二
層夕・イブがある。例えば、特開昭60−253035
号公報に開示されている。
This type of recording layer includes a two-layer recording layer in which the second layer is a polymer layer containing an organic dye and the first layer is an inorganic ceramic layer. For example, JP-A-60-253035
It is disclosed in the publication No.

以下図面を参照しながら従来の記録層が二層からなる二
層タイプのものについて説明する。第4図、第5図は従
来の三日タイプにおける未記録状態および記録状態を示
したものである。第4図において41は基板、42は有
機色素を含んだバインダーからなるポリマー層、43は
無機セラミンク層、第5図において51は空間、52は
ドーム状構造体である。ガラスもしくは樹脂からなる基
板41の上に、室温より高いガラス転移温度を持つポリ
マー層42を形成し、その上に酸化硅素。
A conventional two-layer recording device having two recording layers will be described below with reference to the drawings. FIGS. 4 and 5 show an unrecorded state and a recorded state in the conventional three-day type. In FIG. 4, 41 is a substrate, 42 is a polymer layer made of a binder containing an organic dye, 43 is an inorganic ceramic layer, 51 is a space, and 52 is a dome-shaped structure. A polymer layer 42 having a glass transition temperature higher than room temperature is formed on a substrate 41 made of glass or resin, and silicon oxide is formed on the polymer layer 42 having a glass transition temperature higher than room temperature.

酸化アルミニウムなどの無機セラミック1143を形成
する。
An inorganic ceramic 1143 such as aluminum oxide is formed.

レーザー光を記録層のポリマー層42の必要な場所に集
光照射すると、第二層のポリマー層42は選択した波長
の光エネルギーを吸収して発生した熱によって溶解し、
物質が押し退けられた形の熱変形ピットを起こし、空間
51を形成する。この時第一層の薄い無機セラミック層
はポリマー層42から押し出されてピットを形成する物
質を捕捉し、ドーム状構造体52をピット上に形成する
When a laser beam is focused and irradiated onto the required location of the polymer layer 42 of the recording layer, the second polymer layer 42 absorbs the light energy of the selected wavelength and is melted by the heat generated.
A thermally deformed pit is created in the form of a displaced substance, forming a space 51. At this time, the first thin inorganic ceramic layer traps the material extruded from the polymer layer 42 and forming the pits, forming a dome-like structure 52 over the pits.

消去時はレーザー光の再照射により、第二層のポリマー
層の押し退けられた物質を再加熱によって塑性としてピ
ット内の空間51に再び流し込む。
During erasing, by reirradiating the laser beam, the displaced substance of the second polymer layer is reheated and made plastic and poured into the space 51 within the pit.

この時、無機セラミック層43の応力でドーム状構造体
52を消去平坦化しようとするものである。
At this time, the stress of the inorganic ceramic layer 43 attempts to erase and flatten the dome-shaped structure 52.

発明が解決しようとする課題 しかしながら上記のような構成では、記録時にピット空
間が熱変形によって形成される際、無機セラミック層が
本質緻密な材料であるために押し退けられた物質の逃げ
場がなく、崩れた形のピットになりやすい、ピットの大
きさが一様になりにくい。さらに、消去時には逆に再加
熱によって押し退けられた物質が空間に再び流れ込む際
、無機セラミンク層が緻密であるために空間に存在する
気体の逃げ場がなく、結果的にピット空間は完全には埋
まらず消去が不完全になりやすく、消し残しを生じると
いう欠点をもつ。
Problems to be Solved by the Invention However, with the above configuration, when pit spaces are formed by thermal deformation during recording, the inorganic ceramic layer is essentially a dense material, so there is no place for the displaced substances to escape, and the material collapses. It is easy for pits to form in different shapes, and it is difficult for the pits to be uniform in size. Furthermore, during erasing, when the material that was displaced by reheating flows back into the space, the inorganic ceramic layer is dense, so there is no place for the gas present in the space to escape, and as a result, the pit space is not completely filled. This method has the disadvantage that erasing tends to be incomplete, resulting in unerased areas.

本発明は上記課題に鑑み、ピノ1−の大きさが安定で消
去時の消し残しの少ない書換え可能な光記録媒体および
その消去法を提供するものである。
In view of the above-mentioned problems, the present invention provides a rewritable optical recording medium that has a stable pinot size and leaves little unerased data during erasing, and a method for erasing the same.

!!l!題を解決するための手段 上記課題を解決するために本発明の光記録媒体は、記録
層は少なくとも二層をそなえ、その第一層を多孔質面と
し、第二層を光エネルギー熱による熱変形でビア 1−
の形で保持する層で構成したものである。さらに、記録
層ζこレーザー光を集光することによって、消去が必要
な情報記録要素を形成する熱変形ピットを平坦化して消
去を行なうようにしたものである。
! ! l! Means for Solving the Problems In order to solve the above problems, the optical recording medium of the present invention has at least two recording layers, the first layer is a porous surface, and the second layer is heated by light energy heat. Via with deformation 1-
It is made up of layers that hold it in the shape of. Further, by focusing laser light on the recording layer ζ, thermally deformed pits forming information recording elements that need to be erased are flattened and erased.

作用 本発明は上記した構成において、レーザー光の波長を吸
収する有機色素とバインダーの高分子材Flからなる層
を形成し、この上に平坦な面を有する多孔質状のポリマ
ー層を形成したものを未記録(初jlJl)状態とする
Function The present invention has the above-described structure, in which a layer consisting of an organic dye that absorbs the wavelength of laser light and a polymer material Fl as a binder is formed, and a porous polymer layer having a flat surface is formed on this layer. is in an unrecorded (first jlJl) state.

記録は記録レーザー光を記録層に照射し、第二層の室温
より高いガラス転移温度で、かつ記録レーザー光の照射
によって発生する熱温度より低い温度のガラス転移温度
を持つ、かつ低熱伝導率のバインダーを有機色素の光吸
収で加熱する。これによって、有機色素とバインダーか
らなる第二層は熱変形し、物質が押し退けられた形で空
間を持つピットを形成し、次に非照射で象、冷されピッ
トは固定される。押し退けられた物質は同時に多孔質の
ゴム状ポリマー層である第一層を押上げトム状の隆起を
形成する。第一層が多孔質であるため空間内の圧力は減
圧とならず、スムーズな空間ピットを形成することがで
きる。
For recording, the recording layer is irradiated with a recording laser beam, and the second layer has a glass transition temperature higher than the room temperature and lower than the thermal temperature generated by the irradiation of the recording laser beam, and has a low thermal conductivity. The binder is heated by light absorption of the organic dye. As a result, the second layer consisting of the organic dye and binder is thermally deformed, forming pits with spaces in the form of displacing the material, and then being cooled without irradiation, and the pits are fixed. The displaced material simultaneously pushes up the first layer, which is a porous rubbery polymer layer, forming a tom-like bulge. Since the first layer is porous, the pressure in the space does not decrease, and smooth space pits can be formed.

再生時は低パワーのレーザー光を記録層に11.(射し
てピット部からの回折反射による反射率の変化を読む。
11. When reproducing, a low power laser beam is applied to the recording layer. (The reflectance changes due to diffraction and reflection from the pit are read.

消去は消去し・−ジー光を記録層に照射することによっ
て第二層に形成されていたピア)の縁に捕捉されていた
物質が、再加熱されて塑性を有するlニー)になり、第
一層のゴム状ポリマー肋の弾性力により、押し退けられ
ていた物質はピット空間内に再び流れ込む。この時、第
二iが多孔質であるため空間内の気体はスJ、−ズに流
れ出て、ピット内は物質で埋まり平坦化され消去が完了
する。
Erasing means erasing. - By irradiating the recording layer with light, the material trapped on the edge of the pier formed in the second layer is reheated and becomes a plastic layer. Due to the elastic force of the layer of rubbery polymer ribs, the displaced material flows back into the pit space. At this time, since the second part i is porous, the gas in the space flows out into the pit, and the inside of the pit is filled with material and flattened, completing the erasing.

第二層はレーザー光の波長とほぼ同一波長域に光吸収帯
を有する有機色素をバインダーの高分子材料に溶かした
もので、有機色素の動きは記録時にレーザー光をよく吸
収し、熱に代える働きをするもので、光吸収波長帯の変
化を生じる必要はない。バインダーとしては、熱伝導率
の低い材料が要求されろ。熱伝導率が低いと形成される
ピットの大きさが小さ(、かつピットの縁の高さを高く
でき、その結果ドームの高さを高くできる。このため小
さいレーザーパワーでCN比の高い信号が得られる。熱
伝導率としては4X10IW/m−に以下が望ましい。
The second layer is made by dissolving an organic dye that has a light absorption band in almost the same wavelength range as the laser light wavelength into a binder polymer material, and the movement of the organic dye absorbs the laser light well during recording and converts it into heat. There is no need to cause a change in the optical absorption wavelength band. As a binder, a material with low thermal conductivity is required. If the thermal conductivity is low, the size of the pit formed will be small (and the height of the edge of the pit can be increased, resulting in the height of the dome being increased. Therefore, a signal with a high CN ratio can be obtained with a small laser power. The thermal conductivity is preferably 4×10 IW/m− or less.

第一層は第二層のバインダーへの記録消去レーザー光の
照射で発生する熱温度によりさらに高い熱変形温度を持
ち、使用する光波長で透明で、第二層に対して応力を発
揮させ、さらに多孔質状のポリマーとなっている。
The first layer has a higher thermal deformation temperature due to the thermal temperature generated when the recording/erasing laser beam is irradiated to the binder of the second layer, is transparent at the wavelength of light used, and exerts stress on the second layer. Furthermore, it is a porous polymer.

第二層に用いる有機色素としては、エチレンl。The organic dye used in the second layer is ethylene l.

2−ジチオール系金属(Ni)fit体、フタロシアニ
ン等のシアニン色素、スクワリリウム色素、メチン系色
素、ナフトキノン系色素、キノンイミン系色素、キノン
ジイミン系色素等の近赤外領域に吸収帯を持つ色素など
がを効である。
2-dithiol metal (Ni) fit bodies, cyanine dyes such as phthalocyanine, squalirium dyes, methine dyes, naphthoquinone dyes, quinone imine dyes, quinone diimine dyes, and other dyes with absorption bands in the near-infrared region. It is effective.

バインダーとしては、ポリメチルメタクリレト、ポリス
チレン、ポリビニルアルコール、ポリ酢酸ビニル、ポリ
塩化ビニル7ナイロン、二1−口セルロース エチルセ
ルロース ポリカーボネートなど、およびこれらの系統
の高分子材料が利用できる。
As the binder, polymethyl methacrylate, polystyrene, polyvinyl alcohol, polyvinyl acetate, polyvinyl chloride 7 nylon, 21-cellulose ethyl cellulose polycarbonate, and polymeric materials of these types can be used.

第一層に用いる多孔質材料としは、シリコーンゴム2ポ
リエチレン、ポリプロピレンなどが使用できる。
As the porous material used for the first layer, silicone rubber 2 polyethylene, polypropylene, etc. can be used.

71)−層、−第二層の\1″ングーの七記柑料は熱変
形温度、ガー丁−ス・PL移t1u度などのi曵:j:
からtft合仕が選IJiiされイ)。
71) -Layer, -The second layer of \1''Ngu's seven notes is heat deformation temperature, gas, PL transfer temperature, etc. i:j:
tft joint service was selected from IJii).

1’Jトの1・1な+j4成 動作によって、比較的低
パワーのレーリ゛−光で記録、)(j去ができC;く比
の高い耐熱性に(【れな、かつ消し2残しも少なく繰り
返し記録消去回数の多い光デ、スクが得られる。
1'J's 1.1+j4 formation operation allows recording with relatively low-power Rayleigh light, and has a high heat resistance that allows for erasing and erasing. Thus, an optical disc can be obtained with a high number of repeated recording and erasing operations.

′P8i!i例 以−ド本発明の一実施例の31りえ可能な光記録媒体お
よびそのrt’を去lムζこついて図面を参照しながら
説明する。
'P8i! EXAMPLE 1 A removable optical recording medium and its rt' according to an embodiment of the present invention will now be described with reference to the drawings.

第1図は未発明の実施例における光記録媒体の1すi[
Tii図を示すものである。第1図において11は嗅仮
、12は有(幾色素とバインダーの層、13は多孔質層
である。第2図は記録時の断面図を示すものである。第
2図において21は熱変形してピットを形成した有機色
素とバインダーの層、22はドーム状の隆起を形成され
た多孔質層、23はレーデ−光である。
FIG. 1 shows an optical recording medium in an uninvented embodiment.
This shows a Tii diagram. In Fig. 1, 11 is an olfactory layer, 12 is a layer of pigment and binder, and 13 is a porous layer. Fig. 2 shows a cross-sectional view during recording. In Fig. 2, 21 is a thermal layer. A layer of organic dye and binder is deformed to form pits, 22 is a porous layer with dome-shaped protuberances, and 23 is radar light.

寧扱11と1でドライエンチング法で室内溝を形成した
ガラス基板を用いた。この上に有機色素として700〜
900nmに吸収帯を持つすトラデヒドロコリン、バイ
ンダーとしてポリメチルメタクリレートを用いて有機色
素とバインダーの層12をスピンコード(回転数150
orpm)で形成した。
In cases 11 and 1, glass substrates on which indoor grooves were formed by dry etching were used. On top of this, 700 ~
Using tradedehydrocholine, which has an absorption band at 900 nm, and polymethyl methacrylate as a binder, the organic dye and binder layer 12 was coated with a spin cord (rotation speed: 150 nm).
orpm).

次に上記有機色素とバインダーの112上にシリコーン
ゴムを用いて多孔質層13を形成した。
Next, a porous layer 13 was formed on the organic dye and binder 112 using silicone rubber.

膜17は0.3μmであった。Membrane 17 was 0.3 μm.

本実施例の有機色素とバインダーの層の熱伝導率は1.
4 X 10” W7/m −Kであった。ポリメチル
メタクリレートのガラス転移温度は室温以上で、多孔質
層の熱変形温度は300°C付近であった。
The thermal conductivity of the organic dye and binder layer in this example is 1.
4 x 10'' W7/m -K. The glass transition temperature of polymethyl methacrylate was above room temperature, and the heat distortion temperature of the porous layer was around 300°C.

このような構成の光記録媒体を線速1.4m、−’se
cで回転させ、レーザー光23(波長830nm)を3
.2mWのパワーで2h板側から照射し記録を行った。
An optical recording medium with such a configuration has a linear velocity of 1.4 m, -'se
Rotate at c and laser beam 23 (wavelength 830 nm)
.. Recording was performed by irradiating from the 2h plate side with a power of 2 mW.

レーザーの照射によって、第二層の有機色素とバインダ
ーの層はレーザー光を吸収して熱くなり、熱変形してピ
ットを形成した有機色素とバインダーの層21を生じる
。この際第一層のちアシ質層は、第二層の熱変形によっ
て生じるピットの周囲に盛り」:がるt家が冷却状態で
強制的に固定され、これに、L、てドーム状の隆起を形
成された多孔質層22は保持される。
By the laser irradiation, the second layer of organic dye and binder absorbs the laser light and becomes heated, and is thermally deformed to form a layer 21 of organic dye and binder in which pits are formed. At this time, after the first layer, the ash layer builds up around the pit caused by the thermal deformation of the second layer. The formed porous layer 22 is retained.

再生はシー4ノ゛−のパワーを1.0mWの光を投入し
て反射光の強度変化を読みだした。線速1,4m / 
s ecごは記録パワー4mW程変が最適で、CN比は
杓53tjBとなることがわか、った。
For reproduction, light with a power of 1.0 mW was inputted from a sea 4 node, and changes in the intensity of the reflected light were read out. Linear speed 1.4m/
It was found that it is optimal to change the recording power by about 4 mW for each second, and the CN ratio becomes 53tjB.

消去はレーザーパワーを9mWの光で照射を行った。こ
ね2によ、ってスムーズに記録層は平1uな元の形状に
戻った。操り返し消録回数は、テトラデヒドロコリンと
ポリメトルツタクリレートの系において104回以上と
なり、無機セラミック層とポリマー層のタイプのものに
比べて繰り返し性に優れていることが分かった。これは
第一層の多孔質層が物理的に多孔質であるため、記録時
に安定した大きさの空間を持つピットを形成し、消去時
にはピットの空間がスムーズに消滅するためと考えられ
る。
For erasing, irradiation was performed with a laser power of 9 mW. By kneading 2, the recording layer smoothly returned to its original flat 1u shape. The number of times of repeating and erasing was 104 times or more in the system of tetradehydrocholine and polymethorutacrylate, and it was found that the repeatability was superior to that of the type with an inorganic ceramic layer and a polymer layer. This is thought to be because the first porous layer is physically porous, so it forms pits with stable sized spaces during recording, and the pit spaces disappear smoothly during erasing.

第(3図に完成した光y′イスクの断面図を示す。Figure 3 shows a cross-sectional view of the completed optical y' isk.

第3図において31は光記録媒体、32はエアーギヤノ
ブ、33は保護基板、34はセンター穴である。前記の
ような方法で第一層、第二層からなる光記録媒体31を
形成し、たディスクに耐久性向上のため、エアーギヤノ
ブ32を介してポリメチルペンテンからなる保aI基板
33を接合した。この光ディスクを80 ’C809i
 RHの加速試験にかけたところ、1000時間でもC
N比の劣化は認められなかった。
In FIG. 3, 31 is an optical recording medium, 32 is an air gear knob, 33 is a protective board, and 34 is a center hole. An optical recording medium 31 consisting of a first layer and a second layer was formed by the method described above, and an aI-retaining substrate 33 made of polymethylpentene was bonded to the disk via an air gear knob 32 in order to improve durability. This optical disc is 80'C809i
When subjected to an accelerated RH test, it showed no C even after 1000 hours.
No deterioration of the N ratio was observed.

以上のように第二層として低熱伝導率の有機色素とバイ
ンダーを用い、第一層として多孔質層を用いることによ
って、高CN比で繰り返し消録回数の多い優れた光ディ
スクが得られた。
As described above, by using an organic dye and a binder with low thermal conductivity as the second layer and a porous layer as the first layer, an excellent optical disk with a high CN ratio and a high number of repeated recording/erasing cycles was obtained.

なお、上記実施例では記録層として二層からなる例を示
したが、反射率を上げるためのA l膜などが設けられ
て多層膜の構成を成していてもよい。
In the above embodiment, an example is shown in which the recording layer is composed of two layers, but an Al film or the like may be provided to increase the reflectance to form a multilayer structure.

発明の効果 以上のように本発明は低熱伝導率の有機色素とバインダ
ーからなる第二層と多孔質状の第一層で構成されており
、高CN比で繰り返し消録回数が多く、消し践シ、も少
ない優れた光ディスクを提供するものである。
Effects of the Invention As described above, the present invention is composed of a second layer made of an organic dye with low thermal conductivity and a binder, and a porous first layer. The present invention provides an excellent optical disc with a small number of discs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例にt3ける光記録媒体の断面し
]、第2図は記録時の断面図、第3121は完成した光
ディスクの断面図、第4図、第5図は従来の二層タイプ
におけろ未記録状態および記録状態を示す断面図である
。 11・・・基板、12・・有機色素とバインダーの層、
13・・多孔質層、21・・熱変形してピットを形成し
た有機色素とバインダーの層、22・・・ドーム状の隆
起を形成された多孔質層、23・・・レーザー光、31
・・光記解媒体、32・・・エアーギヤ、ブ、33・・
保護基板、34・・・センター穴。 代理人の氏名 弁理士 粟野重孝 は力司名1ノ −−
i しT25[
FIG. 1 is a cross-sectional view of an optical recording medium at t3 according to an embodiment of the present invention], FIG. 2 is a cross-sectional view during recording, No. 3121 is a cross-sectional view of a completed optical disc, and FIGS. FIG. 3 is a cross-sectional view showing an unrecorded state and a recorded state in a two-layer type. 11...Substrate, 12...Organic dye and binder layer,
13... Porous layer, 21... Layer of organic dye and binder that is thermally deformed to form pits, 22... Porous layer that has dome-shaped protuberances formed, 23... Laser light, 31
...Optical recording medium, 32...Air gear, Bu, 33...
Protection board, 34...center hole. Name of agent: Patent attorney Shigetaka Awano is Rikishi name 1--
i T25 [

Claims (1)

【特許請求の範囲】 (1)光で変形可能な記録材料の記録層とこれを支持す
る基板を有し、光エネルギーでデータを書き込んだり、
消去したり、データを光学的に読み取るために、前記記
録層は少なくとも二層をそなえ、その第一層を多孔質の
層とし、第二層を光エネルギー熱による熱変形によって
ピットの形で保持する層からなることを特徴とする書換
え可能な光記録媒体。(2)記録層に消去レーザー光を
集光することによって、消去が必要な情報記録要素を形
成する熱変形によって生じたピットを平坦化して消去を
行なうことを特徴とする書換え可能な光記録媒体の消去
法。 (3)記録層の第一層を著しく高い熱変形温度を持ち、
使用する光波長で透明なポリマー層からなることを特徴
とする請求項(1)記載の書換え可能な光記録媒体。 (4)記録層の第一層が気体を通す多孔質のゴム状ポリ
マー層からなることを特徴とする請求項(1)記載の書
換え可能な光記録媒体。 (5)記録層の第二層が所望の光波長で光吸収する有機
色素と、室温より高く、かつレーザー光の照射で発生す
る熱温度より低いガラス転移温度を持つバインダーであ
る高分子材料とからなることを特徴とする請求項(1)
記載の書換え可能な光記録媒体。 (6)記録層の第二層が記録レーザー光の照射非照射で
加熱冷却して熱変形したピットを形成固定し、消去レー
ザー光による再加熱で塑性変形を示すことを特徴とする
請求項(1)記載の書換え可能な光記録媒体。 (7)記録層の第二層が低い熱伝導率を有することを特
徴とする請求項(1)記載の書換え可能な光記録媒体。 (8)記録層に照射した消去レーザー光による再加熱で
塑性を有した第二層の物質が、第一層の持つ弾性力によ
り押え込まれ再びピット内に流れ込み、かつピット内の
気体が多孔質の第一層から抜けて、前記熱変形したピッ
トを平坦化し容易に消去過程を完了することを特徴とす
る請求項(2)記載の書換え可能な光記録媒体の消去法
[Claims] (1) It has a recording layer made of a recording material that can be deformed by light and a substrate that supports the recording layer, and data can be written using optical energy;
In order to erase data or optically read data, the recording layer has at least two layers, the first layer is a porous layer, and the second layer is held in the form of pits by thermal deformation due to light energy heat. A rewritable optical recording medium characterized by comprising a layer of (2) A rewritable optical recording medium characterized in that by focusing an erasing laser beam on the recording layer, the pits generated by thermal deformation that form the information recording element that needs to be erased are flattened and erased. Elimination method. (3) The first layer of the recording layer has a significantly high heat deformation temperature,
The rewritable optical recording medium according to claim 1, characterized in that it is made of a polymer layer that is transparent at the wavelength of light used. (4) The rewritable optical recording medium according to claim (1), wherein the first layer of the recording layer is made of a porous rubbery polymer layer that allows gas to pass through. (5) The second layer of the recording layer contains an organic dye that absorbs light at a desired wavelength, and a polymeric material that is a binder and has a glass transition temperature higher than room temperature and lower than the thermal temperature generated by laser light irradiation. Claim (1)
The rewritable optical recording medium described above. (6) Claim characterized in that the second layer of the recording layer is heated and cooled without irradiation with recording laser light to form and fix thermally deformed pits, and shows plastic deformation when reheated with erasing laser light. 1) The rewritable optical recording medium described above. (7) The rewritable optical recording medium according to claim (1), wherein the second layer of the recording layer has a low thermal conductivity. (8) The material in the second layer, which has become plastic due to reheating by the erasing laser beam irradiated to the recording layer, is pressed down by the elastic force of the first layer and flows into the pit again, and the gas in the pit becomes porous. 3. The method of erasing a rewritable optical recording medium according to claim 2, wherein the thermally deformed pits are flattened through the first layer to easily complete the erasing process.
JP63219026A 1988-09-01 1988-09-01 Rewritable optical recording medium and erasure method thereof Pending JPH0267179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63219026A JPH0267179A (en) 1988-09-01 1988-09-01 Rewritable optical recording medium and erasure method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63219026A JPH0267179A (en) 1988-09-01 1988-09-01 Rewritable optical recording medium and erasure method thereof

Publications (1)

Publication Number Publication Date
JPH0267179A true JPH0267179A (en) 1990-03-07

Family

ID=16729091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63219026A Pending JPH0267179A (en) 1988-09-01 1988-09-01 Rewritable optical recording medium and erasure method thereof

Country Status (1)

Country Link
JP (1) JPH0267179A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354590A (en) * 1991-02-16 1994-10-11 Canon Kabushiki Kaisha Optical recording medium
KR20060002655A (en) * 2004-07-03 2006-01-09 곽시연 Automatic valve
JP2010530593A (en) * 2007-06-20 2010-09-09 ブリガム・ヤング・ユニバーシティ Long-term digital data storage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354590A (en) * 1991-02-16 1994-10-11 Canon Kabushiki Kaisha Optical recording medium
KR20060002655A (en) * 2004-07-03 2006-01-09 곽시연 Automatic valve
JP2010530593A (en) * 2007-06-20 2010-09-09 ブリガム・ヤング・ユニバーシティ Long-term digital data storage

Similar Documents

Publication Publication Date Title
JPS60253035A (en) Errasable and re-usable light recording layer and errasion
JP3076230B2 (en) optical disk
JPH0267179A (en) Rewritable optical recording medium and erasure method thereof
JPH06187662A (en) Optical recording medium
JPS62119755A (en) Production of optical recording medium
JPH0256746A (en) Information carrier disk
JPH025246A (en) Optical information recording/reproducing/erasing member and its production
JPH03165343A (en) Optical information recording member
JPH083912B2 (en) Novel optical recording medium and manufacturing method thereof
JPH087337A (en) Optical recording medium
JPH11120632A (en) Production of phase transition type optical disk
JPH05225603A (en) Phase transition optical disk medium for short wavelength
JPH02132657A (en) Optical information recording medium and optical information recording method using it
JPH10293942A (en) Optical information recording medium and optical information recording, reproducing and erasing method
JPS63303793A (en) Optical recorder medium
JPH0267181A (en) Rewritable optical recording medium and erasure method thereof
JP3224834B2 (en) Optical information recording medium
JPH02132649A (en) Optical information recording medium and its recording method
JPH04102228A (en) Method for initializing optical disk
JPH02230528A (en) Optical recording medium
JPH10199039A (en) Optical disk
JPH02187939A (en) Optical recording medium and optical recording and reproducing method
JPS62257643A (en) Rewritable type optical disk
JPH03232130A (en) Optical information recording medium
JPS6329340A (en) Information carrier disk