JPH0266899A - High frequency power supply device - Google Patents

High frequency power supply device

Info

Publication number
JPH0266899A
JPH0266899A JP21683488A JP21683488A JPH0266899A JP H0266899 A JPH0266899 A JP H0266899A JP 21683488 A JP21683488 A JP 21683488A JP 21683488 A JP21683488 A JP 21683488A JP H0266899 A JPH0266899 A JP H0266899A
Authority
JP
Japan
Prior art keywords
vacuum
high frequency
frequency power
discharge
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21683488A
Other languages
Japanese (ja)
Inventor
Takahito Toshizawa
利沢 隆人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21683488A priority Critical patent/JPH0266899A/en
Publication of JPH0266899A publication Critical patent/JPH0266899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Discharge Heating (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

PURPOSE:To provide unmanned operation of continuous discharge caking by furnishing a control means, judging the discharge situation from the degree of vacuum, and shutting off the high frequency power supply in case any abnormality has arisen. CONSTITUTION:The incident electric power irradiated to the cavity body 1 constituting a vacuum vessel is measured by a directional coupler 9a and a power meter 10a, and the reflected ligft beam is measured by another directional coupler 9b and power meter 10b, The degree of vacuum in the body 1 is measured by a vacuum meter 12, and all measured values are fed into a control device 13. The control device 13 senses the degree of vacuum, judges the discharge situation in the body 1, and controls a high frequency power supply 5. Further the device 13 senses the incident power and reflex power, and in case an abnormal discharge such as perfect shortcircuiting is judged on the basis of sensed value, the high frequency power supply 5 for supply to the vacuum vessel is shut off. This enables unmanned operation of discharge caking of a high frequency apparatus concerned.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は例えば超高真空容器内部の粒子ビームを、例え
ば加速処理するために真空容器内に高周波電力を供給す
る高周波電源装置に関する。
Detailed Description of the Invention [Purpose of the Invention (Industrial Field of Application) The present invention relates to a high-frequency power source that supplies high-frequency power into a vacuum container in order to, for example, accelerate processing of a particle beam inside an ultra-high vacuum container. Regarding equipment.

(従来の技術) 加速器や核融合装置には種々の高周波機器が用いられ、
そのうちの多くは超高真空という条件におかれている。
(Conventional technology) Various high-frequency devices are used in accelerators and nuclear fusion devices.
Many of them are kept in ultra-high vacuum conditions.

例えば高周波加速空胴は、加速器において周回する電子
・陽子・イオンなどの粒子ビームをそれに同調した高周
波で加速するもので、これは加速器の心臓部にあたる重
要な装置である。
For example, a high-frequency acceleration cavity accelerates particle beams such as electrons, protons, and ions orbiting in an accelerator using high-frequency waves synchronized with the particle beams, and is an important device at the heart of the accelerator.

この高周波加速空胴は、空胴本体と、この空胴本体内に
高周波電力を供給するためのアンテナと、空胴本体内の
共振周波数を微調整するためのチューナと、空胴本体内
を超高真空に保つための真空排気系などで構成されてい
る。
This high-frequency acceleration cavity includes a cavity body, an antenna for supplying high-frequency power into the cavity body, a tuner for finely adjusting the resonant frequency within the cavity body, and a It consists of a vacuum exhaust system to maintain a high vacuum.

空胴本体内は粒子ビームが周回するためのビ−ムダクト
とともに、10 = TOrr以上程度の超高真空度に
保つ必要が秒すφある。その理由は、残留気体分子を減
らして加速する粒子との衝突による粒子ビームの散乱を
防ぎ粒子ビーム寿命を保つこと、及び加速器では避けが
たい高電界による放電を防止するためである。
Inside the cavity body, together with the beam duct through which the particle beam circulates, it is necessary to maintain an ultra-high degree of vacuum of approximately 10 = TOrr or more. The reason for this is to reduce residual gas molecules and prevent scattering of the particle beam due to collisions with accelerating particles, thereby preserving the lifetime of the particle beam, and to prevent discharge due to the high electric field that is unavoidable in accelerators.

また、粒子ビーム加速時に空胴本体内の加速電極部に印
加される電圧値は、最大で数十〜数百キロボルトが必要
であり、このため、外部高周波電源よりアンテナを通っ
て空胴本体内に供給される高周波電力は、小形の加速器
であっても粒子ビーム運転時には数十キロワットに達す
る。
In addition, the voltage applied to the accelerating electrode inside the cavity body during particle beam acceleration requires a maximum of several tens to hundreds of kilovolts. Even in a small accelerator, the high-frequency power supplied to the particle beam reaches tens of kilowatts during particle beam operation.

ここで、従来使用されている高周波電源装置について、
第2図に示す概略構成図を参照して説明する。図中1は
、高周波加速空胴本体(以下空胴本体と称す)であり、
これには真空排気ポート2を有し、この真空排気ポート
2に真空弁3と、真空ポンプ4を順次介して真空排気系
を構成し、真空ポンプ4によって空胴本体1内は常に高
真空に保たれる。この真空状態は、真空計12により検
出され、この真空計12には真空ゲージ11により検出
された圧力信号が入力されるようになっている。そして
、空胴本体]内には、高周波電源5からの高周波入射電
力がサーキュレータ6およびアンテナ7を介して供給さ
れる。そして、空胴本体1からの反射電力は、アンテナ
7およびサーキュレータ6を介してダミーロード8で消
費される。この場合、入射電力は方向性結合器9aと電
力計10aによって測定され、また反射電力は方向性結
合器9bと電力計10bによって測定される。
Here, regarding the conventionally used high frequency power supply equipment,
This will be explained with reference to the schematic configuration diagram shown in FIG. 1 in the figure is a high frequency acceleration cavity main body (hereinafter referred to as the cavity main body),
This has an evacuation port 2, and a vacuum evacuation system is constructed by sequentially passing a vacuum valve 3 and a vacuum pump 4 to this evacuation port 2, and the vacuum pump 4 always maintains a high vacuum inside the cavity body 1. It is maintained. This vacuum state is detected by a vacuum gauge 12, and a pressure signal detected by the vacuum gauge 11 is input to this vacuum gauge 12. Then, high-frequency incident power from a high-frequency power source 5 is supplied into the cavity main body via a circulator 6 and an antenna 7. The reflected power from the cavity body 1 is then consumed by the dummy load 8 via the antenna 7 and the circulator 6. In this case, the incident power is measured by the directional coupler 9a and the power meter 10a, and the reflected power is measured by the directional coupler 9b and the power meter 10b.

このような構成の従来の高周波電源装置Hにおいて、実
際に前述のような数十キロワットに達する高周波電力を
いきなり空胴本体1内に供給することは不可能である。
In the conventional high-frequency power supply H having such a configuration, it is actually impossible to suddenly supply high-frequency power reaching tens of kilowatts into the cavity body 1 as described above.

この理由は、電場放射またはマルチパクタリング放電と
呼ばれる現象が起るためである。
The reason for this is that a phenomenon called electric field emission or multipactoring discharge occurs.

この電場放射は、空胴本体1内をいかに高真空に保って
も、100W程度の入力電力があれば、空胴本体1内面
に存在するごく微細な突起に電場が集中して、電子が空
胴本体1の表面より放射される現象である。また、マル
チパクタリング放電は、電子が電極面に当たることによ
り新たに放出される2次電子が、高周波電界で加速され
る現象であり、通常の放電破壊電圧より極端に低い電圧
でも発生し、従って、マルチパクタリング放電により、
空胴本体1内に入射される入射電力は小さな値に制限さ
れてしまう。
This electric field radiation is caused by the fact that no matter how high the vacuum is maintained inside the cavity body 1, if there is an input power of about 100 W, the electric field will concentrate on the very minute protrusions existing on the inner surface of the cavity body 1, and the electrons will be emptied. This is a phenomenon in which radiation is emitted from the surface of the trunk body 1. In addition, multipactoring discharge is a phenomenon in which secondary electrons newly emitted when electrons hit the electrode surface are accelerated by a high-frequency electric field, and can occur even at voltages that are extremely lower than the normal discharge breakdown voltage. , due to multipactoring discharge,
The incident power that enters the cavity body 1 is limited to a small value.

これらの現象を防ぐためには、運転前に空胴本体1内の
放電枯化をおこなう必要がある。この放電枯化は、入射
電力を徐々に増しながら弱い放電を引き続き起こすこと
により、電場放射や、マルチパクタリング放電が起りに
くい表面状態を作り出し、最終的には仕様の大電力を入
射するプロセスである。
In order to prevent these phenomena, it is necessary to dry up the discharge inside the cavity body 1 before operation. This discharge decay is achieved by continuously causing weak discharges while gradually increasing the incident power, creating a surface condition that makes it difficult for electric field radiation and multi-pattering discharge to occur, and finally in the process of injecting the specified high power. be.

放電枯化を行なう時、放電の規模が大きくなると、アン
テナ7の先端が短絡した形となり、入射電力がアンテナ
7で全反射されて、それ以降の電力が全く入射されなく
なり、場合によってはアンテナ7の各部を破損すること
になるので、注意しなければならない。実際には、放電
枯化を行なう際に、短絡反射を避けることはできないこ
とから、アンテナ7への過度の負荷を避けるようにして
おり、このため、アンテナ7の入射電力が全て反射した
際は直ちに高周波電源5からの出力を落とす必要がある
。通常は、電力計10a、10bの出力がほぼ等しくな
った時に、高周波電源5の出力を手動により速やかに落
としている。
When performing discharge depletion, if the scale of the discharge increases, the tip of the antenna 7 will become short-circuited, and the incident power will be totally reflected by the antenna 7, and no further power will be incident on the antenna 7. You must be careful as this may damage various parts. In reality, when performing discharge depletion, it is impossible to avoid short-circuit reflections, so we try to avoid placing an excessive load on the antenna 7. Therefore, when all the incident power on the antenna 7 is reflected, It is necessary to immediately reduce the output from the high frequency power supply 5. Normally, when the outputs of the wattmeters 10a and 10b become approximately equal, the output of the high-frequency power source 5 is quickly manually reduced.

一方、マルチバクリング放電が発生した場合、高周波加
速空胴1内の真空度は低下し、大放電による短絡反射後
は10−6TOrr程度となる。このため、再度電力を
入射するためには、真空度が再び上昇し、最低でも10
 = TOrr程度にまで達するのを待たねばならない
On the other hand, when a multi-vacuum discharge occurs, the degree of vacuum inside the high-frequency acceleration cavity 1 decreases, and becomes about 10<-6 >Torr after short-circuit reflection due to a large discharge. Therefore, in order to inject power again, the degree of vacuum must rise again and at least 10
= You have to wait until it reaches about TOrr.

このように、従来の高周波電源装置にあっては、放電枯
化は真空ポンプ4によって常に真空に保持された空胴本
体1内に、高周波電源5からの高周波電力を、アンテナ
7より入射させる。そして、その入射電力を徐々に上げ
ていき、アンテナ7が短絡状態となってその入射電力が
、全反射される時は速やかに高周波電源5からの電力入
射を中止する。その後、真空度が上昇したことを真空計
12で確認した上で、再び電力を徐々に入射するという
操作を繰返し行ない、最終的には仕様電力に達するまで
その操作を行なう。
As described above, in the conventional high-frequency power supply device, the high-frequency power from the high-frequency power supply 5 is input from the antenna 7 into the cavity main body 1 which is always maintained in a vacuum by the vacuum pump 4. Then, the incident power is gradually increased, and when the antenna 7 is short-circuited and the incident power is totally reflected, the power input from the high frequency power source 5 is immediately stopped. Thereafter, after confirming with the vacuum gauge 12 that the degree of vacuum has increased, the operation of gradually inputting power is repeated again until the specified power is finally reached.

(発明が解決しようとする課題) 以上述べた放電枯化により仕様の電力値まで入射電力を
上げるためには、高周波電源は数日から数週間の連続運
転が要求されるが、前述した従来の高周波電源装置は、
同等放電枯化に対する考慮がなされていなかったので、
長時間にわたる連続放電枯化を行なうには不適当である
(Problem to be Solved by the Invention) In order to increase the incident power to the specified power value due to the discharge decay described above, a high frequency power supply is required to operate continuously for several days to several weeks. High frequency power supply equipment
Since no consideration was given to equivalent discharge decay,
It is unsuitable for long-term continuous discharge aging.

そこで、本発明は長期間にわたる連続放電枯化を無人運
転で行なうことが可能で、大幅な省力化を図ることがで
きる高周波電源装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a high-frequency power supply device that can perform continuous discharge aging over a long period of time in an unmanned operation, and can achieve significant labor savings.

し発明の構成] (課題を解決するための手段) 本発明は、前記目的を達成するため、高周波機器の真空
容器内に設置されているアンテナに対して、高周波電源
から高周波電力を供給し、前記真空容器内の粒子ビーム
を処理するものにおいて、前記真空容器内の真空度を検
出して前記アンテナの放電状況を判断し前記高周波電源
を制御する第1の手段と、前記アンテナを介して真空容
器内に入射される入射電力および前記真空容器からアン
テナに反射される反射電力を検出し、この検出値に基づ
いて完全短絡等の異常放電と判断されたとき、前記高周
波電源から前記真空容器内に供給される電力を遮断する
第2の手段とを備えたものである。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention supplies high frequency power from a high frequency power supply to an antenna installed in a vacuum container of a high frequency device, In the apparatus for processing a particle beam in the vacuum container, the apparatus includes a first means for detecting the degree of vacuum in the vacuum container to determine a discharge state of the antenna and controlling the high frequency power source; The incident power entering the container and the reflected power reflected from the vacuum container to the antenna are detected, and when an abnormal discharge such as a complete short circuit is determined based on the detected values, the high-frequency power source enters the vacuum container. and second means for cutting off power supplied to the.

(作用) 本発明による高周波電源装置によれば、真空度により放
電状況が判断されて高周波電源の出力が制御される共に
、高周波機器に対する入射電力および反射電力を監視し
て完全短絡等の異常が発生した場合には、速やかに高周
波電源が遮断されるので、高周波機器の放電枯化を自動
的に行なうことが可能となる。
(Function) According to the high frequency power supply device according to the present invention, the discharge status is determined based on the degree of vacuum and the output of the high frequency power supply is controlled, and the incident power and reflected power to the high frequency equipment are monitored to prevent abnormalities such as complete short circuits. If this occurs, the high-frequency power supply is immediately shut off, making it possible to automatically dry up the discharge of the high-frequency equipment.

(実施例) 以下、本発明の実施例について第1図を参照して説明す
る。ここでは高周波機器として高周波加速側をあげて説
明するが、これに限らず何でもよい。真空容器を構成す
る空胴本体1に入射される入射電力は、方向性結合器9
aおよび電力計10aで測定され、この測定値は後述す
る制御装置13に入力される。また、空胴本体1からの
反射電力は、サーキュレータ6を介してダミーロド8に
導かれ、ここで電力が消費されるが、その反射電力は方
向結合器9bおよび電力計10bに測定され、この測定
値も制御装置13に入力される。電力計10a、10b
において測定された入射電力および反射電力は、制御装
置13において比較され、また、空胴本体1内の真空度
は真空計12によって計測され、この計測値は制御装置
13に入力され、ここで空胴本体]内における放電の状
況を判断し、これを基に高周波電源5の出力が制御され
、さらに制御装置13は空胴本体1内の真空が破壊され
るような非常時には真空弁3が閉じるように制御される
(Example) Hereinafter, an example of the present invention will be described with reference to FIG. Here, the high-frequency acceleration side will be explained as the high-frequency device, but the present invention is not limited to this and any other device may be used. The incident power that enters the cavity body 1 constituting the vacuum container is transmitted through the directional coupler 9.
a and a wattmeter 10a, and this measured value is input to a control device 13, which will be described later. Further, the reflected power from the cavity body 1 is guided to the dummy rod 8 via the circulator 6, where the power is consumed, but the reflected power is measured by the directional coupler 9b and the wattmeter 10b, and this measurement The values are also input to the control device 13. Power meters 10a, 10b
The incident power and the reflected power measured at The output of the high-frequency power source 5 is controlled based on this judgment, and the control device 13 closes the vacuum valve 3 in the event of an emergency where the vacuum inside the cavity body 1 is destroyed. controlled as follows.

放電枯化の基本となる操作に関して、制御装置13には
後述する第1.第2.第3の設定値がそれぞれ設定可能
になっている。すなわち、第1の設定値は、空胴本体]
内における真空度低下の影響が無視できることを示す値
例えば1O−8TOrrとする。また、第2の設定値は
、空胴本体1内の真空度が小さな放電の進行を示す値例
えば10 = TOrrとする。さらに、第3の設定値
は、空胴本体1内の真空度悪化を示す値例えば10−’
 TOrrとする。
Regarding the basic operation of discharge depletion, the control device 13 has the first function described later. Second. The third setting values can be set respectively. That is, the first setting value is the cavity body]
A value indicating that the influence of a decrease in the degree of vacuum inside the chamber can be ignored is set to, for example, 10-8 TOrr. Further, the second set value is a value indicating the progress of discharge with a small degree of vacuum in the cavity main body 1, for example, 10=TOrr. Further, the third set value is a value indicating deterioration of the degree of vacuum inside the cavity body 1, for example, 10-'
Let it be Torr.

そして、これらの設定値の関係が次のようになったとき
、制御装置13により具体的には以下のように制御され
る。まず、入射電力を徐々に増加する場合、高周波型1
iX5の出力を、あらがじめ指定した出力増加率に基づ
いて増加させるように制御され、また、放電によって真
空度が、第2の設定値以下に下がったとき、その高周波
電源5を同等制御せず、高周波電源5の出力で真空度が
上るのを待ち、そして、第1の設定値に達した場合には
、再び高周波電源5の出力を増加させるように制御され
る。さらに、空胴本体1内に全反射を起こすような放電
が起った場合、電力計10a10bにおける入射電力ま
たは反射電力値が等しくなることで判断される。この際
は、制御装置13は真空度によらず、直ちに高周波電源
5を停止するような制御が行なわれ、高周波電源5の出
力停止後の再立上げは、真空計12において第1の設定
値の真空度を達成したことが確認された後に行なわれる
When the relationship between these set values is as follows, the control device 13 specifically controls as follows. First, when increasing the incident power gradually, high frequency type 1
The output of the iX5 is controlled to increase based on a pre-specified output increase rate, and when the degree of vacuum falls below a second set value due to discharge, the high frequency power source 5 is controlled to the same level. Instead, it waits for the degree of vacuum to rise with the output of the high frequency power source 5, and when the first set value is reached, the output of the high frequency power source 5 is controlled to be increased again. Furthermore, if a discharge that causes total reflection occurs within the cavity main body 1, it is determined that the incident power or reflected power values at the wattmeter 10a10b become equal. In this case, the control device 13 performs control to immediately stop the high-frequency power source 5 regardless of the degree of vacuum, and restarts the high-frequency power source 5 after stopping its output by setting the first set value in the vacuum gauge 12. This is done after it has been confirmed that the degree of vacuum has been achieved.

この他に、空胴本体1内の真空度すなわち真空計12に
より検出された値が第3の設定値以下の真空度となった
とき、制御装置13は真空弁3を直ちに閉じる制御を行
ない、真空弁11が閉じた状態で真空計12の保守をお
こなうとともに、高周波電源5を同時に遮断される。
In addition, when the degree of vacuum within the cavity body 1, that is, the value detected by the vacuum gauge 12, becomes a degree of vacuum below a third set value, the control device 13 performs control to immediately close the vacuum valve 3, Maintenance of the vacuum gauge 12 is performed with the vacuum valve 11 closed, and the high frequency power source 5 is simultaneously shut off.

以上述べたことから、従来の高周波電源装置では、空胴
本体1を放電枯化し、仕様の高周波電力を印加する作業
は、有人によって長期間必要であったものが、本発明の
実施例によれば制御装置13により高周波電源5および
真空弁3が制御されるので、無人で連続運転か可能とな
り、大幅な省力化が可能となる。前述の放電枯化は、−
回限りではなく、空胴本体1を大気に開放した場合には
、再度行なう必要があるので、この意味でも自動化の効
果は大である。
From the above, in the conventional high-frequency power supply device, the work of drying out the cavity body 1 and applying the high-frequency power according to the specifications required a manned person for a long period of time, but with the embodiment of the present invention, For example, since the high frequency power source 5 and the vacuum valve 3 are controlled by the control device 13, continuous operation without an operator is possible, and significant labor savings are possible. The discharge drying mentioned above is −
This is not a one-time operation, and if the cavity main body 1 is opened to the atmosphere, it is necessary to perform it again, so automation is very effective in this sense as well.

[発明の効果コ 以上述べた本発明によれば、長期間にわたる連続放電枯
化を無人運転で行なうことが可能で、大幅な省力化を図
ることができる高周波電源装置を提供することができる
[Effects of the Invention] According to the present invention described above, it is possible to provide a high-frequency power supply device that can perform continuous discharge aging over a long period of time in an unmanned operation, and can achieve significant labor savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による高周波電源装置の一実施例を示す
概略構成図、第2図は従来の高周波電源装置の一例を示
す概略構成図である。 1・・・高周波加速空胴本体、2・・・真空排気ポート
、3・・・真空弁、4・・・真空ポンプ、5・・・高周
波電源、6・・・サーキュレータ、7・・・アンテナ、
8・・・ダミーロード、9a、9b・・・方向性結合器
、10a、]、Ob・・・電力計、11・・・真空ゲー
ジ、]2 12・・・真空計、13・・・制御装置。
FIG. 1 is a schematic diagram showing an embodiment of a high frequency power supply device according to the present invention, and FIG. 2 is a schematic diagram showing an example of a conventional high frequency power supply device. 1... High frequency acceleration cavity body, 2... Vacuum exhaust port, 3... Vacuum valve, 4... Vacuum pump, 5... High frequency power supply, 6... Circulator, 7... Antenna ,
8... Dummy load, 9a, 9b... Directional coupler, 10a, ], Ob... Power meter, 11... Vacuum gauge, ]2 12... Vacuum gauge, 13... Control Device.

Claims (1)

【特許請求の範囲】 高周波機器の真空容器内に設置されているアンテナに対
して、高周波電源から高周波電力を供給し、前記真空容
器内の粒子ビームを処理するものにおいて、 前記真空容器内の真空度を検出して前記アンテナの放電
状況を判断し前記高周波電源を制御する第1の手段と、 前記アンテナを介して真空容器内に入射される入射電力
および前記真空容器からアンテナに反射される反射電力
を検出し、この検出値に基づいて完全短絡等の異常放電
と判断されたとき、前記高周波電源から前記真空容器内
に供給される電力を遮断する第2の手段と、 を備えた高周波電源装置。
[Scope of Claim] A device for supplying high frequency power from a high frequency power supply to an antenna installed in a vacuum container of a high frequency device and processing a particle beam in the vacuum container, comprising: a vacuum in the vacuum container; a first means for controlling the high-frequency power source by detecting the discharge state of the antenna by detecting the electric discharge state of the antenna; a second means for detecting electric power and, when abnormal discharge such as a complete short circuit is determined based on the detected value, cutting off electric power supplied from the high frequency power source to the inside of the vacuum container; Device.
JP21683488A 1988-08-31 1988-08-31 High frequency power supply device Pending JPH0266899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21683488A JPH0266899A (en) 1988-08-31 1988-08-31 High frequency power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21683488A JPH0266899A (en) 1988-08-31 1988-08-31 High frequency power supply device

Publications (1)

Publication Number Publication Date
JPH0266899A true JPH0266899A (en) 1990-03-06

Family

ID=16694628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21683488A Pending JPH0266899A (en) 1988-08-31 1988-08-31 High frequency power supply device

Country Status (1)

Country Link
JP (1) JPH0266899A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683556B2 (en) 2007-02-08 2010-03-23 Mitsubishi Heavy Industries, Ltd. System with acceleration tube conditioning apparatus and acceleration tube conditioning method
JP2013235706A (en) * 2012-05-08 2013-11-21 Toshiba Corp Device of controlling accelerator, and method of controlling accelerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683556B2 (en) 2007-02-08 2010-03-23 Mitsubishi Heavy Industries, Ltd. System with acceleration tube conditioning apparatus and acceleration tube conditioning method
JP2013235706A (en) * 2012-05-08 2013-11-21 Toshiba Corp Device of controlling accelerator, and method of controlling accelerator

Similar Documents

Publication Publication Date Title
US7683556B2 (en) System with acceleration tube conditioning apparatus and acceleration tube conditioning method
CN109932607A (en) Strong electromagnetic field induced electrostatic discharge test system in space radiation environment
EP3769592A1 (en) Improving safety around a linear accelerator
JPH0266899A (en) High frequency power supply device
JPH05291188A (en) Parameter monitoring system for plasma processor
Fagotti et al. High-Power RF conditioning of the TRASCO RFQ
Lebacqz High power klystrons
JPH07135196A (en) Semiconductor substrate ashing device
Kwak et al. Progress in the development of heating systems towards long pulse operation for KSTAR
Hasan et al. EPICS based high power RF conditioning control system for the SNS accelerator RF test facility
JPH06244140A (en) Dry etching device
Ciapala et al. Commissioning of the 400 MHz LHC RF system
Lee et al. Operation of the NSRRC 2998 MHz photocathode RF gun
Hasan et al. Development of an RF conditioning system for charged-particle accelerators
Kondo et al. A 3-MeV linac for development of accelerator components at J-PARC
Sheikh et al. Operation of a high-power CW klystrode with the RFQ1 facility
JP2611762B2 (en) SOR exposure equipment
JPS62154544A (en) Ion processor
Huang et al. Design modification and high-power tests of the 500 MHz normal-conducting 5-cell cavities for HEPS
Angal-Kalinin et al. Status of CLARA Front End Commissioning
JPH0741954A (en) Detection of plasma discharge stop and microwave plasma treating device
Hartung et al. Beam test of a superconducting cavity for the Fermilab high-brightness electron photo-injector
Labrie et al. AECL IMPELA electron beam industrial irradiators
Schmidt et al. Functional Integration of the RFQ in the ESS Systems
Kelly Overview of TEM-class superconducting cavities for proton and ion acceleration