JPH0266481A - Objective position detecting device - Google Patents

Objective position detecting device

Info

Publication number
JPH0266481A
JPH0266481A JP21938288A JP21938288A JPH0266481A JP H0266481 A JPH0266481 A JP H0266481A JP 21938288 A JP21938288 A JP 21938288A JP 21938288 A JP21938288 A JP 21938288A JP H0266481 A JPH0266481 A JP H0266481A
Authority
JP
Japan
Prior art keywords
passive
frequency
sound
sound source
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21938288A
Other languages
Japanese (ja)
Inventor
Yasuhisa Ando
泰久 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21938288A priority Critical patent/JPH0266481A/en
Publication of JPH0266481A publication Critical patent/JPH0266481A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately detect an objective position or a moving direction only by three non-directive passive sonobuoys by aiming at the Doppler frequency change of sound generated from an object observed by the three non- directive passive sonobuoys and executing error minimizing processing based upon a Kalman filter. CONSTITUTION:Submarine sounds detected by the three non-directive passive sonobuoys 1 to 3 are sent to a frequency analyzing part 5 mounted on an aircraft through respectively different radio waves such as VHF bands. A sonobuoy position measuring part 4 detects the positions of respective passive sonobuoys to be the originating sources of radio waves by receiving the radio waves sent from the passive sonobuoys 1 to 3 through directive antennas. Three passive buoy signals supplied to a frequency analyzing part 5 are converted from time area data into frequency area data by three channel frequency analyzing circuits corresponding to respective buoys 1 to 3 by means of Fourier transformation or the like and supplied to an objective sound specifying part 6. A Kalman filter part 8 minimizes an error in an objective position and a moving speed momentally sent from a sound source position moving speed calculating part 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は目標位置検出装置に関し、特に無指向性のソノ
ブイを用いて、移動する水中音源の位置を検出する目標
位置検出装置1LVC関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a target position detection device, and particularly to a target position detection device 1LVC that detects the position of a moving underwater sound source using an omnidirectional sonobuoy.

〔従来の技術〕[Conventional technology]

従来、この種の目標位置検出装置は、観測者が搭乗する
航空機からソノブイを置市の捜索範囲に多数投下し、ソ
ノブイで聾中皆を受信して無線信号に変換して航空機に
込1ぎし、航空機ではこれを受信して1号処理して目標
の位1iILト検出する。この場合ソノブイとしては、
アクティブソノグイを用いるか、あるいは有指向性のパ
ッシブソノブイを用いていた。
Conventionally, this type of target position detection device drops a large number of sonobuoys from the aircraft on which the observer is boarding into the search area of Okiichi, receives all deaf people with the sonobuoys, converts them into radio signals, and sends them to the aircraft. , the aircraft receives this and processes it to detect the target. In this case, as a sonobuoy,
They used either active sonobuoys or directional passive sonobuoys.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の目標位置検出装【直は、アクティブソノ
グイを用いた場合には目標を探知するためにツノブイが
音を発するので、目標がその音f:察知し音波の届かな
い領域に退避してしまうという欠点がある。
When using the above-mentioned conventional target position detection device, the horn buoy emits a sound to detect the target, so the target detects the sound and retreats to an area where the sound waves cannot reach. It has the disadvantage of being

また、有指向性のパッシブソノグイは、目標探知用の複
数の指向性ならびに探知目標の象限決定用の無指向性の
マイクロホンを付与した構造とすることが必要なので、
高価であシ多数使用する運用状態では費用が過大となる
という欠点がある。
In addition, the directional passive sonogui must have a structure with multiple directivity for target detection and an omnidirectional microphone for determining the quadrant of the detected target.
The drawback is that the cost becomes excessive in an operational state where a large number of expensive shells are used.

本発明の目的は上述した欠点を除去すべく、無指向性の
3個のソノブイで目標位置を検出しうる目標位置検出装
置を提供することにある・〔課題を解決するための中成
〕 本発明の目標位置検出装置は、運用海域に展開した無指
向性の3個のパッシブソノグイと、前記3個のパッシブ
ソノグイの位置を測定するソノブイ位置測定部と、前記
パッシブソノグイから送られた水中音の信号を周波数分
析する周波数分析部と、この周波数分析部の分析結果か
ら目標とする音源の特徴的な音の周波数を特定する目標
音特定部と、前記パッシブソノグイの位置情報とドラグ
ラ変位している前記目標音の周波数から音源の位置と移
動速度を計算する音源位置・移動速度計算部と、この音
源位置・移動速度計算部から出力される装置および移動
速度の誤差を最小とするカルマンフィルタ部とを備えて
出力される。
An object of the present invention is to provide a target position detection device capable of detecting a target position using three non-directional sonobuoys, in order to eliminate the above-mentioned drawbacks. The target position detection device of the invention includes three non-directional passive sonoguis deployed in an operational sea area, a sonobuoy position measuring unit that measures the positions of the three passive sonoguis, and a frequency analysis section that analyzes the frequency of the underwater sound signal obtained by the sound source, a target sound identification section that identifies the characteristic sound frequency of the target sound source from the analysis result of the frequency analysis section, and position information of the passive sonogui A sound source position/moving speed calculation unit that calculates the position and moving speed of the sound source from the frequency of the target sound that is being displaced by drag; and a device that minimizes errors in the device and moving speed output from the sound source position/moving speed calculating unit. A Kalman filter section is provided for outputting the signal.

〔実施例〕〔Example〕

次に、図Uiiを参照して本発明の詳細な説明する。 The invention will now be described in detail with reference to Figure Uii.

第1図は本発明の一芙施例の出力図である0第1図に示
す′#、凡ψiの画成は、無指向性の3伽のパッシブソ
ノグイ1〜3.パツシブソノプイ1〜3の位置測定を行
なうソノブイ位置測定部4.バッシプンノプイ1〜3か
ら供給でれた水中音の周痰数分析を行なう周匝数分析部
51周波数分析部5の周波数分析結果から目標音源の特
徴的な音の周波数を特定する目鳳音特定部6.ンノプイ
位置測定部4によるパッシブソノグイ1〜3の位置情報
と、目標音特定部6で特定された周波数のドラグラ変位
量とにもとついて目孫廿源の位置と移動速度を計算する
音源位置・S勤迭度計算都7、音源位置・移動速度計算
部7から出力される音源位置および移動速度を時間的に
追ってその誤差を激小とするカルマンフィルタ部8を備
えて底シ、パッシブソノグイ1〜3以外はすべて受信側
の航空機に搭載される。
FIG. 1 is an output diagram of one embodiment of the present invention. The definition of '# and ψi shown in FIG. Sonobuoy position measurement unit 4 for measuring the positions of passive sonobuoys 1 to 3. A frequency analysis section 51 performs frequency analysis of the underwater sounds supplied from the bass pumps 1 to 3. A sound identification section 6 identifies the characteristic sound frequency of the target sound source from the frequency analysis results of the frequency analysis section 5. .. A sound source position where the position and moving speed of the mesono gui are calculated based on the position information of the passive sonogui 1 to 3 by the nonpui position measurement unit 4 and the drag displacement amount of the frequency specified by the target sound identification unit 6.・The passive sonograph is equipped with a Kalman filter section 8 that temporally tracks the sound source position and moving speed outputted from the S work rate calculation section 7 and the sound source position/moving speed calculation section 7 and minimizes the error. All except 1 to 3 are carried on the receiving aircraft.

次に第1図の実施例の動作について説明する。Next, the operation of the embodiment shown in FIG. 1 will be explained.

3個の無指向性のバ・ツシブソノプイ1〜3が捕捉した
水中音は、互いに異なるVHF帝等の無線電波を利用し
て航空機搭載の周波数分析部5に送出される。
The underwater sound captured by the three non-directional bass sonophones 1 to 3 is sent to the aircraft-mounted frequency analyzer 5 using different radio waves such as VHF radio waves.

ソノブイ位置測定部は、指向性アンテナでパッシブソノ
グイ1〜3の送出する無1flA電波を受信することに
よって無線1波の発信元である各パッシブソノグイの位
置を容易に知ることができる。
The sonobuoy position measurement unit can easily know the position of each passive sonobuoy, which is the source of one radio wave, by receiving the non-1flA radio waves sent out by the passive sonobuoys 1 to 3 using a directional antenna.

周波数分析部5に供給された3個のパッシブソノグイ1
〜3の信号は、各パッシブソノグイに対応する3チヤン
ネルの周波数分析回路でフーリエ変換等を利用して時間
禎域から周波数領域のデータに変換さえ目標音特定部6
に供給される。
Three passive sonoguidles 1 supplied to the frequency analysis section 5
The signals from 3 to 3 are converted from time domain to frequency domain data using Fourier transform etc. in a 3 channel frequency analysis circuit corresponding to each passive sonograph.
supplied to

目標音特定部6f′i、周波数分析部5から提供された
3チヤンネルの分析結果にもとづiて目標の発する音の
周波数を3個のソノブイごとにそれぞれ特定された各ソ
ノブイごとに1個、計3個の受信音の周波数は音ぶ位置
・移動速度計算部7に供給される。これらの周波数は、
目標とパッシブソノグイの相対速度に対応したドツプラ
変位を受けておシ、そのド、プラ周波数は各ソノブイご
とに異なる。
Based on the analysis results of the three channels provided by the target sound identification unit 6f'i and the frequency analysis unit 5, the frequency of the sound emitted by the target i is determined for each of the three sonobuoys, one for each sonobuoy identified. , the frequencies of the three received sounds are supplied to the sound position/moving speed calculating section 7. These frequencies are
In response to the Dotsupura displacement corresponding to the relative speed of the target and the passive sonobuoy, the Dotsupura frequency differs for each sonobuoy.

音源位置・移動速度計算部7は、各パッシブソノグイご
とに異なるドラグラ変位′した周波数を利用して目標の
位置と移動速度ならびに移動方向を次のようにして算出
する〇 第2図は第1図の実施例における音源位置および移動速
度ならびに方向決定の内容を示す説明図である。
The sound source position/moving speed calculation unit 7 calculates the target position, moving speed, and moving direction as follows using the drag displacement frequency that differs for each passive sonoguid. It is an explanatory view showing contents of sound source position, moving speed, and direction determination in the example of a figure.

パッシブソノグイ1.2.3はそれぞれ0.A。Passive Sonogui 1, 2, and 3 are each 0. A.

Bの位置にあ)、目標音源の位dXはパッシブソノグイ
の位ltOからβの方向に距離rにあっ・て、かつ目標
音源はαの方向に速度υで移動しているとする。
Assume that at position B), the position dX of the target sound source is at a distance r in the direction β from the position ltO of the passive sonograph, and the target sound source is moving in the direction α at a speed υ.

γ1.βl+’ri+β2は既知でアシ、各パッシブソ
ノグイ1,2.3で観測されるドツプラ変位した周波数
を、それぞれfo、fx−f2とする。
γ1. Let βl+'ri+β2 be known and the Doppler-displaced frequencies observed by each passive sonoguid 1, 2.3 are fo and fx-f2, respectively.

音源の移動する時のドツプラ効果は次の(1)式で与え
られる。
The Doppler effect when the sound source moves is given by the following equation (1).

C fn=       fs        ・・・・・
・・・・・・・(1)C+υn (1)式でf=は9株音源Xの周波数、Cは音速でυn
は目標音源と観測するソノブイの相対速度、7’nは観
測される周波数である0 fl1式を変形すると次の(2)式が得られる6式が得
られる。
C fn=fs...
・・・・・・・・・(1) C+υn In equation (1), f= is the frequency of the 9-sound sound source X, and C is the speed of sound, υn
is the relative velocity between the target sound source and the observed sonobuoy, and 7'n is the observed frequency.0 When the fl1 formula is transformed, six formulas are obtained that yield the following formula (2).

f6acos(β−α)・げ意−11)+ft C08
(tt−α)・げ。−fz )+f2cos(θ2−α
)・(jt  fo)−0・・・・・・・・・・・・(
6) (6)式をFt−・(αりβツθx5θ2)二〇と書く
ことにする〇 次に観測回数と未知数と方4式の数の関係を考えてみる
。まず、時刻toでは、 目標音源と観測するソノブイの相対速度TJnは、ソノ
ブイと目標音源との相対位置とυ、αを用いて表すこと
ができ、それと(2)式によシ各ンノグイごとに次の(
3)〜(5)の3式が導き出される。
f6acos(β-α)・Gei-11)+ft C08
(tt-α)・ge. −fz )+f2cos(θ2−α
)・(jt fo)−0・・・・・・・・・・・・(
6) Expression (6) will be written as Ft-・(α ri β θ x 5 θ 2) 20 Next, let's consider the relationship between the number of observations, unknowns, and the number of formula 4. First, at time to, the relative speed TJn of the target sound source and the observed sonobuoy can be expressed using the relative position of the sonobuoy and the target sound source, υ, α, and according to equation (2), for each sonobuoy, next(
Three equations 3) to (5) are derived.

となり、 Δ を後の時刻 tlでは1 [3) 、 14) 、 [5)式からfsとυを消去
すると次の(6) のようになる。ただし、短かい時間Δを間には、目標は
等速で直進しているものと考えている。
If Δ is 1 at later time tl, [3), 14), and fs and υ are eliminated from equation [5], the following (6) is obtained. However, during the short time Δ, the target is considered to be moving straight at a constant speed.

ところで、観測回数をkとすると式の数は5に−2とな
)、α・β、θ8.θ3.γ、βl#θl/。
By the way, if the number of observations is k, the number of equations is 5-2), α, β, θ8. θ3. γ, βl#θl/.

θ2′、γ′ などの未知数の数は4に+1となる0式
の数≧未知数のとき解は求まるので、4に+1≦5に−
2 に≧3 となり、最低3回の観測を行なえば目標の位置。
The number of unknowns such as θ2' and γ' is 4 + 1.0 The solution is found when the number of equations ≧ unknowns, so 4 + 1 ≦ 5 -
2 ≧ 3, and if you perform at least 3 observations, you will reach the target position.

移動速度、方向を求めることができる。Movement speed and direction can be determined.

ところで、上記の貌illでは、一般にソノグイ位置1
周波数の観測1直に測定誤差があるため、目標の位置等
の算出匝には誤差が含まれている。
By the way, in the above picture ill, generally the sonogui position 1
Since there is a measurement error in the first observation of the frequency, calculations of the target position, etc., include errors.

カルマンフィルタ部8ri、音源位置移動速度計算部か
ら時時刻刻と送られてくる目標の位置と移動速度の誤差
を次に述べる方法によって最小にするO 音源位置・移動速度計算部の出力をYtとすると、時刻
tの時の推定値&1/1は次式で与えられるO 位置のX座標、y座標、目標のX方向速度成分。
The Kalman filter section 8ri minimizes the error between the target position and movement speed sent from the sound source position/movement speed calculation section at time and time by the method described below.If the output of the sound source position/movement speed calculation section is Yt, , the estimated value &1/1 at time t is given by the following equation: O X coordinate of position, y coordinate, velocity component of target in X direction.

y方向速度成分を要素にもつ行列であ)、具体的には次
のように表される。
(This is a matrix whose elements are velocity components in the y direction), and specifically, it is expressed as follows.

八 また、■は4行4列の単位行列、Fは4行4列の行列で
次式で表わされる。
Octopus, ■ is an identity matrix with 4 rows and 4 columns, and F is a matrix with 4 rows and 4 columns, which is expressed by the following equation.

の位置や移動方向を精度良く探知できる安価な目標位置
検出装置が実現できるという効果があるO
O has the effect of realizing an inexpensive target position detection device that can accurately detect the position and movement direction of

【図面の簡単な説明】[Brief explanation of the drawing]

には一般にリカッチ方程式といわれる式を屏いて容易に
得られるカルマンゲインとdわれる行列で、本システム
の場合には、4行4列の行列である。このカルマンゲイ
ンはシステム雑音と銃剣雑音の大きさを考慮して決めら
れる。 このようなフィルタリングを行なうことによって、音源
位置・移動速度部の出力に含まれる誤差を最小にするこ
とができる。 〔発明の効果〕 以上説明したように本発明によれば、無指向性の3つの
パッシブンノフ゛イで観測した目標の発する音のドア1
2周波数変化に看目し、かつカルマンフィルタによるM
A差最小化処理を施すことによシ、無指向性バッシプソ
ノプイ3個のみで、目標決定の内容を示す説明図である
0 1〜3・・・・・・パッシブソノブイ、4・・・・・・
ンノブイ位置測定部、5・・・・・・周波数分析部、6
・・・・・・目標音特定部、7・・・・・・音源位置・
移動速度計算部、8・・・・・・カルマンフィルタ部。 代理人 弁理士  内 原   晋 茅 1 回 茅 2 ゛凹
is a matrix called the Kalman gain that can be easily obtained by subtracting the equation generally called the Riccati equation, and in the case of this system, it is a matrix of 4 rows and 4 columns. This Kalman gain is determined by considering the magnitude of system noise and bayonet noise. By performing such filtering, errors included in the output of the sound source position/moving speed section can be minimized. [Effects of the Invention] As explained above, according to the present invention, the door 1 of the sound emitted by the target observed with the three omnidirectional passive nozzles is
M by looking at two frequency changes and using a Kalman filter
This is an explanatory diagram showing the contents of target determination using only three non-directional bass sonobuoys by applying the A difference minimization process.・
Nobuoy position measurement section, 5... Frequency analysis section, 6
...Target sound identification section, 7...Sound source position.
Movement speed calculation section, 8...Kalman filter section. Agent Patent Attorney Shinkyo Uchihara 1st time 2nd time

Claims (1)

【特許請求の範囲】[Claims] 運用海域に展開した無指向性の3個のパッシブソノブイ
と、前記3個のパッシブソノブイの位置を測定するソノ
ブイ位置測定部と、前記パッシブソノブイから送られた
水中音の信号を周波数分析する周波数分析部と、この周
波数分析部の分析結果から目標とする音源の特徴的な音
の周波数を特定する目標音特定部と、前記パッシブソノ
ブイの位置情報とドップラ変位している前記目標音の周
波数から音源の位置と移動速度を計算する音源位置・移
動速度計算部と、この音源位置・移動速度計算部から出
力される位置および移動速度の誤差を最小とするカルマ
ンフィルタ部とを有して成ることを特徴とする目標位置
検出装置。
Three omnidirectional passive sonobuoys deployed in the operational area, a sonobuoy position measurement unit that measures the positions of the three passive sonobuoys, and a frequency analyzer that analyzes the frequency of underwater sound signals sent from the passive sonobuoys. a target sound identification unit that identifies a characteristic sound frequency of the target sound source from the analysis result of the frequency analysis unit; and a sound source based on the frequency of the target sound that is Doppler displaced from the position information of the passive sonobuoy. A sound source position/moving speed calculating section that calculates the position and moving speed of the sound source, and a Kalman filter section that minimizes errors in the position and moving speed output from the sound source position/moving speed calculating section. target position detection device.
JP21938288A 1988-08-31 1988-08-31 Objective position detecting device Pending JPH0266481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21938288A JPH0266481A (en) 1988-08-31 1988-08-31 Objective position detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21938288A JPH0266481A (en) 1988-08-31 1988-08-31 Objective position detecting device

Publications (1)

Publication Number Publication Date
JPH0266481A true JPH0266481A (en) 1990-03-06

Family

ID=16734543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21938288A Pending JPH0266481A (en) 1988-08-31 1988-08-31 Objective position detecting device

Country Status (1)

Country Link
JP (1) JPH0266481A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777569A (en) * 1993-09-08 1995-03-20 Ishikawa Seisakusho:Kk Sound source detector
JPH10133704A (en) * 1996-10-31 1998-05-22 Hitachi Ltd Device for estimating state
WO2016068821A1 (en) 2014-10-31 2016-05-06 Koc Bilgi Ve Savunma Teknolojileri A. S. Smart buoy which can carry out platform determination and recognition and a determination and recognition method using said buoy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777569A (en) * 1993-09-08 1995-03-20 Ishikawa Seisakusho:Kk Sound source detector
JPH10133704A (en) * 1996-10-31 1998-05-22 Hitachi Ltd Device for estimating state
WO2016068821A1 (en) 2014-10-31 2016-05-06 Koc Bilgi Ve Savunma Teknolojileri A. S. Smart buoy which can carry out platform determination and recognition and a determination and recognition method using said buoy

Similar Documents

Publication Publication Date Title
JP6782312B2 (en) Angular resolution in radar
US5481505A (en) Tracking system and method
US9351071B2 (en) Audio source position estimation
US5615175A (en) Passive direction finding device
JP6469357B2 (en) Underwater detection device, underwater detection method, and underwater detection program
RU2515179C1 (en) Method of determining direction of hydroacoustic transponder in multibeam navigation signal propagation conditions
Atmoko et al. Accurate sound source localization in a reverberant environment using multiple acoustic sensors
RU2225991C2 (en) Navigation sonar to illuminate near situation
JPH0266481A (en) Objective position detecting device
US20030227823A1 (en) Sonar display system and method
US7228236B2 (en) Subarray matching beamformer apparatus and method
Wajid et al. Support vector regression based direction of arrival estimation of an acoustic source
Jeffers et al. Passive range estimation and range rate detection
US6002645A (en) Self survey of random arrays
Coraluppi et al. Intra-ping timing issues in multistatic sonar tracking
JPS6027976Y2 (en) self-doppler erasure device
gu Lee Depth estimation of an underwater target using DIFAR sonobuoy
JPH01223373A (en) Target position detector
JP2747360B2 (en) Tracking radar device
JP2944481B2 (en) Underwater active sound detector
Hjelmervik Target depth estimation using a ray backpropagation scheme on mid-frequency active sonar data
US20230348261A1 (en) Accelerometer-based acoustic beamformer vector sensor with collocated mems microphone
JP2006078270A (en) Radar device
de Goede et al. Recovering unmanned undersea vehicles with a homing and docking sonar
JP2865090B2 (en) Passive sonar device