JPH0266430A - Sample holder for fluorescent measurement - Google Patents

Sample holder for fluorescent measurement

Info

Publication number
JPH0266430A
JPH0266430A JP63216270A JP21627088A JPH0266430A JP H0266430 A JPH0266430 A JP H0266430A JP 63216270 A JP63216270 A JP 63216270A JP 21627088 A JP21627088 A JP 21627088A JP H0266430 A JPH0266430 A JP H0266430A
Authority
JP
Japan
Prior art keywords
sample holder
sample
fluorescence
fluorescent
fluorescence measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63216270A
Other languages
Japanese (ja)
Other versions
JPH0695073B2 (en
Inventor
Satoshi Takahashi
智 高橋
Kazunari Imai
一成 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63216270A priority Critical patent/JPH0695073B2/en
Publication of JPH0266430A publication Critical patent/JPH0266430A/en
Publication of JPH0695073B2 publication Critical patent/JPH0695073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters

Landscapes

  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To produce the inexpensive holder for a UV region by adopting a reflector to a part or the whole of the surface of a sample holder for fluorescent measurement to be used for a fluorescent measuring instrument which condenses and measures the fluorescence generated by stimulating light. CONSTITUTION:The sample holder 1 for fluorescent measurement to be used for the fluorescent measuring instrument which measures the fluorescent intensity by irradiating the sample with the stimulating light from above and condensing the fluorescent component emitted to above the sample is formed to recessed shape. The entire surface or part of the inside of the holder 1 is coated with a metallic film or multilayered dielectric films 2 to reflect the simulating light. The exact measurement is executed in this way by the inexpensive sample holder without using costly quartz even if the stimulating light is fluorescent light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蛍光測定装置に使用するための蛍光測定用試
料保持体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a sample holder for fluorescence measurement for use in a fluorescence measurement device.

〔従来の技術〕[Conventional technology]

励起光を試料上方より照射し、試料上方に発する蛍光成
分を集光してその蛍光強度を測定するためには、一般に
特開昭62−50662号公報の実施例に記載されてい
るような装置を使用する。
In order to irradiate excitation light from above the sample, collect the fluorescent components emitted above the sample, and measure the fluorescence intensity, an apparatus such as that described in the example of JP-A-62-50662 is generally used. use.

ところで、周知のように蛍光を1illJ定するための
試料保持体、例えば蛍光測定用のセルには、石英ガラス
セル、ガラスセル、ポリスチレンなどのプラスチック製
のセルなどがある。石英ガラスセルは、紫外光に対する
透過性がよく、セル自体の蛍光が他のガラスやプラスチ
ック製のセルに比べて少ないため、頻繁に使用されてい
る。
By the way, as is well known, sample holders for determining fluorescence, for example cells for fluorescence measurement, include quartz glass cells, glass cells, and cells made of plastic such as polystyrene. Quartz glass cells are frequently used because they have good transparency to ultraviolet light and their own fluorescence is lower than cells made of other glasses or plastics.

ガラスセルやプラスチック製のセルは紫外光、特に36
0nm以下の光に対して蛍光を生じるため、通常可視域
(360〜700nm)の光で蛍光体を励起する場合に
使用される。さらに、これらの材料は石英ガラスに比べ
安価であり、また成型が比較的簡単であるため、ティス
ポーザブルセルとして使用される。特に生化学検査など
での場合のように、測定する検体数が多数の場合は、通
常、特開昭58−213253などに記載されているよ
うに既知のプラスチック製マイクロプレートが使用され
る。
Glass cells and plastic cells are exposed to ultraviolet light, especially 36
Since it generates fluorescence in response to light of 0 nm or less, it is usually used when exciting a phosphor with light in the visible range (360 to 700 nm). Furthermore, these materials are cheaper than quartz glass and are relatively easy to mold, so they are used as disposable cells. In particular, when a large number of specimens are to be measured, such as in biochemical tests, known plastic microplates are usually used, as described in Japanese Patent Application Laid-Open No. 58-213253.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、He−Cdレーザ光(325nm)、N2レー
ザ光(337nm)やHgランプからの紫外領域の光な
ど励起光の波長が紫外領域になると、プラスチックでは
もちろん通常のガラスでもそれ自体蛍光を発するように
なる。そのため、プラスチック製のマイクロプレートを
使用して蛍光測定を行うと、試料からの蛍光の他にマイ
クロプレートからの蛍光が検出され、試料に含まれる微
量の蛍光体からの蛍光測定が困難になるという問題があ
る。
However, when the wavelength of the excitation light is in the ultraviolet region, such as He-Cd laser light (325 nm), N2 laser light (337 nm), or light in the ultraviolet region from a Hg lamp, not only plastic but also ordinary glass will itself emit fluorescence. become. Therefore, when performing fluorescence measurements using plastic microplates, fluorescence from the microplate is detected in addition to fluorescence from the sample, making it difficult to measure fluorescence from trace amounts of fluorophores contained in the sample. There's a problem.

紫外領域の光で励起する場合、試料を保持する試料保持
体の材質は一般に石英ガラスでなければならない。しか
し、石英ガラスは非常に高価であり、ディスポーザブル
にはできず、多数の試料からの蛍光測定を行う場合、そ
の都度試料保持体を洗浄して使用しなければならず、操
作が複雑になりまた非能率的である。
When exciting with light in the ultraviolet region, the material of the sample holder that holds the sample must generally be quartz glass. However, quartz glass is very expensive and cannot be made disposable, and when performing fluorescence measurements from a large number of samples, the sample holder must be cleaned and used each time, making operations complicated and It's inefficient.

本発明の目的は、励起光が紫外光である場合でも、安価
な、しかもディスポーザブルにできる蛍光測定用試料保
持体を提供することにある。
An object of the present invention is to provide a sample holder for fluorescence measurement that is inexpensive and disposable even when the excitation light is ultraviolet light.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、励起光が直接プラスチックなどの部分を照
射しないように、その表面に金属膜または誘電体薄膜を
形成したり、または、照射される部分を金属箔や板など
で置き換えることにより達成される。
The above objective can be achieved by forming a metal film or dielectric thin film on the surface of the plastic so that the excitation light does not directly irradiate the part, or by replacing the irradiated part with a metal foil or plate. Ru.

〔作用〕[Effect]

プラスチックまたはガラス製の試料保持体の表面の少な
くとも一部を金属膜、誘電体薄膜または金属箔、金属板
などで覆ったり、また試料保持体の一部を金属で構成す
ることにより、励起光が金属面または誘電体薄膜面で反
射してガラスまたはプラスチックを直接励起せず、ガラ
スまたはプラスチックからの蛍光が生じなくなる。
By covering at least part of the surface of the plastic or glass sample holder with a metal film, dielectric thin film, metal foil, metal plate, etc., or by configuring part of the sample holder with metal, the excitation light can be The glass or plastic is not directly excited by reflection from the metal surface or dielectric thin film surface, and no fluorescence is generated from the glass or plastic.

〔実施例〕〔Example〕

以下、本発明の実施例を示す。 Examples of the present invention will be shown below.

〈実施例1〉 第1図は、断面の形状が凹状である試料保持体1の表面
の全面を、アルミニウムや銀やクロム等の金属膜または
誘電体多層膜2で被覆した場合の試料保持体の断面図で
ある。このように試料保持体は、例えば既知の真空蒸着
法に従って、市販のマイクロプレート(ポリスチレン製
など)の1個または複数のウェルの表面にアルミニウム
の膜を蒸着することによって得られる。このアルミニウ
ムを蒸着したマイクロプレートを使用してバラヒドロキ
シフェニルプロピオン酸(HPPA)二量体からの蛍光
強度を測定した結果を第5図に示す。
<Example 1> Fig. 1 shows a sample holder 1 in which the entire surface of the sample holder 1, which has a concave cross-sectional shape, is covered with a metal film such as aluminum, silver, or chromium, or a dielectric multilayer film 2. FIG. The sample holder is thus obtained, for example, by depositing a film of aluminum on the surface of one or more wells of a commercially available microplate (eg, made of polystyrene) according to known vacuum deposition methods. FIG. 5 shows the results of measuring the fluorescence intensity from rose hydroxyphenylpropionic acid (HPPA) dimer using this aluminum-deposited microplate.

発振波長が325nmのHe−Cdレーザ光を使用し、
種々の濃度に調製したHPPA二量体(300μ塁)か
らの蛍光強度(測定蛍光波長=405nm)を測定した
。図中の曲線7はアルミニウムを蒸着しない市販のマイ
クロプレートの場合であり、曲線6は蒸着によりウェル
の表面にアルミニウム膜を形成したマイクロプレートの
場合である。このようにアルミニウム蒸着膜を施すこと
により、マイクロプレート自体からの蛍光の影響を受け
ず、より低濃度の蛍光体からの蛍光測定が可能となった
Using He-Cd laser light with an oscillation wavelength of 325 nm,
Fluorescence intensity (measured fluorescence wavelength = 405 nm) from HPPA dimer (300μ base) prepared at various concentrations was measured. Curve 7 in the figure is for a commercially available microplate without aluminum vapor deposition, and curve 6 is for a microplate in which an aluminum film is formed on the surface of the well by vapor deposition. By applying the aluminum vapor-deposited film in this manner, it became possible to measure fluorescence from a lower concentration of phosphor without being affected by fluorescence from the microplate itself.

本実施例では、マイクロプレートのウェルの表面全面に
アルミニウム蒸着膜を形成した。そのため、励起光の入
射角度は+90度から一90度まで、つまり試料上方か
らであればほとんど水平方向からでも照射でき、また検
出する蛍光の方向も試料上方であればどの方向でもかま
わない。励起光および蛍光の光軸を、試料に対して種々
の角度に調整することができる。
In this example, an aluminum vapor deposition film was formed on the entire surface of the well of the microplate. Therefore, the incident angle of the excitation light can be from +90 degrees to 190 degrees, that is, it can be irradiated almost horizontally as long as it is from above the sample, and the direction of the detected fluorescence can be in any direction as long as it is above the sample. The optical axes of the excitation light and fluorescence can be adjusted to various angles with respect to the sample.

本実施例で形成した蒸着膜には腹の保護コーティングを
施していないため、繰り返しの使用には難があり、どち
らかといえばディスポーザブル的な使用法でその効果を
発揮する。繰り返し使用するような場合には、アルミニ
ウム蒸着膜の表面にさらに保護コーティング(例えばM
gF2膜)を施すことが望ましい。
Since the vapor-deposited film formed in this example does not have a protective coating, it is difficult to use it repeatedly, and if anything, it is effective when used in a disposable manner. If it is to be used repeatedly, a protective coating (for example M
gF2 film) is desirable.

また、本実施例では、被覆法としてアルミニウムの真空
蒸着法をもちいたが、クロムなどでも同様の効果が得ら
れる。また、真空蒸着法ばかりでなく既知のスパッタリ
ング法やニッケルなどの無電界メツキなどにより、形成
した金属膜でも同様の効果を得ることができる。さらに
金属ばかりでなく、マイクロプレートの表面に、例えば
325nmの励起光を反射するような誘電体多層膜を蒸
着により形成させた場合でもほぼ同様の効果が得られる
Further, in this embodiment, a vacuum evaporation method of aluminum was used as a coating method, but a similar effect can be obtained with chromium or the like. Further, similar effects can be obtained with metal films formed not only by vacuum evaporation, but also by known sputtering methods, electroless plating of nickel, etc. Furthermore, in addition to metals, substantially the same effect can be obtained even when a dielectric multilayer film that reflects excitation light of 325 nm is formed by vapor deposition on the surface of the microplate.

〈実施例2〉 第2図は、断面の形状が凹状である試料保持体1の表面
の底面部分を、アルミニウムや銀やクロム等の金属膜ま
たは誘電体多層膜2で被覆した場合の試料保持体の断面
図である。例えば、実施例1においてウェルの側面をマ
スクして底面のみにアルミニウム蒸着膜を形成したマイ
クロプレートで実施することができる。蛍光測定装置で
励起光がほぼ鉛直方向よりウェル内の測定試料に照射さ
れる場合、励起光は底面にのみ照射され側面には照射さ
れない。このような場合は、底面部のみに金属膜または
誘電体多層膜を形成しただけで実施例1とほぼ同じ効果
を得ることができる。
<Example 2> Fig. 2 shows a sample holder when the bottom part of the surface of the sample holder 1, which has a concave cross-sectional shape, is covered with a metal film such as aluminum, silver, or chromium, or a dielectric multilayer film 2. It is a cross-sectional view of the body. For example, it can be carried out using a microplate in which the side surfaces of the wells in Example 1 are masked and an aluminum vapor deposited film is formed only on the bottom surfaces. When excitation light is irradiated onto a measurement sample in a well from a substantially vertical direction in a fluorescence measuring device, the excitation light is irradiated only on the bottom surface and not on the side surfaces. In such a case, almost the same effect as in Example 1 can be obtained by simply forming a metal film or a dielectric multilayer film only on the bottom surface.

〈実施例3〉 第3図は、断面の形状が凹状である試料保持体1の表面
の底面部分に、その部分とほぼ同じ形状の金属箔または
板3を配置した場合の試料保持体の断面図である。金属
箔としてはアルミニウム箔や銀箔(厚さ10〜100μ
m)、金属板としてはアルミニウム板やステンレス板(
厚さ0.1〜2mm程度)などが適当である。市販のマ
イクロプレート(ウェル径が約6.4mm)を使用し、
約6mm径のアルミニウム箔(厚さ100μm)をウェ
ルの表面の底面部に接着させて試料保持体を作製した。
<Example 3> Fig. 3 shows a cross section of a sample holder when a metal foil or plate 3 having a shape almost the same as that of the sample holder 1 is placed on the bottom part of the surface of the sample holder 1, which has a concave cross-sectional shape. It is a diagram. Metal foils include aluminum foil and silver foil (thickness 10 to 100 μm).
m), metal plates such as aluminum plates and stainless steel plates (
A thickness of about 0.1 to 2 mm) is suitable. Using a commercially available microplate (well diameter approximately 6.4 mm),
A sample holder was prepared by adhering aluminum foil (100 μm thick) with a diameter of about 6 mm to the bottom of the surface of the well.

接着にはエポキシ系接着剤を使用した。この試料保持体
を使用してHPPA二量体からの蛍光強度の測定を行っ
た結果、実施例1とほぼ同じ効果が得られた。本例では
アルミニウム箔を接着剤によりウェルの表面の底面部に
固定したが、金属板等が十分に重く、測定試料を試料保
持体に注入したときに金属板等が浮き上がらなければ接
着する必要はない。
Epoxy adhesive was used for bonding. As a result of measuring the fluorescence intensity from the HPPA dimer using this sample holder, almost the same effect as in Example 1 was obtained. In this example, the aluminum foil was fixed to the bottom of the surface of the well with adhesive, but if the metal plate etc. is sufficiently heavy and the metal plate etc. does not lift up when the measurement sample is injected into the sample holder, there is no need to glue it. do not have.

〈実施例4〉 第4図は、板状の金属板4の上にプラスチックまたはガ
ラス5を接着して凹状の断面を形成した試料保持体の断
面図である。1mmの厚さのアルミニウム板の上に、内
径6mm、外形8mm、長さ10mmのポリスチレン製
の円筒を接着されて試料保持体を作製した。この試料保
持体を使用してHP P A二量体からの蛍光強度の測
定を行った結果、実施例1とほぼ同じ効果が得られた。
<Example 4> FIG. 4 is a sectional view of a sample holder in which a concave cross section is formed by bonding plastic or glass 5 onto a plate-shaped metal plate 4. A sample holder was prepared by bonding a polystyrene cylinder having an inner diameter of 6 mm, an outer diameter of 8 mm, and a length of 10 mm onto an aluminum plate of 1 mm thickness. As a result of measuring the fluorescence intensity from the HP PA dimer using this sample holder, almost the same effect as in Example 1 was obtained.

また、同じように6mm径の孔を作製した3 m mの
厚さの黒色アクリル板をアルミニウム板上に接着して得
た試料保持体でも同様の効果が得られた。本例では金属
板としてアルミニウム板を使用したがステンレス板など
でも作製できる。さらに試料保持体を作製した後、既知
の真空蒸着法またはメツキ等により試料保持体の表面を
処理すれば、より効果が大きくなる。
The same effect was also obtained with a sample holder obtained by adhering a 3 mm thick black acrylic plate with holes of 6 mm diameter on an aluminum plate. In this example, an aluminum plate was used as the metal plate, but a stainless steel plate or the like can also be used. Further, after producing the sample holder, if the surface of the sample holder is treated by a known vacuum evaporation method or plating, the effect will be even greater.

上記実施例1ないし4では、試料保持体の断面の形状が
凹状の場合を示したが、これに限定されるわけではなく
、例えば7字状やU字状などの断面形状の試料保持体に
も適用できる。
In Examples 1 to 4 above, the cross-sectional shape of the sample holder is concave, but it is not limited to this. can also be applied.

上記実施例工ないし4において、膜、箔、板等の反射体
の表面を鏡面状に仕上げれば1反射体部分での励起光の
散乱を減少させることができるので、蛍光測定が容易に
なる。また、この場合、反射体面で励起光が反射される
ため、実質的に励起光強度が2倍になり、蛍光強度も増
大するという効果もある。また、本発明の試料保持体は
、励起波長が紫外領域のときばかりでなく可視または赤
外領域などの場合にも使用でき、同様の効果がある。
In the above-mentioned Examples to 4, if the surface of the reflector such as a film, foil, or plate is finished to a mirror finish, scattering of excitation light at one reflector portion can be reduced, making fluorescence measurement easier. . Further, in this case, since the excitation light is reflected by the reflector surface, the excitation light intensity is substantially doubled, and the fluorescence intensity also increases. Further, the sample holder of the present invention can be used not only when the excitation wavelength is in the ultraviolet region but also in the visible or infrared region, and has similar effects.

以上の実施例に示したように、市販のマイクロプレート
のウェルの表面の1部または全面を金属等の反射体で覆
うことにより、励起光が紫外光の場合でも適用できる蛍
光測定用の試料保持体を作製することができる。この蛍
光測定用の試料保持体は市販のマイクロプレートの形状
そのままであるため、市販のマイクロプレートを使用し
て蛍光測定等を行う袋打において、光学系の配置及び試
料台の寸法などを変更することなく適用することができ
、しかもより高感度な1llff定が可能となる。
As shown in the above example, by covering a part or the entire surface of the well of a commercially available microplate with a reflector such as metal, sample holding for fluorescence measurement can be applied even when the excitation light is ultraviolet light. body can be created. This sample holder for fluorescence measurement has the same shape as a commercially available microplate, so when performing fluorescence measurements using a commercially available microplate, the arrangement of the optical system and the dimensions of the sample stage must be changed. It is possible to apply the 1llff determination with higher sensitivity without any problem.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、励起光が紫外光であっても、高価な石
英ガラスで試料保持体を作製することなく、プラスチッ
クやガラスと金属または誘電体多層膜で試料保持体を作
製することができ、比較的安価に蛍光測定用の試料保持
体を得ることができる。また、ひいてはディスポーザブ
ル試料保持体として使用することができる。
According to the present invention, even if the excitation light is ultraviolet light, the sample holder can be fabricated from plastic, glass, and metal or dielectric multilayer films without the need to fabricate the sample holder from expensive quartz glass. , a sample holder for fluorescence measurement can be obtained at a relatively low cost. Further, it can also be used as a disposable sample holder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図および第4図はそれぞれ、本発
明の実施例によって得られる蛍光測定用試料保持体の正
面からみた断面図、第5図は本発明の実施例によって得
られる蛍光強度対濃度特性の改善を説明する図である。 1・・・プラスチックまたはガラス製の試料保持体2・
・・金属膜または誘電体多層膜 3・・・金BC箔または金属板 4・・・金属板 5・・・プラスチックまたはガラス 6・・・ウェルの表面にアルミニウム膜を形成したマイ
クロプレートを使用した場合の蛍光強度対濃度特性曲線 7・・・市販のマイクロプレートを使用し、た場合の蛍
光強度対濃度特性曲線。
1, 2, 3, and 4 are sectional views, respectively, of a sample holder for fluorescence measurement obtained according to an embodiment of the present invention, viewed from the front, and FIG. 5 is a sectional view obtained according to an embodiment of the present invention. FIG. 3 is a diagram illustrating an improvement in fluorescence intensity versus concentration characteristics. 1... Sample holder made of plastic or glass 2.
...Metal film or dielectric multilayer film 3...Gold BC foil or metal plate 4...Metal plate 5...Plastic or glass 6...A microplate with an aluminum film formed on the surface of the well was used Fluorescence intensity vs. concentration characteristic curve 7: Fluorescence intensity vs. concentration characteristic curve when using a commercially available microplate.

Claims (1)

【特許請求の範囲】 1、励起光を試料上方より照射し、試料上方に発する蛍
光成分を集光してその蛍光強度を測定する蛍光測定装置
に使用する蛍光測定用試料保持体において、該蛍光測定
用試料保持体の表面の一部または全部が反射体であるこ
とを特徴とする蛍光測定用試料保持体。 2、前記反射体以外の材質がガラス、プラスチックであ
ることを特徴とする特許請求の範囲第1項記載の蛍光測
定用試料保持体。 3、前記反射体を金属膜または誘電体薄膜で形成したこ
とを特徴とする特許請求の範囲第1項記載の蛍光測定用
試料保持体。 4、金属箔または金属板により表面の一部を形成したこ
とを特徴とする特許請求の範囲第1項記載の蛍光測定用
試料保持体。 5、金属板の上にプラスチックまたはガラスを接着して
凹状の断面を形成したことを特徴とする特許請求の範囲
第1項記載の蛍光測定用試料保持体。 6、特許請求の範囲第1項ないし第5項記載の蛍光測定
用試料保持体を複数個組み合わせたことを特徴とする蛍
光測定用試料保持体。
[Scope of Claims] 1. In a sample holder for fluorescence measurement used in a fluorescence measurement device that irradiates excitation light from above the sample, collects fluorescence components emitted above the sample, and measures the fluorescence intensity, A sample holder for fluorescence measurement, characterized in that part or all of the surface of the measurement sample holder is a reflector. 2. The sample holder for fluorescence measurement according to claim 1, wherein the material other than the reflector is glass or plastic. 3. The sample holder for fluorescence measurement according to claim 1, wherein the reflector is formed of a metal film or a dielectric thin film. 4. The sample holder for fluorescence measurement according to claim 1, wherein a part of the surface is formed of a metal foil or a metal plate. 5. The sample holder for fluorescence measurement according to claim 1, wherein a concave cross section is formed by bonding plastic or glass onto a metal plate. 6. A sample holder for fluorescence measurement, characterized in that a plurality of sample holders for fluorescence measurement according to claims 1 to 5 are combined.
JP63216270A 1988-09-01 1988-09-01 Sample holder for fluorescence measurement Expired - Lifetime JPH0695073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63216270A JPH0695073B2 (en) 1988-09-01 1988-09-01 Sample holder for fluorescence measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63216270A JPH0695073B2 (en) 1988-09-01 1988-09-01 Sample holder for fluorescence measurement

Publications (2)

Publication Number Publication Date
JPH0266430A true JPH0266430A (en) 1990-03-06
JPH0695073B2 JPH0695073B2 (en) 1994-11-24

Family

ID=16685916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63216270A Expired - Lifetime JPH0695073B2 (en) 1988-09-01 1988-09-01 Sample holder for fluorescence measurement

Country Status (1)

Country Link
JP (1) JPH0695073B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503456B1 (en) 1997-03-25 2003-01-07 Greiner Bio-One Gmbh Microplate with transparent base
WO2003025553A3 (en) * 2001-09-14 2003-10-16 Leybold Optics Gmbh Analytical equipment for determining the chemical structure and/or composition of a plurality of samples and sample holder
JP2006226803A (en) * 2005-02-17 2006-08-31 Matsushita Electric Ind Co Ltd Fluorescence measuring instrument
JP2006226887A (en) * 2005-02-18 2006-08-31 Casio Comput Co Ltd Biopolymer analysis chip, analysis support device, and biopolymer analyzing method
JP2006526778A (en) * 2003-06-03 2006-11-24 バイエル・ヘルスケア・エルエルシー Read head for optical inspection equipment
JP2010145390A (en) * 2008-12-22 2010-07-01 Korea Electronics Telecommun Biochip and bio-substance detecting device using it
JP2011038922A (en) * 2009-08-12 2011-02-24 Sony Corp Light detection chip, and light detection device using the same
JP2011137742A (en) * 2009-12-28 2011-07-14 Sony Corp Image sensor, method for manufacturing the same, and sensor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004109107A (en) * 2002-07-25 2004-04-08 Nippon Sheet Glass Co Ltd Vessel for biochemistry
JP4812393B2 (en) * 2005-03-04 2011-11-09 株式会社日立ハイテクノロジーズ Fluorescent molecule measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132335A (en) * 1982-10-12 1984-07-30 ダイナテク・ラボラトリ−ズ・インコ−ポレ−テツド Non-fluorescent vessel for holding test sample for fluorometric analysis, its manufacture and fluorometric analysis method
JPS6266141A (en) * 1985-09-19 1987-03-25 Sumitomo Bakelite Co Ltd Vessel for fluorescent immunological measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132335A (en) * 1982-10-12 1984-07-30 ダイナテク・ラボラトリ−ズ・インコ−ポレ−テツド Non-fluorescent vessel for holding test sample for fluorometric analysis, its manufacture and fluorometric analysis method
JPS6266141A (en) * 1985-09-19 1987-03-25 Sumitomo Bakelite Co Ltd Vessel for fluorescent immunological measurement

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503456B1 (en) 1997-03-25 2003-01-07 Greiner Bio-One Gmbh Microplate with transparent base
WO2003025553A3 (en) * 2001-09-14 2003-10-16 Leybold Optics Gmbh Analytical equipment for determining the chemical structure and/or composition of a plurality of samples and sample holder
JP2006526778A (en) * 2003-06-03 2006-11-24 バイエル・ヘルスケア・エルエルシー Read head for optical inspection equipment
JP2006226803A (en) * 2005-02-17 2006-08-31 Matsushita Electric Ind Co Ltd Fluorescence measuring instrument
JP4701739B2 (en) * 2005-02-17 2011-06-15 パナソニック株式会社 Fluorescence measuring device
JP2006226887A (en) * 2005-02-18 2006-08-31 Casio Comput Co Ltd Biopolymer analysis chip, analysis support device, and biopolymer analyzing method
JP2010145390A (en) * 2008-12-22 2010-07-01 Korea Electronics Telecommun Biochip and bio-substance detecting device using it
US8288171B2 (en) 2008-12-22 2012-10-16 Electronics And Telecommunications Research Institute Biochip and apparatus for detecting biomaterial using biochip
JP2011038922A (en) * 2009-08-12 2011-02-24 Sony Corp Light detection chip, and light detection device using the same
JP2011137742A (en) * 2009-12-28 2011-07-14 Sony Corp Image sensor, method for manufacturing the same, and sensor device

Also Published As

Publication number Publication date
JPH0695073B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
US4882288A (en) Assay technique and equipment
US7648834B2 (en) Plasmon fluorescence augmentation for chemical and biological testing apparatus
US8049896B2 (en) Detecting element, detecting device, and method of producing the detecting element
Axelrod et al. Total internal reflection fluorescent microscopy
JP2993513B2 (en) Film diagnostic device
FI76432B (en) FARING REQUIREMENTS FOR THE CONSTITUTION OF THE ELEMENT I LOESNING MED EN LJUSLEDARE.
CN100498395C (en) Light waveguide and fluorescent sensor using the light waveguide
US20090116020A1 (en) Biosensor, method for producing the same and sensor measurement system
JP4701739B2 (en) Fluorescence measuring device
JP3786073B2 (en) Biochemical sensor kit and measuring device
US8023115B2 (en) Sensor, sensing system and sensing method
EP3112870B1 (en) Sensor chip for surface plasmon-field enhanced fluorescence spectroscopy comprising different blocking agents
JPH10501616A (en) Method for detecting decay-excited luminescence.
JPH05504626A (en) Sample cell used for chemical or biochemical tests
JP2004530125A (en) Optical structures and their use for multiphoton excitation
JPH0266430A (en) Sample holder for fluorescent measurement
EP0749571A1 (en) Spectrophotometric techniques
JP5328915B2 (en) High sensitivity fluorescence detection device
JP2016505861A (en) Low fluorescent equipment
EP2546633A1 (en) Laminated structure for measurement of intensity of reflected light, device equipped with laminated structure for measurement of reflected light, and method for determination of thickness and/or mass and/or viscosity of thin film
US20020031449A1 (en) Multiple-container systems with improved sensitivity for optical analysis
JP3219754U (en) Sensing element and sensing system
WO2014007134A1 (en) Sensor chip
DE10006083A1 (en) Detecting layer thicknesses involves setting angle of incidence/frequency of electromagnetic radiation to produce surface plasmon resonance in metal layer
JP2015111063A (en) Surface plasmon-field enhanced fluorescence measurement method and surface plasmon enhanced fluorescence measurement apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term