JPH0266186A - Method of preventing pitting of aluminum heat exchanger - Google Patents

Method of preventing pitting of aluminum heat exchanger

Info

Publication number
JPH0266186A
JPH0266186A JP21628888A JP21628888A JPH0266186A JP H0266186 A JPH0266186 A JP H0266186A JP 21628888 A JP21628888 A JP 21628888A JP 21628888 A JP21628888 A JP 21628888A JP H0266186 A JPH0266186 A JP H0266186A
Authority
JP
Japan
Prior art keywords
heat exchanger
corrosion
coolant
aluminum heat
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21628888A
Other languages
Japanese (ja)
Inventor
Kazunori Ishikawa
石川 和徳
Tokihiko Shiyoutou
正藤 時彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP21628888A priority Critical patent/JPH0266186A/en
Publication of JPH0266186A publication Critical patent/JPH0266186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To improve the pitting of a part of the Al heat exchanger in contact with cooling water by sticking iron oxide to the inside surface of the Al heat exchanger in which the cooling water is passed. CONSTITUTION:The water in a tank 3 is fed by a pump 2 into the Al heat exchanger 1 of a radiator, etc., and is circulated and passed between the heat exchanger and the tank 3 by a circulating circuit 4. A mild iron plate 5 is immersed into the tank 3 and gaseous O2 is bubbled from a bubbling pipe 6 to maintain the concn. of the O2 in the heat exchanger 1 at about 10ppm, by which the mild iron plate 5 is eluted and the oxide of Fe such as FeO, Fe2O3 or Fe3O4 is stuck on the inside surface of the heat exchanger 1. An Al alloy of an Al-Zn system, Al-Zn-Mg system or Al-Mg system is otherwise clad on the inside surface of the heat exchanger 1 and thereafter, the iron oxide is stuck thereon. The internal corrosion resistance of the Al heat exchanger 1 in which the cooling water is passed is greatly improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はラジェーターやヒーターコア等内部に冷却液を
流すアルミ製熱交換器の孔食防止方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for preventing pitting corrosion of aluminum heat exchangers in which a cooling liquid flows inside, such as radiators and heater cores.

(従来の技術) 自動車用ラジェーターは第2図に示すように冷却液を通
す多数の偏平チューブ(7)と放熱用のコルゲートフィ
ン(8)を積層し、チューブ(7)の両端にヘッダープ
レート(9)を設けてタンク(10)を取付けたもので
、図において(11)はタンク(10)を取付けるため
のバッキングを示す。
(Prior art) As shown in Fig. 2, an automobile radiator is made up of a number of flat tubes (7) for passing coolant and corrugated fins (8) for heat dissipation, and header plates (8) are installed at both ends of the tubes (7). 9) to which the tank (10) is attached. In the figure, (11) indicates the backing for attaching the tank (10).

このようなラジェーターは欧米ではいち早くアルミ化が
進み、冷却液の管理を義務づけることにより、熱交換器
のチューブ内面の耐食性は問題となっていない。即ち冷
却液にインヒビターと称する腐食防止剤が添加されてお
り、冷却液と接するアルミ面に安定な酸化皮膜を形成し
て腐食を防止したり、冷却液と接するアルミ面に吸着し
て腐食反応を抑制する。またインヒビターを添加した冷
却液はシリンダーブロック内のFe及びCuの溶出を抑
える作用もあり、これも二次的にアルミ熱交換器の腐食
を抑制すると言われている。
The use of aluminum for such radiators was early in Europe and America, and as a result of requiring coolant management, corrosion resistance on the inner surface of the heat exchanger tubes has not become a problem. In other words, a corrosion inhibitor called an inhibitor is added to the coolant, and it forms a stable oxide film on the aluminum surface that comes into contact with the coolant to prevent corrosion, or it adsorbs to the aluminum surface that comes into contact with the coolant and prevents a corrosion reaction. suppress. In addition, the coolant containing the inhibitor has the effect of suppressing the elution of Fe and Cu in the cylinder block, and this is also said to secondarily suppress corrosion of the aluminum heat exchanger.

近年日本においても自動車用ラジェーターのアルミ化が
進んでいる。ところが日本では熱交換器メーカーからユ
ーザーに対する冷却液の管理を義務づけていないため、
チューブ内面の耐食性について過酷な腐食液による寿命
試験を行ない、ユーザーが冷却液として使用する水や冷
媒等にも十分耐えるような耐食仕様を確立する必要があ
る。
In recent years, the use of aluminum for automobile radiators is progressing in Japan as well. However, in Japan, heat exchanger manufacturers do not require users to manage coolant.
It is necessary to conduct a life test using a harsh corrosive liquid to check the corrosion resistance of the inner surface of the tube, and to establish corrosion-resistant specifications that can sufficiently withstand the water and refrigerants used by users as cooling fluids.

ラジェーターの冷却液を流すチューブとして欧米ではA
A 3003合金又はAA 6951合金を芯材とし、
その片面にA1−5;系合金ろう材をクラッドし、ろう
材層が外面となるように2層の電縫管とした後、偏平に
成形したものを使用している。一方日本においては上記
2層材の内側、即ち冷却液側にA、f!−Zn系,Al
−M9系。
In Europe and America, A is used as a tube for flowing the coolant of the radiator
A 3003 alloy or AA 6951 alloy is used as the core material,
One side of the tube is clad with an A1-5 alloy brazing material, a two-layer electric resistance welded tube is formed with the brazing material layer on the outer surface, and the tube is then formed into a flat shape. On the other hand, in Japan, A, f! -Zn-based, Al
-M9 series.

AJ!−Zn−Mg系の犠牲陽極材をクラッドした3層
材を用い、この犠牲層の優先腐食により芯材の孔食を防
止している。
AJ! A three-layer material clad with -Zn-Mg-based sacrificial anode material is used, and pitting corrosion of the core material is prevented by preferential corrosion of the sacrificial layer.

ラジェーター等のアルミ製熱交換器はろう付工法により
製造され、一般には真空ろう付は法、非腐食性フラック
スを使用する不活性ガスろう付は法が用いられる。その
ため冷却液を流すチューブ材の内面には、ろう付は加熱
により、第3図に示すようにZnの拡散パターンが形成
されzn濃度の高い部分が優先して浅く広く腐食し、深
い孔食の発生を防止する。
Aluminum heat exchangers such as radiators are manufactured by brazing methods, generally vacuum brazing and inert gas brazing using non-corrosive flux. Therefore, on the inner surface of the tube material through which the coolant flows, due to heating during brazing, a Zn diffusion pattern is formed as shown in Figure 3, and areas with high Zn concentration corrode shallowly and widely, leading to deep pitting corrosion. Prevent occurrence.

(発明が解決しようとする課題〕 しかるに過酷な環境での使用を想定した腐食テスト、あ
るいは市場において、熱交換器の冷却液と接する面に多
量のCUが析出し、貫通孔食にいたる場合がおる。これ
は冷却液中に存在するCLI2+イオンが熱交換器の冷
却液と接する面、例えばチューブ内面から液中に溶出し
たznの代りにチューブ内面にCuが析出したものであ
る。Cuがチューブ内面に付着すると、これがカソード
となり、より電位の卑なAl−zn合金を液中に溶出し
、腐食が進行する。このため犠牲層が早期に消耗し、芯
材が現れた部分では更にQuが析出し、芯材を局部的に
溶出させ、貫通孔食に至る。
(Problem to be solved by the invention) However, in corrosion tests assuming use in harsh environments or in the market, a large amount of CU may be deposited on the surface of the heat exchanger that comes into contact with the coolant, leading to through-pitting corrosion. This is because CLI2+ ions present in the coolant are eluted into the liquid from the surface of the heat exchanger that comes into contact with the coolant, for example from the inner surface of the tube, and instead of Zn, Cu is precipitated on the inner surface of the tube. When it adheres to the inner surface, it becomes a cathode, elutes the Al-zn alloy with a more base potential into the liquid, and corrosion progresses.As a result, the sacrificial layer is quickly consumed, and Qu further increases in the area where the core material appears. It precipitates and locally dissolves the core material, leading to through-pitting corrosion.

(課題を解決するための手段〕 本発明はこれに鑑み種々検討の結果、内部に冷却液が流
れるアルミ製熱交換器の冷却液と接する部分の耐食性を
飛躍的に向上させることができるアルミ製熱交換器の孔
食防止方法を開発したものでおる。
(Means for Solving the Problems) In view of this, and as a result of various studies, the present invention is an aluminum heat exchanger that can dramatically improve the corrosion resistance of the portion in contact with the coolant of an aluminum heat exchanger through which the coolant flows. We have developed a method to prevent pitting corrosion in heat exchangers.

即ち本発明の一つは、内部に冷却液を流すアルミ製熱交
換器において、熱交換器の冷却液と接する面に酸化鉄を
付着させることを特徴とするものである。
That is, one aspect of the present invention is an aluminum heat exchanger through which a cooling liquid flows, and is characterized in that iron oxide is attached to the surface of the heat exchanger that comes into contact with the cooling liquid.

また本発明の他の一つは、内部に冷却液を流すアルミ製
熱交換器において、熱交換器の冷却液と接する面にAJ
!−Zn系、AJ!−Zn−Mg系、A、!!−M9系
合金の何れかをクラッドし、その上に酸化鉄を付着させ
ることを特徴とするものである。
Another aspect of the present invention is that in an aluminum heat exchanger in which a cooling liquid flows inside, an AJ is provided on the surface of the heat exchanger in contact with the cooling liquid.
! -Zn series, AJ! -Zn-Mg series, A,! ! -It is characterized by cladding with any M9 alloy and depositing iron oxide on it.

(作 用) 市場で走行した自動車のアルミ製ラジェーターを回収し
、ラジェーターの冷却液と接する面の腐食状況を詳細に
調べたところ、冷却液と接する面に赤茶色の鉄錆、即ら
FeQ、FezO3゜Fe:+04等の酸化鉄が付着し
た場合、CLJ析出但が減少し、冷却液と接する面の腐
食が抑制されることを見出した。従来F e2 + 、
 l: e 3 +イオンはCLJ2+イオンと同様A
1表面でFeとして析出し、カソードとしてA1の腐食
を促進する作用があると言われており、A1とFeの接
触腐食等の問題もあった。しかるにラジェーターの冷却
液環流回路内ではシリンダーブロックから溶出したFe
2+、1m−e3+イオンが安定な酸化鉄となり、これ
が冷却液と接する面に付着すると、液中へのA1の溶出
を抑制し、Cuの析出を抑制するものと考えられる。
(Function) When aluminum radiators from automobiles that had been driven on the market were collected and the corrosion status of the surfaces in contact with the coolant of the radiators was examined in detail, it was found that there was reddish-brown iron rust on the surfaces in contact with the coolant, that is, FeQ, It has been found that when iron oxide such as FezO3°Fe:+04 is attached, CLJ precipitation is reduced and corrosion of the surface in contact with the coolant is suppressed. Conventional F e2 + ,
l: e3+ ion is A like CLJ2+ ion
It is said that it precipitates as Fe on the surface of A1 and acts as a cathode to promote corrosion of A1, and there are also problems such as contact corrosion between A1 and Fe. However, in the coolant circulation circuit of the radiator, Fe eluted from the cylinder block
It is thought that the 2+, 1m-e3+ ions become stable iron oxides, and when this adheres to the surface in contact with the coolant, it suppresses the elution of A1 into the liquid and suppresses the precipitation of Cu.

本発明はアルミ製熱交換器の冷却液と接する面の耐食性
に最も影響を及ぼす要因である液中のCLJ2+イオン
の析出現象を酸化鉄の積極的な付着によって防止したも
のである。酸化鉄の付着方法は、第1図に示すようにラ
ジェーター(1)内にポンプ(2)により水がタンク(
3)を通して図に示す矢印方向に循環できる回路(4)
を組み、タンク(3)内に軟鉄板(5)を浸漬し、常温
で水中の溶存酸素量を10ppmに保つようにタンク(
3)内に挿入したバブリング管(6)より酸素を水中に
バブリングし、軟鉄の溶出を促進さゼ、約1m/sの流
速でラジェーター(1)内を40〜100分程度循環す
ればよい。尚実際の熱交換器製造のように、量産的に本
処理を行なう場合には、Feを含む薬品を使用し、水溶
液としてpH2温度、l素溶存量の調整により、安定な
酸化鉄を付着させることができる。
The present invention prevents the precipitation of CLJ2+ ions in the liquid, which is the factor that most affects the corrosion resistance of the surface of an aluminum heat exchanger that comes into contact with the cooling liquid, by actively attaching iron oxide to the aluminum heat exchanger. The method for depositing iron oxide is as shown in Figure 1, water is pumped into the radiator (1) by a pump (2) into the tank (
3) A circuit that can circulate in the direction of the arrow shown in the figure (4)
The soft iron plate (5) is immersed in the tank (3), and the tank (
3) Oxygen is bubbled into the water from the bubbling tube (6) inserted into the water to promote the elution of soft iron, and the water is circulated in the radiator (1) for about 40 to 100 minutes at a flow rate of about 1 m/s. When performing this process in mass production, such as in actual heat exchanger manufacturing, a chemical containing Fe is used, and stable iron oxide is deposited as an aqueous solution by adjusting the pH 2 temperature and the dissolved amount of L element. be able to.

〔実施例〕〔Example〕

内径15.8m、肉厚0.81!It、長ざ300 r
rvnのAA3003合金からなる丸管と、内径15.
8M、肉厚0.8M、長さ300 MのAA 3003
合金を芯材とし、内面に10%のクラツド率でAA 7
072合金をクラッドした丸管を使用し、大気中600
℃に5m1n間加熱した後、咳管を第1図に示すラジェ
ーターの代りに循環回路に接続し、内部に鉄錆を含む水
を60分間通し、内面に鉄錆を付着させた。
Inner diameter 15.8m, wall thickness 0.81! It, length 300 r
A round tube made of rvn's AA3003 alloy, with an inner diameter of 15.
8M, wall thickness 0.8M, length 300M AA 3003
AA7 with alloy as core material and 10% crud rate on inner surface
A round tube clad with 072 alloy is used, and the
After heating for 5 ml at ℃, the cough tube was connected to a circulation circuit instead of the radiator shown in FIG. 1, and water containing iron rust was passed through the tube for 60 minutes to cause iron rust to adhere to the inner surface.

この丸管を01−2ooppm、 so42−eop9
m 。
This round tube is 01-2ooppm, so42-eop9
m.

Cu 2 +10ppm 、 F e 3 ” 30p
pmの腐食液中に3力月浸漬し、丸管内面の腐食発生状
況を調査した。その結果を内面に鉄錆を付着させない丸
管の場合と比較して第1表に示す。
Cu 2 +10ppm, Fe 3” 30p
The tube was immersed in a pm corrosive solution for three months to investigate the occurrence of corrosion on the inner surface of the tube. The results are shown in Table 1 in comparison with the case of a round tube with no iron rust attached to its inner surface.

腐食発生状況としては、腐食生成物を除却した後、光学
顕微鏡による焦点深度法によって深いものから5点のピ
ット深さを測定した。
As for the occurrence of corrosion, after removing corrosion products, the depth of pits at five points from the deepest to the deepest was measured using a depth of focus method using an optical microscope.

第1表から明らかなように本発明法NQ1〜2は何れも
鉄錆を付着しない比較法に比べ深いピットの発生もなく
、優れた耐食性を示し、特にAA 3003合金からな
る丸管の内面にAA 7072合金をクラッドし、その
上に鉄錆を付着した本発明法NQ2では鉄錆付着の効果
が大きく、はとんど腐食の発生が認められない。
As is clear from Table 1, the methods NQ1 and NQ2 of the present invention do not form deep pits and exhibit excellent corrosion resistance, especially on the inner surface of round pipes made of AA 3003 alloy, compared to the comparative method, which does not deposit iron rust. In the method NQ2 of the present invention, in which AA 7072 alloy is clad and iron rust is adhered thereon, the effect of iron rust adhesion is large, and almost no corrosion is observed.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、内部に冷却液を流すアルミ
製熱交換器の内部耐食性を飛躍的に向上し、熱交換器の
軽量化に伴うアルミ部材の薄肉化を可能にし、更にクラ
ツド材を使用しなくとも耐食性が従来のクラツド材と同
等以上となり、熱交換器のコスト低減を計ることができ
る等工業上顕著な効果を奏するものである。
As described above, according to the present invention, the internal corrosion resistance of an aluminum heat exchanger through which a cooling liquid flows can be dramatically improved, the aluminum parts can be made thinner as the heat exchanger is made lighter, and the cladding material can be made thinner. The corrosion resistance is equal to or higher than that of conventional cladding materials even without the use of cladding materials, and it has significant industrial effects such as being able to reduce the cost of heat exchangers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による熱交換器の冷却液と接する面に酸
化鉄を付着させる方法の一例を示す説明図、第2図はラ
ジェーターの構造を示す斜視図、第3図は犠牲陽極材を
クラッドした3層材のZn拡散パターンの一例を示す説
明図である。 1、ラジェーター 2、ポンプ 3、液タンク 4、循環回路 5、軟鉄板 6、酸素バブリング管 7、デユープ 8、フィン 第2図
Fig. 1 is an explanatory diagram showing an example of a method for depositing iron oxide on the surface of a heat exchanger that comes into contact with the coolant according to the present invention, Fig. 2 is a perspective view showing the structure of a radiator, and Fig. 3 is an explanatory diagram showing an example of a method for depositing iron oxide on the surface of a heat exchanger in contact with a cooling liquid. FIG. 3 is an explanatory diagram showing an example of a Zn diffusion pattern of a clad three-layer material. 1, radiator 2, pump 3, liquid tank 4, circulation circuit 5, soft iron plate 6, oxygen bubbling pipe 7, duplex 8, fin Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)内部に冷却液を流すアルミ製熱交換器において、
熱交換器の冷却液と接する面に酸化鉄を付着させること
を特徴とするアルミ製熱交換器の孔食防止方法。
(1) In an aluminum heat exchanger that allows cooling liquid to flow inside,
A method for preventing pitting corrosion in an aluminum heat exchanger, characterized by attaching iron oxide to the surface of the heat exchanger that comes into contact with a cooling liquid.
(2)内部に冷却液を流すアルミ製熱交換器において、
熱交換器の冷却液と接する面にAl−Zn系,Al−Z
n−Mg系,Al−Mg系合金の何れかをクラッドし、
その上に酸化鉄を付着させることを特徴とするアルミ製
熱交換器の孔食防止方法。
(2) In an aluminum heat exchanger that allows cooling liquid to flow inside,
Al-Zn system, Al-Z on the surface of the heat exchanger that comes into contact with the cooling liquid.
Clad with either n-Mg alloy or Al-Mg alloy,
A method for preventing pitting corrosion of an aluminum heat exchanger, characterized by depositing iron oxide thereon.
JP21628888A 1988-09-01 1988-09-01 Method of preventing pitting of aluminum heat exchanger Pending JPH0266186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21628888A JPH0266186A (en) 1988-09-01 1988-09-01 Method of preventing pitting of aluminum heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21628888A JPH0266186A (en) 1988-09-01 1988-09-01 Method of preventing pitting of aluminum heat exchanger

Publications (1)

Publication Number Publication Date
JPH0266186A true JPH0266186A (en) 1990-03-06

Family

ID=16686186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21628888A Pending JPH0266186A (en) 1988-09-01 1988-09-01 Method of preventing pitting of aluminum heat exchanger

Country Status (1)

Country Link
JP (1) JPH0266186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401707B1 (en) * 2000-12-04 2003-10-11 기아자동차주식회사 Apparatus for cooling an engine for a motor vehicle
US11944989B2 (en) 2020-09-24 2024-04-02 Sinyu Technology (Fujian) Co., Ltd. Automatic return shower head and use method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401707B1 (en) * 2000-12-04 2003-10-11 기아자동차주식회사 Apparatus for cooling an engine for a motor vehicle
US11944989B2 (en) 2020-09-24 2024-04-02 Sinyu Technology (Fujian) Co., Ltd. Automatic return shower head and use method thereof

Similar Documents

Publication Publication Date Title
EP1038984B1 (en) Corrosion protective sacrificial aluminum alloy for heat exchanger and aluminum alloy composite material highly resistant to corrosion for heat exchanger and heat exchanger using said composite material
US3960208A (en) Process for providing heat transfer with resistance to erosion-corrosion in aqueous environment
US5005285A (en) Method of producing an aluminum heat exchanger
JPS61184395A (en) Corrosion preventive process for aluminum heat exchanger
JP2000309837A (en) Aluminum alloy clad material for heat exchanger excellent in erosion and corrosion resistance
JP2842665B2 (en) Aluminum heat exchanger
JPH02147163A (en) Production of heat exchanger made of aluminum
JPH0266186A (en) Method of preventing pitting of aluminum heat exchanger
JP2685775B2 (en) Aluminum alloy composite material with excellent pitting resistance
JPS583987A (en) Heat exchanger core made of aluminum
JP4411803B2 (en) Brazing method for aluminum heat exchanger and aluminum member brazing solution
JPS6363567A (en) Production of heat exchanger having excellent corrosion resistance
JPH1161306A (en) Aluminum alloy clad material for heat exchanger
JPH093580A (en) Heat exchanger made of aluminum alloy, excellent in corrosion resistance
US5676203A (en) Heat exchanger
JP2004233011A (en) Method for manufacturing heat exchanger made of aluminum for fuel cell
JPS5995397A (en) Core of heat exchanger made of aluminum
US4898318A (en) Copper radiator for motor cars excellent in corrosion resistance and method of manufacturing the same
JP3151152B2 (en) Evaporator with excellent corrosion resistance
JP3538507B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JPH09144991A (en) Aluminum resin composite pipe and manufacture thereof
US20090107658A1 (en) Metallic material for brazing, brazing method, and heat exchanger
JPS62185855A (en) Sheet for heat exchanger made of aluminum
JP3194767B2 (en) Aluminum heat exchanger tube material
JPH0413437B2 (en)