JPH0266155A - Oxidation resistant tial-based heat resistant alloy - Google Patents
Oxidation resistant tial-based heat resistant alloyInfo
- Publication number
- JPH0266155A JPH0266155A JP21637788A JP21637788A JPH0266155A JP H0266155 A JPH0266155 A JP H0266155A JP 21637788 A JP21637788 A JP 21637788A JP 21637788 A JP21637788 A JP 21637788A JP H0266155 A JPH0266155 A JP H0266155A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- tial
- oxidation
- based heat
- resistant alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003647 oxidation Effects 0.000 title claims abstract description 34
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 34
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 26
- 239000000956 alloy Substances 0.000 title claims abstract description 26
- 239000011148 porous material Substances 0.000 claims abstract description 7
- 229910010038 TiAl Inorganic materials 0.000 claims abstract 6
- 239000000463 material Substances 0.000 abstract description 14
- 238000004544 sputter deposition Methods 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 6
- 229910052593 corundum Inorganic materials 0.000 abstract 6
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 6
- 229910017150 AlTi Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 22
- 238000005269 aluminizing Methods 0.000 description 10
- 239000011247 coating layer Substances 0.000 description 8
- 238000005524 ceramic coating Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910000714 At alloy Inorganic materials 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N Al2O Inorganic materials [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は優れた耐酸化性を有する軽量耐熱構造材料とし
て使用される金属間化合物TiAl基耐熱合金に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intermetallic TiAl-based heat-resistant alloy that has excellent oxidation resistance and is used as a lightweight heat-resistant structural material.
T1とAtとの二元系において、Atが約35〜60重
量%にわたって結晶構造がLI (面心正方晶であシ
、(ooB方向にT1・原子からのみなる面とkl、原
子のみなる面が交互に積み重なっている構造)である金
属間化合物T iAt が存在することは知られている
。そして、これKMn、 V、 B、 Niなどの常温
延性を改善する元素を単独添加(添加量は11〜5.0
重量%)又は複合添加(添加量は合計でα1〜SO重量
%)したTiAl基耐熱合金(以下、単にTiAj
と略称する)は、■軽い。0800℃までは温度上昇と
共に強度が増加する。■高温クリープ特性が優れている
という特徴をもっているが、700℃以上の高温域にお
いては酸化し易いという欠点をもっている。In a binary system of T1 and At, the crystal structure is LI (face-centered tetragonal) when At is about 35 to 60% by weight; It is known that there is an intermetallic compound TiAt, which has a structure in which the elements are stacked alternately.It is known that there is an intermetallic compound TiAt, which has a structure in which the elements are stacked alternately.Then, elements such as KMn, V, B, and Ni that improve room temperature ductility are added singly (the amount of addition is 11-5.0
TiAl-based heat-resistant alloy (hereinafter simply referred to as TiAj
) is ■light. The strength increases as the temperature rises up to 0800°C. (2) Although it is characterized by excellent high-temperature creep properties, it has the disadvantage of being easily oxidized at high temperatures of 700°C or higher.
近年、とのTiAlの酸化防止方法として、M拡散被覆
法(以下、アルミナイジング法と云う)が行われている
。このアルミナイジング法は不活性ガス雰囲気中で人t
を含む混合粉末中にTiAl を埋め込み、高温に保持
してTiAl 表面よシAtを拡散浸透させる方法であ
る。この方法によればTiA29面には、よシ耐酸化性
に優れた金属間化合物At、r:1(以下、単1c A
t5Tiと略称する)が形成されるためTiAlの耐酸
化性が改善できると云われている。In recent years, an M diffusion coating method (hereinafter referred to as aluminizing method) has been used as a method for preventing oxidation of TiAl. This aluminizing method is carried out by humans in an inert gas atmosphere.
This method involves embedding TiAl in a mixed powder containing TiAl and holding it at a high temperature to diffuse At into the surface of the TiAl. According to this method, the 29th surface of TiA is coated with an intermetallic compound At, r:1 (hereinafter referred to as single 1c A), which has excellent oxidation resistance.
It is said that the oxidation resistance of TiAl can be improved because of the formation of TiAl (abbreviated as t5Ti).
また、別の耐震化方法としてTiAl表面KAJ120
Hなどの耐酸化性に優れたセラミックスをコーティング
する方法が試みられているが実用例は見当らない。In addition, as another seismic improvement method, TiAl surface KAJ120
Attempts have been made to coat ceramics with excellent oxidation resistance, such as H, but no practical examples have been found.
従来のTiAlの酸化防止方法としてのアルミナイジン
グ法には以下の欠点がある。The conventional aluminizing method as a method for preventing oxidation of TiAl has the following drawbacks.
+11 処理後、表面に微細な割れが発生し易く、T
iAl母材の機械的性質劣下の原因となる。+11 After treatment, fine cracks are likely to occur on the surface, T
This causes deterioration of the mechanical properties of the iAl base material.
(2) 酸化皮膜としては、まずAJ!!Osが生成
するが、これに伴いAt3Tiは表面よりTiAlに変
態して行く。この変態量は例えば大気中、900℃で1
00時間酸化した場合表面よシ約20μm厚さである。(2) First of all, AJ! is an oxide film. ! As Os is generated, At3Ti is transformed into TiAl from the surface. The amount of this transformation is, for example, 1 at 900°C in the atmosphere.
When oxidized for 00 hours, the surface thickness is approximately 20 μm.
従って、通常の条件でアルミナイジング処理した場合、
表面に形成されるAtgTi層の厚さは最大100μm
程度であるので900℃の酸化に対しては数百時間でそ
の効力を失うと言える。Therefore, when aluminizing under normal conditions,
The maximum thickness of the AtgTi layer formed on the surface is 100 μm
Therefore, it can be said that it loses its effectiveness against oxidation at 900°C in several hundred hours.
(3) アルミナイジング処理により形成されるAt
5Ti層を厚くすれば、酸化防止方法とじての効力の延
長が望めるが、その場合は処理温度を高く、又は処理時
間を長くする必要がある。しかしながら厚さの増加は温
度、時間の増加に対して直線的な関係にはなく、厚さの
増加速度は次第に低下するために、処理条件を変えても
Az、T i層の大幅な増大は望め女い。(3) At formed by aluminizing treatment
If the thickness of the 5Ti layer is increased, the effectiveness as an oxidation prevention method can be expected to be extended, but in that case, it is necessary to increase the treatment temperature or increase the treatment time. However, the increase in thickness is not linearly related to increases in temperature and time, and the rate of increase in thickness gradually decreases, so even if the processing conditions are changed, the Az, Ti layer will not increase significantly. Hopeful woman.
またその反面、処理温度を高く、処理時間を長くするこ
とによシ、上記+11で言うところの割れの発生が助長
されると言われている。On the other hand, it is said that by increasing the treatment temperature and the treatment time, the occurrence of cracks referred to in +11 above is promoted.
(4)酸化初期の酸化皮膜としては、保護性の酸化皮膜
であるulo、が生成するが、At3’PiがTiAl
に変態することに伴い、’rto=が次第に生成するよ
うになる。従って、長時間酸化の場合、形成される酸化
皮膜はM2O3とT10!の混合組織となるため、酸素
を通過させ易く、また両者の熱膨張率の違いなどによ)
割れ易く、紘く離し易いものになる。(4) At the initial stage of oxidation, a protective oxide film called ulo is formed, but At3'Pi is TiAl
With the metamorphosis into , 'rto= will gradually be generated. Therefore, in the case of long-time oxidation, the oxide film formed is M2O3 and T10! Because it has a mixed structure of
It breaks easily and becomes easily separated.
次に、TiAjの酸化防止方法としてのセラミックコー
ティング法には以下の欠点がある。Next, the ceramic coating method as a method for preventing oxidation of TiAj has the following drawbacks.
(11コーティング層がはく離し易い。(11 The coating layer is easy to peel off.
(2) コーティング層中の微細な気孔の導入は不可
避のため、酸素の侵入を完全には防ぐことができない。(2) Since the introduction of fine pores in the coating layer is unavoidable, it is not possible to completely prevent oxygen from entering.
本発明は、上記したアルミナイジング法及びセラミック
スコーティング法によって耐酸化性を施こされたTiA
l基耐熱合金の有する品質上及び耐久性上の欠点を解消
すると共に、さらに高温でも安定して長時間使用可能な
耐酸化性に富んだTiAl基耐熱基金熱性合金しようと
するものである。The present invention provides TiA that has been made oxidation resistant by the above-mentioned aluminizing method and ceramic coating method.
The purpose of this invention is to eliminate the quality and durability defects of l-based heat-resistant alloys, and to create a TiAl-based heat-resistant alloy with high oxidation resistance that is stable even at high temperatures and can be used for long periods of time.
本発明はTiA!基耐熱合金母材表面に順次At1’l
’i層、A403層が形成され、かつ該AjlTi層と
At、O,層との境界がAt、O,層の気孔部にA4’
r iが侵入した構造の境界層を形成していることを特
徴とする耐酸化性’I’iAt基耐熱合金である。The present invention is based on TiA! At1'l is sequentially applied to the surface of the base heat-resistant alloy base material.
'i layer and A403 layer are formed, and the boundary between the AjlTi layer and the At, O, layer is A4' in the pore area of the At, O, layer.
This is an oxidation-resistant 'I'iAt-based heat-resistant alloy characterized by forming a boundary layer with a structure in which r i has penetrated.
本発明の上記耐酸化性T1AA基耐熱合金は、TiAl
基耐熱合金母材表面に先ずAtを蒸着し、これをアンダ
ーコーティングとしてその上にAl20B を蒸着した
後、熱処理を行うことKよって得られる。このAt及び
At1O,の蒸着層は真空蒸着法、スパッター法又はイ
オンブレーティング法などによって得ることができる。The oxidation-resistant T1AA-based heat-resistant alloy of the present invention comprises TiAl
It is obtained by first vapor-depositing At on the surface of the base heat-resistant alloy base material, using this as an undercoating, vapor-depositing Al20B thereon, and then performing heat treatment. This vapor-deposited layer of At and At1O can be obtained by a vacuum vapor deposition method, a sputtering method, an ion-blating method, or the like.
また熱処理は拡散°を十分に行わせるため(なされるも
のであるが、拡散速度を十分にし、かつTiAl合金母
材の溶融を防いで十分コーティングするためには600
〜1400℃(但し、−旦はk1403の融点660℃
以上に上げる必要あシ)の温度範囲で15〜4時間保持
することが好ましい。In addition, heat treatment is carried out to ensure sufficient diffusion, but in order to ensure a sufficient diffusion rate and to prevent melting of the TiAl alloy base material and coat the TiAl alloy base material sufficiently, it is necessary to
~1400℃ (however, -tan is the melting point of k1403, 660℃)
It is preferable to hold the temperature in the above temperature range for 15 to 4 hours.
こ\で純TiA!の融点は約1400℃であるが、材料
の不純物偏析に伴う融点降下を考慮すると上限温度は1
200℃以下が更に好ましい。This is pure TiA! The melting point of is approximately 1400℃, but considering the melting point drop due to the segregation of impurities in the material, the upper limit temperature is 1400℃.
More preferably, the temperature is 200°C or lower.
TiAl基耐熱合金母材表面に順次^Lを−15〜数μ
m・、程度及びA40Bを数〜数十/1m程度蒸着した
後、真空中又は不活性ガス雰囲気中で600〜1000
℃に1′5−7.S−4時間−程度保持−した場合に°
得ら−れる9本発明の耐醸化性−’I’iAA 、基耐
熱合金の表面付近の構造は内側よ)屓に以下のようにな
る。Sequentially apply ^L to the surface of the TiAl-based heat-resistant alloy base material by -15 to several μ.
600 to 1000 in vacuum or in an inert gas atmosphere after evaporating several to several tens of meters of A40B.
1'5-7. When held for about 4 hours
The structure near the surface of the base heat-resistant alloy is as follows.
TiAl(母材ffl ) −At、’ri (Atと
’lAtの反応によって得られる層) −At!03
+ ktsTi (A4Ti層と下記の層との境界層。TiAl (base materialffl) -At, 'ri (layer obtained by reaction of At and 'lAt) -At! 03
+ktsTi (boundary layer between A4Ti layer and the following layers.
A1.20z中の気孔の中にAt、Tiが侵入した構造
) −Al2O,(ニーティン久層)
〔実施例〕
純度99.7%のスポンジT1、純度9z99%のAt
を使用して溶製したTi−36重量% At合金から
、長さ20■、幅20■、厚さ3■の板状試験片を切多
出し、スパッター法によ、QAtを14■蒸着し、さら
に、との上にAt20s”k ’μm蒸着した。その状
態を第1図に示す。第1図において、1は’I’1At
(Ti−56重量襲At合金)、2はAt層、3はAt
宜os層である。A structure in which At and Ti invade the pores in A1.20z) -Al2O, (Nietin Kulayer) [Example] Sponge T1 with a purity of 99.7%, At with a purity of 9z and 99%
A plate-shaped test piece with a length of 20 cm, a width of 20 cm, and a thickness of 3 cm was cut out from a Ti-36 wt % At alloy produced using a Ti-36 wt% At alloy, and 14 cm of QAt was deposited by sputtering. , and furthermore, 20s"k 'μm of At was deposited on the . The state is shown in FIG. 1. In FIG.
(Ti-56 heavy duty At alloy), 2 is At layer, 3 is At
This is the OS layer.
第1図の状態のものを真空中で800C12時間の熱処
理を施こして第2図に示すような本発明の耐酸化性Ti
Al基耐熱合金を得た。第2図において、1は’I’i
At、 2はA4Ti層、5はALgOB + Al3
Ti層、4はAj、O,層である。The oxidation-resistant Ti of the present invention as shown in FIG. 2 was obtained by heat-treating the product in the state shown in FIG.
An Al-based heat-resistant alloy was obtained. In Figure 2, 1 is 'I'i
At, 2 is A4Ti layer, 5 is ALgOB + Al3
Ti layer, 4 is Aj, O, layer.
第2図の状態の本発明耐酸化性T iAt基耐熱合金を
酸化試験に供した。The oxidation-resistant TiAt-based heat-resistant alloy of the present invention in the state shown in FIG. 2 was subjected to an oxidation test.
酸化試験温度は900℃とし、大気中で所定の時間保持
した後、重量変化を測定し、その結果を第3図に示した
。The oxidation test temperature was 900° C., and after holding in the atmosphere for a predetermined time, weight changes were measured, and the results are shown in FIG.
ま念比較のなめ1、同様にして試験し九未処理のTiA
l、 アルミナイジング処理したTiAl(At、T
i層の厚さは60Am)、及びスパッター法によp A
t、Osを5μmコーティングした’riAtの結果を
併せて第3図に示した。第3図に示す結果よ)、本発明
耐酸化性T iAt基耐熱合金は未処理のTiAlに較
べてはもとよシ、アルミナイジング法及びセラミックス
コーティング法によシ酸化防止したTiAlに較べて酸
化による重量変化が小さく、また皮膜の剥離が生じ逢い
などの著しい耐酸化性の改善を示すことが認められる。Serious comparison 1: Tested in the same way with 9 untreated TiA
l, aluminized TiAl (At, T
The thickness of the i-layer is 60 Am), and the p A
The results of 'riAt coated with t and Os to a thickness of 5 μm are also shown in FIG. The results shown in Fig. 3 show that the oxidation-resistant TiAt-based heat-resistant alloy of the present invention is not only better than untreated TiAl, but also better than TiAl that has been oxidized by aluminizing and ceramic coating methods. It was observed that the weight change due to oxidation was small, and the film showed a significant improvement in oxidation resistance, such as peeling of the film.
なお、第3図において、
0は本発明の耐散化性TiAl基耐熱合金の各時間にお
ける重量変化である。In FIG. 3, 0 represents the weight change over time of the dispersion-resistant TiAl-based heat-resistant alloy of the present invention.
Δはアルミナイジング法(よ)酸化防止したTiAlの
各時間における重量変化でう夛、剥離した皮膜を除いた
ものである。Δ is the value excluding the film that has eroded or peeled off due to the change in weight of TiAl which has been prevented from oxidizing by the aluminiding method.
ムはアルミナイジング法により酸化防止し九TiAlの
各時間における重量変化であシ、剥離した皮膜を含め九
ものである。The weight of TiAl was prevented from oxidation by an aluminizing method, and the weight change at each time was 9.9%, including the peeled off film.
口はセラミックスコーティング法によ)酸化防止したT
iAlの各時間における重量変化であり、剥離した皮膜
を除いたものである。The mouth is made of oxidation-prevented T using ceramic coating method.
This is the change in weight of iAl over time, excluding the peeled film.
lはセラミックスコーティング法によシ酸化防止したT
iAlの各時間における重量変化であシ、剥離した皮膜
を含めたものである。l is T which is prevented from oxidation by ceramic coating method.
This is the change in weight of iAl over time, including the peeled off film.
◇は酸化防止をしていないTiAlの各時間における重
量変化であ)、剥離した皮膜を除いたものである。◇ is the weight change over time of TiAl without oxidation prevention), excluding the peeled film.
◆は酸化防止をしていないTiAlの各時間における重
量変化であシ、剥離した皮膜を含めたものである。◆ indicates the weight change over time of TiAl without oxidation protection, including the peeled film.
(1) 本発明の耐震化性TiAl基耐熱合金のAl
3Ti層はアルミナイジング法による場合よ夕も薄いた
め、表面付近に大きな応力が発生することはなく、アル
ミナイジング法にみられる割れの発生社ない。(1) Al of the earthquake-resistant TiAl-based heat-resistant alloy of the present invention
Since the 3Ti layer is thinner than when using the aluminizing method, large stress does not occur near the surface, and there is no cracking that occurs with the aluminizing method.
(2) コーティング層(A120g層)と母材の境
界においてi Ats’riが存在し、この一部がコー
ティング層中に侵入した構造をとる。このときAt、T
iはコーティング層と母材の接着材として働くため、コ
ーティング層の固着性は大幅に改善できる。(2) i Ats'ri exists at the boundary between the coating layer (A120g layer) and the base material, and a part of it has a structure that penetrates into the coating layer. At this time, At, T
Since i acts as an adhesive between the coating layer and the base material, the adhesion of the coating layer can be greatly improved.
(3) コーティング層中の気孔などを通過して酸素
が侵入した場合、先ず酸化するのはAz、Tiであるた
めAt1O,が生成する。このときコーティング層はA
40mであるので酸化時の表面には、より緻密なA12
0B単層の皮1Nが形成されること(なるため、耐酸化
性は大幅に改善される。(3) When oxygen enters through pores in the coating layer, Az and Ti are oxidized first, so At1O is generated. At this time, the coating layer is A
40m, the surface during oxidation contains more dense A12.
A single layer of 0B skin 1N is formed (because of this, oxidation resistance is greatly improved).
+41 以上の理由から、従来酸化防止技術が不十分
だつ九ために使用温度の上限が700℃程度とされてい
たTiAlを900℃以上においても使用することが可
能になる。同時に耐用時間の大幅延長も可能となるので
、 TiAlの工業的利用範囲が大幅に拡大できる。+41 For the above reasons, it becomes possible to use TiAl even at temperatures above 900°C, although the upper limit of its use temperature was around 700°C due to insufficient oxidation prevention technology. At the same time, it is possible to significantly extend the service life, so the scope of industrial use of TiAl can be greatly expanded.
第1図は本発明の耐酸化性TiC2基合金の製造過程の
一状態を示す模式図、第2図は同合金の構成の模式図、
第3図は本発明合金の効果を示すグラフである。FIG. 1 is a schematic diagram showing one state of the manufacturing process of the oxidation-resistant TiC two-base alloy of the present invention, and FIG. 2 is a schematic diagram of the composition of the alloy.
FIG. 3 is a graph showing the effects of the alloy of the present invention.
Claims (1)
l_2O_3層が形成され、かつ該Al_3Ti層とA
l_2O_3層との境界がAl_2O_3層の気孔部に
Al_3Tiが侵入した構造の境界層を形成しているこ
とを特徴とする耐酸化性TiAl基耐熱合金。Al_3Ti layer, A
A l_2O_3 layer is formed, and the Al_3Ti layer and A
An oxidation-resistant TiAl-based heat-resistant alloy characterized in that the boundary with the Al_2O_3 layer forms a boundary layer having a structure in which Al_3Ti invades the pores of the Al_2O_3 layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21637788A JPH0266155A (en) | 1988-09-01 | 1988-09-01 | Oxidation resistant tial-based heat resistant alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21637788A JPH0266155A (en) | 1988-09-01 | 1988-09-01 | Oxidation resistant tial-based heat resistant alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0266155A true JPH0266155A (en) | 1990-03-06 |
Family
ID=16687618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21637788A Pending JPH0266155A (en) | 1988-09-01 | 1988-09-01 | Oxidation resistant tial-based heat resistant alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0266155A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03193859A (en) * | 1989-12-22 | 1991-08-23 | Nippon Steel Corp | Structural material of ti-al intermetallic compound improved in oxidation resistance and production thereof |
-
1988
- 1988-09-01 JP JP21637788A patent/JPH0266155A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03193859A (en) * | 1989-12-22 | 1991-08-23 | Nippon Steel Corp | Structural material of ti-al intermetallic compound improved in oxidation resistance and production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5514482A (en) | Thermal barrier coating system for superalloy components | |
JP3001161B2 (en) | Aluminum coating for super alloy | |
US5512382A (en) | Porous thermal barrier coating | |
JP4684298B2 (en) | Method of manufacturing high temperature resistant coating containing γ-Ni + γ'-Ni3Al alloy composition modified with platinum metal and reactive element | |
JP4339885B2 (en) | Turbine engine component and substrate coating method | |
Jung et al. | Effect of Cr addition on the properties of aluminide coating layers formed on TiAl alloys | |
Haynes et al. | High-temperature diffusion barriers for protective coatings | |
JPH10507230A (en) | Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same | |
JP2002513081A (en) | Product with corrosion protection layer and method of manufacturing corrosion protection layer | |
JPH08225959A (en) | Method of coating super alloy product with heat-insulating film and heat-insulating film | |
JP2002167636A (en) | Low density oxidation resistant superalloy material capable of thermal barrier coating retention without bond coat | |
JP2001323332A (en) | Alloy film method for depositing it and high temperature apparatus member | |
US6495271B1 (en) | Spallation-resistant protective layer on high performance alloys | |
US10590527B2 (en) | High-temperature protective layer for titanium aluminide alloys | |
US7138189B2 (en) | Heat-resistant Ti alloy material excellent in resistance to corrosion at high temperature and to oxidation | |
Gong et al. | Oxidation behavior of TiAl/TiAl–SiC gradient coatings on gamma titanium aluminides | |
US20080187773A1 (en) | Method for the Protection of Titanium Alloys Against High Temperatures and Material Produced | |
EP1184479A1 (en) | Method of forming a reactive-element containing aluminide on a metallic substrate | |
JPH0266155A (en) | Oxidation resistant tial-based heat resistant alloy | |
JP2922346B2 (en) | Heat-resistant Ti-based alloy | |
JPH09310168A (en) | Heat resistant member and production of heat resistant member | |
Zhang et al. | Preparation and oxidation resistance of a crack-free Al diffusion coating on Ti22Al26Nb | |
JP3332847B2 (en) | Heat resistant member and method of manufacturing heat resistant member | |
JPH0211753A (en) | Tial-type composite member and its production | |
JP2019536905A (en) | Component including nickel-based single crystal superalloy substrate and method for producing the same |