JPH0266152A - Surface hardening method for titanium or titanium alloy - Google Patents

Surface hardening method for titanium or titanium alloy

Info

Publication number
JPH0266152A
JPH0266152A JP21362788A JP21362788A JPH0266152A JP H0266152 A JPH0266152 A JP H0266152A JP 21362788 A JP21362788 A JP 21362788A JP 21362788 A JP21362788 A JP 21362788A JP H0266152 A JPH0266152 A JP H0266152A
Authority
JP
Japan
Prior art keywords
glass
titanium
alloy
layer
hardened layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21362788A
Other languages
Japanese (ja)
Inventor
Isamu Takayama
勇 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21362788A priority Critical patent/JPH0266152A/en
Publication of JPH0266152A publication Critical patent/JPH0266152A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thick hardened layer on a Ti surface by diffusing O, N, C, etc., from the Ti surface at a specific temp. to remove the hardened layer of a specific hardness and heating further the surface at a specific temp., then subjecting the Ti to forming. CONSTITUTION:The Ti or Ti alloy is subjected to a 1st time of heating at 1,000 to 1,600 deg.C in the gas of such atmosphere at which the O, N, and C or >=2 kinds of the elements are diffused from the surface thereof or in such molten bath. The above-mentioned molten bath is adequately >=1 kinds of soda lime glass, barium glass, borosilicate glass, and alumina silicate glass of 650 to 950 deg.C softening point, and enamel, etc., of >=750 deg.C calcination temp. The diffusion hardened layer of the interstitial type elements of the O, N and C is formed on the surface of the Ti or Ti alloy in this way. The layer having >=600 Vickers hardness Hv is removed if such layer is generated in this case. The above- mentioned Ti or Ti alloy is in succession subjected to the 2nd time of the heat treatment at 700 to 1,600 deg.C. The alloy is thereafter subjected to the desired forming such as rolling or forging. The diffusion treatment is executed in a short period of time at a high temp., by which the surface hardening of a low cost is executed.

Description

【発明の詳細な説明】 (産業上の利用分野) チタン及びチタン合金を素材とし、表面が500Hv程
度の約0.1 tm以上の比較的厚い硬化層が必要な板
、部品の製造に利用可能なチタンまたはチタン合金の表
面硬化方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) It can be used to manufacture plates and parts that are made of titanium and titanium alloy and require a relatively thick hardened layer of about 0.1 tm or more on the surface of about 500 Hv. The present invention relates to a method for surface hardening titanium or titanium alloys.

(従来の技術) 従来のチタン及びチタン合金の表面硬化法は、成形済み
のものに対して行われており、硬化法としては、酸素、
窒素等の侵入型硬化法、金属及び金属間化合物を利用し
た硬化法、硬質粉末物質のチタン母材中への分散による
硬化法があり、これらは、加熱炉、電気メツキ、溶射、
イオンブレーティング、プラズマアーク、レーザー等を
用いて行なわれている。このうち、酸素、窒素、炭素ま
たは、これらの内2種以上の元素が、チタン及びチタン
合金の表面から拡散するような雰囲気ガスまたはシアン
含有塩溶融浴中で加熱することで、硬化層を形成する方
法は比較的低コストであり、−船釣に行なわれている。
(Prior art) Conventional surface hardening methods for titanium and titanium alloys are performed on molded products, and hardening methods include oxygen,
There are interstitial hardening methods such as nitrogen, hardening methods using metals and intermetallic compounds, and hardening methods by dispersing hard powder materials into the titanium matrix.
This is done using ion blating, plasma arc, laser, etc. Among these, oxygen, nitrogen, carbon, or two or more of these elements are heated in an atmospheric gas or cyanide-containing salt molten bath that diffuses from the surface of titanium and titanium alloy to form a hardened layer. This method is relatively low cost and is commonly used in boat fishing.

例として、特開昭50−60437号公報、特開昭50
60438号公報、特開昭50−98451号公報、特
開昭5240442号公報、特開昭53−120642
号公報、特開昭53−138936号公報、特開昭56
−146875号公報、特開昭58−161771号公
報、特開昭62〜161947号公報、特開昭62−2
56956号公報記載の方法がある。しかしながら、こ
れらの方法は成形加工後に、硬化処理を行うため、形状
、材質を確保すべく、処理温度を約900”C以下とし
ており、厚く硬化層を形成させるにはかなりの長時間を
必要とする。
For example, JP-A-50-60437, JP-A-50
60438, JP 50-98451, JP 5240442, JP 53-120642
No. 53-138936, Japanese Patent Application Laid-Open No. 1983
-146875, JP 58-161771, JP 62-161947, JP 62-2
There is a method described in No. 56956. However, since these methods perform hardening treatment after molding, the treatment temperature is kept at about 900"C or less to ensure the shape and material quality, and it takes a considerable amount of time to form a thick hardened layer. do.

(発明が解決しようとする課題) 従来の技術では、成形済みのものに対して表面硬化が行
なわれるために、加熱炉を用いて全体を高温にして処理
する方法では、材質や形状を確保するために、β域以上
の高温にすることが出来ない。一方、β域以下の温度で
硬化層を十分に厚くするには長時間が必要で、生産性が
低い。
(Problem to be solved by the invention) In conventional technology, surface hardening is performed on the molded product, so the method of heating the entire product to a high temperature using a heating furnace makes it difficult to secure the material and shape. Therefore, it is not possible to raise the temperature to a temperature higher than the β range. On the other hand, it takes a long time to make the cured layer sufficiently thick at temperatures below the β range, resulting in low productivity.

(課題を解決するための手段) 本発明は、成形加工前に硬化処理を行うことを特徴とす
る表面硬化法であり、すなわち、酸素窒素、炭素または
これらの内2種以上の元素がチタン及びチタン合金の表
面から拡散するようす雰囲気のガスや溶融浴中で第1回
目の加熱を行い、短時間で厚く、侵入型元素の拡散によ
る硬化層を形成させたのち、特定の硬さ以上を有する加
工に不適切な層が発生する場合には、それを除去し、つ
づいて、第2回目の加熱を行い圧延、鍛造等の成形加工
を行うことを特徴とする表面硬化方法である。
(Means for Solving the Problems) The present invention is a surface hardening method characterized by performing a hardening treatment before forming. That is, oxygen, nitrogen, carbon, or two or more of these elements are titanium and The first heating is performed in an atmosphere of gas or molten bath that diffuses from the surface of the titanium alloy to form a thick, hardened layer in a short time due to the diffusion of interstitial elements, and then it has a hardness of at least a certain level. If a layer unsuitable for processing is generated, this surface hardening method is characterized in that it is removed, followed by second heating and forming processing such as rolling or forging.

ここで、第1回目の加熱温度は1000〜1600℃で
あり、酸素、窒素、炭素を含む雰囲気、シアンを含有す
る塩浴などの窒化性溶融浴中または、ソーダ石灰ガラス
、ホウケイ酸ガラスなどの酸化性溶融浴中等で行う。1
000℃未満では硬化層を形成するには時間がかかり生
産性が悪く、1600℃を超えると炉の経済性が著しく
悪くなるためである。
Here, the first heating temperature is 1000 to 1600°C, in an atmosphere containing oxygen, nitrogen, and carbon, in a nitriding melt bath such as a salt bath containing cyanide, or in an atmosphere containing oxygen, nitrogen, and carbon, or in a nitriding melt bath such as a salt bath containing cyanide, or in an atmosphere containing oxygen, nitrogen, and carbon, or in a nitriding melt bath such as a salt bath containing cyanide. Perform in an oxidizing molten bath, etc. 1
This is because if the temperature is less than 1,600°C, it takes time to form a hardened layer and productivity is poor, and if it exceeds 1,600°C, the economical efficiency of the furnace becomes extremely poor.

ここで例として第1図は、加熱温度と、加工に適する4
00〜5008νを有する層の厚さの関係を示した。こ
の様に、高温で加熱することにより短時間で厚い硬化層
をうろことが出来る。本発明では硬化処理の後に加工を
行う。
Here, as an example, Fig. 1 shows the heating temperature and 4 suitable for processing.
The relationship between layer thicknesses with 00 to 5008 ν is shown. In this way, by heating at high temperatures, a thick hardened layer can be coated in a short time. In the present invention, processing is performed after hardening treatment.

ここで、特定の硬さ以上を有する加工に不適切な層とし
ては、ビッカース硬度600Hv以上のものであるが、
これは熱間加工時に割れが発生している硬度を調べ決定
した。尚加工に不適切な層を不必要に作らない方法とし
て、アルゴンガス中に適量の酸素等を含有させたり、シ
アン塩浴中で行なうのもよいが、経済的及び公害問題の
ない点からガラス等の溶融浴を用いると良い。
Here, a layer having a hardness of more than a certain level and unsuitable for processing is a layer having a Vickers hardness of 600 Hv or more,
This was determined by examining the hardness at which cracks occur during hot working. In addition, as a method to avoid unnecessary formation of layers inappropriate for processing, it is also possible to include an appropriate amount of oxygen in argon gas or to perform the process in a cyanide salt bath, but from the viewpoint of economical and non-pollution problems, glass It is recommended to use a molten bath such as

ここでガラス等の溶融浴として、軟化点が650〜95
0℃であるソーダ石灰ガラス、バリウムガラス、ホウケ
イ酸ガラス、アルミノシリケイトガラス及び焼成温度が
750℃以上の琺瑯またはこれらの2種以上の混合物が
よい。軟化点650℃未満のガラスでは、大気中と同様
に加熱によりスケール等の加工に不適切な層が発生する
からであり、950 ”C超では十分に酸素固溶層を形
成しないからである。また焼成温度750℃未満の琺瑯
では、同様にスケール等の加工に不適切な層が発生する
からである。以上の内容を表11表2に示す。
Here, as a molten bath of glass etc., the softening point is 650 to 95.
Soda lime glass, barium glass, borosilicate glass, aluminosilicate glass having a firing temperature of 0°C, enamel having a firing temperature of 750°C or higher, or a mixture of two or more of these are preferred. This is because glass with a softening point of less than 650°C will produce a layer unsuitable for processing, such as scale, due to heating as in the air, and a glass with a softening point of less than 950''C will not form a sufficient oxygen solid solution layer. In addition, if the firing temperature is lower than 750° C., a layer unsuitable for processing such as scale will similarly occur.The above contents are shown in Table 11 and Table 2.

表1 表2 尚溶融浴加熱後、水冷することにより、ガラス、琺瑯は
簡単に除去出来、かつ、組織的にも均一で、靭性が増す
ことが確認された。
Table 1 Table 2 It was confirmed that by cooling with water after heating the molten bath, the glass and enamel could be easily removed, the structure was uniform, and the toughness was increased.

次に加工のための第2回目の加熱を行う。Next, a second heating for processing is performed.

ここで、第2回目の加熱温度は、700〜1600 ”
Cである。第2図に示す様に700℃未満では高温で軟
化する室温で600Hv未満の層といえども母材チタン
に比べて硬く、歪速度0.1〜100 /secの加工
が困難となり、割れが発生するからである。また160
0℃超では、炉の経済性が著しく悪くなるためである。
Here, the second heating temperature is 700 to 1600"
It is C. As shown in Figure 2, even if the layer is less than 600 Hv at room temperature, which softens at high temperatures below 700°C, it is harder than the base material titanium, making it difficult to process at strain rates of 0.1 to 100/sec, and cracking occurs. Because it does. 160 again
This is because if the temperature exceeds 0° C., the economical efficiency of the furnace deteriorates significantly.

(実施例1) JIS 2種相等の50 mm tのチタン板を大気中
で1200℃X17H加熱酸化後、ショットを行い、続
いて片面0.3mmはど溶剤した。この結果表面の硬さ
は約480Hvであった。この板を920 ”Cに再加
熱したのち、5 mm tまで圧延し空冷した。この板
の硬さ分布を第3図に示す。第1図から、圧延前の40
0〜50旧1vを有する硬化層の厚さは約211ffI
lであり、加工により厚さは1/10になるため0、2
 mmの硬化層となるはずであるが、第3図では0、4
 mmとなっている。これは加工による細粒化のために
硬化層厚さが増加したもので、硬化層が不均一に加工さ
れたものではない。
(Example 1) A titanium plate of 50 mm t, such as a JIS type 2 phase, was heated and oxidized in the atmosphere at 1200° C. for 17 hours, shot, and then 0.3 mm thick on one side with a solvent. As a result, the surface hardness was approximately 480 Hv. After reheating this plate to 920"C, it was rolled to 5 mm t and air-cooled. The hardness distribution of this plate is shown in Figure 3. From Figure 1, it can be seen that
The thickness of the cured layer with 0-50 old 1v is about 211ffI
l, and the thickness becomes 1/10 due to processing, so 0,2
It should be a hardened layer of mm, but in Figure 3 it is 0,4 mm.
mm. This is because the thickness of the hardened layer has increased due to grain refinement due to processing, and the hardened layer is not processed unevenly.

(実施例2) JIS 3種相等の25φのチタン棒をホウケイ酸ガラ
ス(商標パイレックス)溶融浴中に1300”CX 4
 H保持後水冷し、ガラスを除去したのち長さ13nv
++に切断し、長さ方向を5mmまで高速鍛造加工した
。その時の加工前加熱温度と、割れの有無および形状の
結果を表3に示す。また900℃で鍛造したものの硬化
層形成状況を第4図に示す。
(Example 2) A 25φ titanium rod of JIS 3 types, etc. was placed in a borosilicate glass (trademark Pyrex) melting bath in a 1300” CX 4
After holding H, cooled with water and removed the glass, the length was 13nv.
It was cut into ++ and forged at high speed to a length of 5 mm. Table 3 shows the pre-processing heating temperature and the presence/absence and shape of cracks. FIG. 4 shows the state of hardened layer formation in a product forged at 900°C.

表3 (発明の効果) 本発明においては、酸素、窒素等の拡散による侵入型硬
化処理を成形加工前に行うため、形状確保上問題となる
高温を用いることが出来、従って短時間の拡散処理で厚
い硬化層をうることが可能であり、また高温で軟化する
ビッカース硬度600Hv未満の表面にして成形加工す
るため、割れ等の問題がなく、以上の硬化処理を加熱炉
のみを用いて行うためコストが安く、また加工後の急冷
や熱処理により組織調整が可能である、等の数多くの利
点がある。
Table 3 (Effects of the Invention) In the present invention, since the interstitial hardening treatment by diffusion of oxygen, nitrogen, etc. is performed before the molding process, it is possible to use high temperatures that pose a problem in securing the shape, and therefore the diffusion treatment can be performed in a short time. It is possible to obtain a thick hardened layer in the process, and since the surface is molded with a Vickers hardness of less than 600 Hv, which softens at high temperatures, there are no problems such as cracking, and the above hardening process is performed using only a heating furnace. It has many advantages, such as low cost and the ability to adjust the structure by rapid cooling or heat treatment after processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加熱温度と、400〜500Hvの硬化層厚さ
との関係を示す図、第2図は温度とビッカース硬さとの
関係を示す図、第3図は板表面からの深さと、ピンカー
ス硬さとの関係を示す図、第4図は円板部品の断面の硬
化分布を示す図である。 第1図 100゜ OO 1;’00     /300 温度(℃) (室玉) 1屋(C) <my+t) 半径力向長さ 第 図 板表力・うの深さ(筑m) 手 続 補 正 二tI: (自発ン 昭(=[J 63年11月12
Figure 1 shows the relationship between heating temperature and hardened layer thickness of 400 to 500 Hv, Figure 2 shows the relationship between temperature and Vickers hardness, and Figure 3 shows the depth from the plate surface and Pinkers hardness. FIG. 4 is a diagram showing the hardening distribution in the cross section of the disk component. Fig. 1 100゜OO 1;'00 /300 Temperature (°C) (Murotama) 1 house (C) <my+t) Radial force direction length Fig. Plate surface force/depth (Chikum) Procedure amendment 2 tI: (Shihansho (=[J November 12, 1963

Claims (2)

【特許請求の範囲】[Claims] (1)酸素、窒素、炭素または、これらの内2種以上の
元素が、チタン及びチタン合金の表面から拡散するよう
な雰囲気のガスまたは溶融浴中で第1回目の加熱を10
00℃〜1600℃で行い、酸素、窒素、炭素の侵入型
元素の拡散による硬化層を形成させたのち、ビッカース
硬度600Hv以上の層が、発生する場合には、それを
除去し、つづいて、第2回目の加熱を700℃〜160
0℃で行い、圧延、鍛造等の成形加工を行うことを特徴
とするチタンまたはチタン合金の表面硬化方法。
(1) The first heating is carried out in a gas or molten bath in an atmosphere where oxygen, nitrogen, carbon, or two or more of these elements diffuse from the surface of titanium and titanium alloy.
After forming a hardened layer by diffusion of interstitial elements such as oxygen, nitrogen, and carbon at 00°C to 1600°C, if a layer with a Vickers hardness of 600Hv or more is generated, it is removed, and then, Second heating to 700℃~160℃
A method for surface hardening titanium or titanium alloy, which is carried out at 0° C. and is characterized by performing forming processes such as rolling and forging.
(2)溶融浴が、軟化点650℃〜950℃であるソー
ダ石灰ガラス、バリウムガラス、ホウケイ酸ガラス、ア
ルミノシリケイトガラス、もしくは焼成温度が750℃
以上の琺瑯またはこれらの2種以上の混合物である特許
請求の範囲第1項記載の表面硬化方法。
(2) The molten bath is soda lime glass, barium glass, borosilicate glass, aluminosilicate glass with a softening point of 650°C to 950°C, or a firing temperature of 750°C.
The surface hardening method according to claim 1, which is the above enamel or a mixture of two or more thereof.
JP21362788A 1988-08-30 1988-08-30 Surface hardening method for titanium or titanium alloy Pending JPH0266152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21362788A JPH0266152A (en) 1988-08-30 1988-08-30 Surface hardening method for titanium or titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21362788A JPH0266152A (en) 1988-08-30 1988-08-30 Surface hardening method for titanium or titanium alloy

Publications (1)

Publication Number Publication Date
JPH0266152A true JPH0266152A (en) 1990-03-06

Family

ID=16642288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21362788A Pending JPH0266152A (en) 1988-08-30 1988-08-30 Surface hardening method for titanium or titanium alloy

Country Status (1)

Country Link
JP (1) JPH0266152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703852A (en) * 2012-06-15 2012-10-03 西北有色金属研究院 Method for composite hydrogen-free oxygen-carburizing on surface of two-phase titanium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703852A (en) * 2012-06-15 2012-10-03 西北有色金属研究院 Method for composite hydrogen-free oxygen-carburizing on surface of two-phase titanium alloy

Similar Documents

Publication Publication Date Title
FR2520858A1 (en) PROCESS FOR THE PRODUCTION OF OVEN ARTICLES FOR THE MANUFACTURE OF METALLIC AND CERAMIC PRODUCTS
JP2004360024A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY MATERIAL
CN108754251A (en) A kind of super abrasive damage resistant aluminum alloy plate materials
JPH0649619A (en) Method and apparatus for treating alloy steel and high-melting metal
EP1571233A1 (en) Method of hardening a beta titanium member
JP2007308788A (en) Nitriding/oxidizing treatment method for metal member and reoxidizing method therefor
JPH0266152A (en) Surface hardening method for titanium or titanium alloy
JP2943626B2 (en) Surface hardening method for titanium material
JPH059703A (en) Surface hardening treatment of titanium material
JP4392087B2 (en) Surface treatment method of die casting mold and die
JPH07268598A (en) Titanium sheet having excellent antidazzle property and its production
JP3267566B2 (en) Method of carburizing and hardening the internal thread of a plastic injection molding machine screw
JP2664276B2 (en) Metal surface hardening method
EP4265366A1 (en) Method for manufacturing tailor welded blank using steel sheet for hot pressing having al-fe-based intermetallic alloy layer
SU1151590A1 (en) Method of strengthening steel articles
JPS6050154A (en) Surface treatment by laser beam
JPH03264108A (en) Method for hot-extruding al containing ti alloy
CN117187621A (en) High-strength wide-width titanium belt and preparation method thereof
JPH02250951A (en) Method for hardening titanium material
JPS62174364A (en) Manufacture of high purity iron-carbon alloy
RU2060105C1 (en) Process of production of article from uranium
JPS63270448A (en) Production of alpha type and alpha type titanium alloy plate
JPH01176060A (en) Aluminum compound coated steel material and production thereof
JP2619979B2 (en) Metal surface hardening method
JPS6264445A (en) Forging method