JPH026614A - Production of silicon carbide fiber - Google Patents

Production of silicon carbide fiber

Info

Publication number
JPH026614A
JPH026614A JP62307491A JP30749187A JPH026614A JP H026614 A JPH026614 A JP H026614A JP 62307491 A JP62307491 A JP 62307491A JP 30749187 A JP30749187 A JP 30749187A JP H026614 A JPH026614 A JP H026614A
Authority
JP
Japan
Prior art keywords
silicon
fiber
fibers
polymer
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62307491A
Other languages
Japanese (ja)
Inventor
Masayoshi Ito
正義 伊藤
Akira Takeuchi
亮 武内
Kenji Iwata
健二 岩田
Mineo Kobayashi
小林 峰生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62307491A priority Critical patent/JPH026614A/en
Priority to KR1019900702572A priority patent/KR920001354B1/en
Priority to DE3855646T priority patent/DE3855646T2/en
Priority to EP88901299A priority patent/EP0301099B1/en
Priority to PCT/JP1988/000065 priority patent/WO1988005779A1/en
Priority to KR1019880701187A priority patent/KR910001078B1/en
Priority to KR1019900702573A priority patent/KR910008295B1/en
Priority to CA000559220A priority patent/CA1340699C/en
Publication of JPH026614A publication Critical patent/JPH026614A/en
Priority to US08/383,712 priority patent/US5596117A/en
Priority to US08/413,115 priority patent/US5508363A/en
Priority to US08/413,169 priority patent/US5620934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber having high tensile strength in high yield of ceramics by spinning a silicon-containing polymeric compound having a specific recurring unit, contacting the obtained fiber with a nitrogen-containing compound having N-H bond to effect the infusibilization of the fiber and calcining the product at high temperature in vacuum, etc. CONSTITUTION:The objective silicon carbide fiber is produced by spinning a silicon-containing polymeric compound having the recurring structural unit of formula (n is 0 or positive integer of 1-10; R1 is H, alkyl or aryl; R2 is alkylene or phenylene) (e.g., butenylsilane polymer), contacting the obtained fiber with a nitrogen-containing compound having at least one N-H bond in a molecule (e.g., n-propylamine) to effect the infusibilization of the fiber and calcining the product in vacuum or in an inert gas atmosphere at 800-2000 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、側鎖にSiH:+基を含有する特定のポリオ
レフィン(含ケイ素高分子化合物)を紡糸し、しかる後
に高温下で焼成して、炭化ケイ素繊維を製造する方法に
関する。
Detailed Description of the Invention [Industrial Application Field] The present invention involves spinning a specific polyolefin (silicon-containing polymer compound) containing a SiH:+ group in the side chain, and then firing it at a high temperature. , relates to a method of manufacturing silicon carbide fibers.

〔従来の技術〕[Conventional technology]

近年、高機能性繊維、特に無機繊維の技術開発状況は著
しいものがあり、例えば炭化ケイ素繊維、Si −Ti
 −C−0系繊維、窒化ケイ素繊維、炭素繊維、ガラス
繊維、SiO□−Ti02繊維などが開発されている。
In recent years, the state of technological development of high-performance fibers, especially inorganic fibers, has been remarkable. For example, silicon carbide fibers, Si-Ti
-C-0 fibers, silicon nitride fibers, carbon fibers, glass fibers, SiO□-Ti02 fibers, etc. have been developed.

その一部はすでに市販され、耐熱性に優れた高強度繊維
として特に樹脂、金属、セラミックス等の基本材料の補
強物質として、今後の大幅な需要の伸びが期待されてい
る。
Some of them are already commercially available, and demand is expected to grow significantly in the future as high-strength fibers with excellent heat resistance, especially as reinforcing materials for basic materials such as resins, metals, and ceramics.

これらのうち、本発明が対象としている炭化ケイ素繊維
は、特にその高温特性から、先端複合材料として特に期
待されており、現在、工業的に製造されているものとし
て、例えば、日本カーボン社が商標「ニカロン」として
製造しているものがある(特公昭57−26527、特
公昭57−53892、特公昭57−38548)。こ
れは直接法で得られるジメチルジクロロシランを出発原
料に用い、下記式(I)、(II)、(I[[)に従っ
て製造されている。
Among these, silicon carbide fiber, which is the object of the present invention, is particularly expected to be used as an advanced composite material due to its high-temperature properties. Some products are manufactured as "Nicalon" (Japanese Patent Publication No. 57-26527, Japanese Patent Publication No. 57-53892, Japanese Patent Publication No. 57-38548). This is produced according to the following formulas (I), (II), and (I[[) using dimethyldichlorosilane obtained by a direct method as a starting material.

+2nNaC1(1) (1)の工程は通常キシレン中において金属ナトリウム
を溶融した後、分散させた状態(〜100℃)にして実
施されているが、未反応の残留ナトリウムの処理が繁雑
である。また、(II)の工程は、高温高圧下(約50
0℃1100気圧)あるいはポリポロシロキサンのごと
き反応促進剤(350℃1常圧)を用いて行われている
が、低分子量のものは使用できず収率も低い(50%以
下)。(I[)の工程は溶融あるいは乾式紡糸後空気中
において不融化処理され、しかる後に窒素中あるいは真
空中で1200乃至1300’Cで焼成して目的とする
SiC繊維が得られているが、かくして得られたSiC
繊維は遊離の炭素(10乃至2Qwt%)あるいはシリ
カ(約20ivt%)が含有されていて、これらが製品
物性、特に高温における強度に悪影響を与えるとされて
いる。
+2nNaC1 (1) The step (1) is usually carried out by melting metallic sodium in xylene and dispersing it (at ~100°C), but the treatment of unreacted residual sodium is complicated. In addition, the step (II) is carried out under high temperature and high pressure (approximately 50
The reaction is carried out using a reaction accelerator such as 0° C. 1100 atm) or polyporosiloxane (350° C. 1 normal pressure), but those with low molecular weights cannot be used and the yield is low (50% or less). In step (I[), after melting or dry spinning, the target SiC fiber is obtained by infusibility treatment in air and then firing at 1200 to 1300'C in nitrogen or vacuum. Obtained SiC
Fibers contain free carbon (10 to 2 Qwt%) or silica (approximately 20 ivt%), which are said to have an adverse effect on product properties, particularly strength at high temperatures.

本発明の目的は、上記した従来法の問題点(すなわち(
1)製造プロセスが繁雑、(2)収率が低い、(3)最
終のSiC繊維中に遊離の炭素あるいはシリカが含まれ
る)を解決し、より経済的で物性にすぐれたSiC繊維
を与える製造法を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems of the conventional method (i.e. (
1) The manufacturing process is complicated, (2) The yield is low, and (3) Free carbon or silica is included in the final SiC fiber It is about providing law.

〔問題点を解決するための手段および作用〕本発明者ら
は、上記した従来法の問題点を解決するために鋭意検討
した結果、本発明を完成させるに至った。
[Means and effects for solving the problems] The present inventors have completed the present invention as a result of intensive studies to solve the problems of the above-mentioned conventional methods.

すなわち本発明は、 (1)一般式(1) %式% (但し、nは0または1乃至10の正の整数、R1は水
素、アルキル基またはアリール基、R2はアルキレン基
またはフェニレン基を示す) で表される繰り返し構造単位を含有する含ケイ素高分子
化合物を紡糸して繊維となし、 (2)該繊維を分子中に少なくともひとつのN−H結合
を含有する含チッ素化合物と接触させ不融化処理し、 (3)  さらに、該不融化処理した繊維を真空中また
は不活性ガス中で800〜2000℃で加熱することを
特徴とする炭化ケイ素繊維の製造方法、 である。
That is, the present invention has the following formula: (1) General formula (1) %Formula% (where n is 0 or a positive integer from 1 to 10, R1 is hydrogen, an alkyl group or an aryl group, and R2 is an alkylene group or a phenylene group) ) A silicon-containing polymer compound containing a repeating structural unit represented by the formula is spun into a fiber, and (2) the fiber is brought into contact with a nitrogen-containing compound containing at least one N-H bond in the molecule. and (3) further heating the infusible fiber at 800 to 2000° C. in vacuum or in an inert gas.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において出発原料として使用するポリマーは、側
鎖にシリル基(SiH3基)を含む炭素系ポリマーであ
って、一般式(1) %式% で表される繰り返し構造単位を含有する含ケイ素高分子
化合物であり、これが本発明のもっとも大きな特徴であ
る。
The polymer used as a starting material in the present invention is a carbon-based polymer containing a silyl group (SiH3 group) in the side chain, and is a silicon-containing polymer containing a repeating structural unit represented by the general formula (1). It is a molecular compound, and this is the most significant feature of the present invention.

式(1)よりなる高分子化合物の重合度mは3以上で、
好ましくは10以上、更に好ましくは50以上である。
The degree of polymerization m of the polymer compound formed by formula (1) is 3 or more,
Preferably it is 10 or more, more preferably 50 or more.

また、nはOまたは1乃至1oの正の整数であり、セラ
ミックス収率(焼成体中のSi重量/含ケイ素高分子化
合物中のSi重量(%))の点からは小さい程好ましく
、最も好ましくはOである。R3は水素、アルキル基ま
たはアリール基であって、例えば、−H,−CH3、−
C2H5、l−C3H7、−Φ(−Φはフェニル基を示
す。以下同じ。)、Φ−C13、−CH2−Φなどがあ
げられ、炭素数の少ないもの程好ましく、水素が最も好
ましい。R2はアルキレン基またはフェニレン基であっ
て、例えば、−CH2−、ゴCH2?21イC)+2テ
4、−ΦCH2−Φ−などであるが、R1と同様炭素数
が小さい程好ましい。なお、上記R0、R2は−COO
II、NO3−−OHなどの官能基を含んでいてもよい
Further, n is O or a positive integer from 1 to 1o, and from the viewpoint of ceramic yield (Si weight in fired body/Si weight in silicon-containing polymer compound (%)), the smaller the value, the more preferable it is. is O. R3 is hydrogen, an alkyl group, or an aryl group, such as -H, -CH3, -
Examples include C2H5, l-C3H7, -Φ (-Φ represents a phenyl group. The same applies hereinafter), Φ-C13, -CH2-Φ, etc., and those with fewer carbon atoms are more preferable, and hydrogen is most preferable. R2 is an alkylene group or a phenylene group, such as -CH2-, CH2?21IC)+2TE4, -ΦCH2-Φ-, and like R1, the smaller the number of carbon atoms, the more preferable it is. In addition, the above R0 and R2 are -COO
It may contain functional groups such as II, NO3--OH, etc.

また、鎖状、環状のいずれでもよく、鎖状の場合はその
末端は水素、アルキル基などである。
Further, it may be either chain-like or cyclic, and in the case of a chain-like structure, the terminal thereof is hydrogen, an alkyl group, or the like.

また、本発明における含ケイ素高分子化合物は、一般式
(1)で表される同種類の繰り返し構造単位のみからな
る重合物であってもよいし、同乙く一般式(1)で表さ
れる互いの異なる種類の繰り返し構造単位からなる重合
物であってもよい。勿論、これらのポリマーの立体規則
性に制限はなく、例えばアイソタクチック、シンジオタ
クチック、アククチック等のいかなる立体構造のもので
も良い。この分子量は特に制限はないが、通常100乃
至10,000,000、好ましくは200乃至1,0
00,000程度のものが易加工性および溶媒への溶解
度等の点で望ましい。
Further, the silicon-containing polymer compound in the present invention may be a polymer consisting only of the same type of repeating structural units represented by the general formula (1), or may be a polymer consisting only of the same type of repeating structural units represented by the general formula (1). It may also be a polymer consisting of different types of repeating structural units. Of course, there is no limit to the stereoregularity of these polymers, and they may have any stereostructure, such as isotactic, syndiotactic, or actuctic. This molecular weight is not particularly limited, but is usually 100 to 10,000,000, preferably 200 to 1.0
00,000 is desirable in terms of ease of processing and solubility in solvents.

また、該繰り返し構造単位とケイ素を含まないその他の
ビニル系ポリマー構造、例えばエチレン、プロピレン、
スチレン、塩化ビニル、ブテン、イソブチン、HMA等
のビニル系由来の繰り返し構造単位とからなる共重合物
であっても良い。かかる共重合はランダム、交互、ブロ
ック若しくはグラフト等の何れであっても構わない。こ
の場合、本発明の構造単位の部分は少なくとも0.1重
量%以上であることが望ましい。これらの共重合物の分
子量は特に制限はないが、通常、100乃至io、oo
o、ooo、好ましくは200乃至1,000.000
程度のものが易加工性および溶媒への溶解度等の点で望
ましい。
In addition, the repeating structural unit and other vinyl polymer structures that do not contain silicon, such as ethylene, propylene,
It may also be a copolymer consisting of repeating structural units derived from vinyl such as styrene, vinyl chloride, butene, isobutyne, HMA, etc. Such copolymerization may be random, alternating, block, or graft. In this case, the content of the structural unit of the present invention is preferably at least 0.1% by weight. The molecular weight of these copolymers is not particularly limited, but is usually 100 to io, oo
o, ooo, preferably 200 to 1,000.000
It is desirable to have a certain degree of ease of processing and solubility in solvents.

本発明で使用する上記含ケイ素高分子化合物は、本発明
の目的から易加工性であること、およびセラミックス収
率が高いことが特に望ましいのは言うまでもないが、こ
れらセラミックス収率、モノマーの得られ易さ、および
ポリマーの製造し易さ、溶融性、溶媒溶解性(加工性)
から、特に好ましい具体例としては、繰り返し構造単位
として、−←CH2−C11→−1−←C1h−CH→
−5iH:+ (Alz SiH:+ もしくは −←CH2−CH→− CHzCHzSiH3 の一種類または二種類以上を含む含ケイ素高分子化合物
およびこれらの共重合物があげられる。
Needless to say, it is particularly desirable for the silicon-containing polymer compound used in the present invention to be easily processable and to have a high ceramic yield for the purpose of the present invention. Ease of manufacturing, meltability, and solvent solubility (processability) of the polymer
As a particularly preferable example, the repeating structural unit is -←CH2-C11→-1-←C1h-CH→
Examples include silicon-containing polymer compounds containing one or more of -5iH:+ (AlzSiH:+ or -←CH2-CH→- CHzCHzSiH3) and copolymers thereof.

本発明で使用する含ケイ素高分子化合物としては、上記
したものが使用されるが、特にその製造方法もしくは重
合方法が規定されるものではなく、種々の方法により製
造したものを好適に用い得る。
As the silicon-containing polymer compound used in the present invention, those mentioned above are used, but the manufacturing method or polymerization method thereof is not particularly defined, and those manufactured by various methods can be suitably used.

例えば、SiH3基を有するα−オレフィンを、チーグ
ラー・ナツタ(Ziegler−Natta )型触媒
(ハロケン化チタン、ハロゲン化バナジウム、ハロゲン
化ジルコニウム等の遷移金属塩とアルキルアルミニウム
)により配位アニオン重合させる方法、金属酸化物(C
r03.5i02、Al2O3等)、水素酸(H2SO
4、H3P0.、HCl0n 、HCI等)、ルイス酸
(BFa 、AlC41、FeC1z 、5nC1<等
)触媒によりカチオン重合させる方法、アルカリ金属(
Li、 Na、K等)、アルキルアルカリ(CzHsN
a、(CzHs)+AI、C6H5Li等)、水酸化物
(NaOI+、 KOH等)触媒によりアニオン重合さ
せる方法、過酸化物を開始剤に用いてラジカル重合させ
る方法などの種々の方法を採用し得る。当然のことなが
ら、重合は気相、液相のいずれでも、また溶媒、無溶媒
(塊状重合)のいずれにおいても実施し得る。またこれ
らの重合においては共存させる水素等によりポリマーの
分子量調節を容易に行い得る。
For example, a method in which an α-olefin having a SiH group is subjected to coordination anionic polymerization using a Ziegler-Natta type catalyst (a transition metal salt such as a titanium halide, a vanadium halide, a zirconium halide, and an alkyl aluminum); Metal oxide (C
r03.5i02, Al2O3, etc.), hydrogen acid (H2SO
4, H3P0. , HCl0n, HCI, etc.), cationic polymerization using Lewis acid (BFa, AlC41, FeC1z, 5nC1, etc.) catalysts, alkali metal (
Li, Na, K, etc.), alkyl alkali (CzHsN
A, (CzHs)+AI, C6H5Li, etc.), an anionic polymerization method using a hydroxide (NaOI+, KOH, etc.) catalyst, and a radical polymerization method using a peroxide as an initiator. Naturally, polymerization can be carried out in either gas phase or liquid phase, and in a solvent or without a solvent (bulk polymerization). Furthermore, in these polymerizations, the molecular weight of the polymer can be easily adjusted by coexisting hydrogen or the like.

重合用モノマーとなる5ino基を含有するα−オレフ
ィンは、種々の方法で製造することができ、本発明にお
いて特に制限するものではないが、例えば下式に示すよ
うな方法を採用できる。
The α-olefin containing a 5ino group, which is a monomer for polymerization, can be produced by various methods, and is not particularly limited in the present invention, but for example, a method as shown in the following formula can be adopted.

1cI H5iCh+CIHzC−(CHz)、−CH=CHz
600  ’C CI −オレフィンを得ることができる(特願昭620888
71、特願昭62−089888 )。蓋し、5iHi
は近年、ポリシリコンやアモルファスシリコン用として
の需要が拡大し、安価にかつ大量に製造されるようにな
ったもので、今後いっそうこの傾向が進むと予想される
新しいケイ素原料である。従って本発明におけるSiH
,l基を含有する含ケイ素高分子化合物は、この5iH
aとオレフィンから得られるモノマーを重合させること
により安易に、かつ安価に製造することが可能である点
に大きな意義があると言える。またこのSiH4を利用
した場合の本発明のポリマーは、前述の従来の技術の項
で述べたごと〈従来のアルキルクロロシランを原料とす
る、例えば下記の繰り返し構造単位を有するポリマー例
えば これらのうち■、■、■、■は5iHaを原料に用いて
おり、特に■、■は■族金属を触媒に用いるヒドロシリ
ル化反応であり、容易に目的とするαに比較し、その製
造は非クロル系で実施することができ、腐食の心配もな
くプロセスも極めて簡単なものとなる。以上のことから
本発明にかかわるポリマーは、将来さらに安価に製造す
ることが可能になるものと思われる。
1cI H5iCh+CIHzC-(CHz), -CH=CHz
600'C CI -olefin can be obtained (Japanese Patent Application No. 620888)
71, patent application No. 62-089888). Cover and 5iHi
In recent years, demand for use in polysilicon and amorphous silicon has expanded, and it has become possible to produce it cheaply and in large quantities, and it is a new silicon raw material that is expected to continue to grow in this trend. Therefore, SiH in the present invention
, l group-containing silicon-containing polymer compound has this 5iH
It can be said that it has great significance in that it can be easily and inexpensively produced by polymerizing a monomer obtained from a and an olefin. In addition, the polymer of the present invention when using this SiH4 is as described in the above-mentioned prior art section. ■, ■, and ■ use 5iHa as a raw material, and in particular, ■ and ■ are hydrosilylation reactions that use group II metals as catalysts, and compared to the target α, their production is carried out in a non-chlorine system. There is no fear of corrosion and the process is extremely simple. From the above, it is believed that the polymer according to the present invention will be able to be manufactured at even lower cost in the future.

更に本発明における含ケイ素高分子化合物は、重合が容
易であるばかりでなく、その加工性(溶融液の流れ性、
溶媒溶解性)もその分子量、立体規則性をコントロール
することにより容易に変化させることができる。さらに
また本発明の含ケイ素高分子化合物中に存在するSiH
3は極めて安定で、空気中においても室温では酸化され
ることなく、150’C近辺の高温でようやく酸化され
るにすぎない。
Furthermore, the silicon-containing polymer compound in the present invention is not only easy to polymerize, but also has good processability (melt flowability,
Solvent solubility) can also be easily changed by controlling its molecular weight and stereoregularity. Furthermore, SiH present in the silicon-containing polymer compound of the present invention
3 is extremely stable and is not oxidized even in air at room temperature, and is only oxidized at high temperatures around 150'C.

本発明における含ケイ素高分子化合物の繊維化は従来の
ポリカルボシラン等、例えば を繰り返し構造単位とするプレポリマーを使用する場合
と基本的には同様な方法で行い得る。
Fiberization of the silicon-containing polymer compound in the present invention can be carried out basically in the same manner as in the case of using a conventional prepolymer having repeating structural units such as polycarbosilane.

すなわち、本発明の含ケイ素高分子化合物が易加工性で
あることを利用して、不活性ガス中で溶融、湿式若しく
は乾式の何れかの紡糸方法、特に好ましくは溶融若しく
は乾式紡糸方法により紡糸する。
That is, taking advantage of the easy processability of the silicon-containing polymer compound of the present invention, it is spun by any of melting, wet or dry spinning methods in an inert gas, particularly preferably by melting or dry spinning methods. .

つぎに得られた繊維を含チッ素化合物で不融化処理する
方法について述べる。本発明における含チッ素化合物と
は、分子内に少なくともひとつのN−H結合を有するも
のであり、具体的にはNH3、NHzNHz、CHJH
z、C2H3NH2、CHz=CH−CHzNHz 、
(CHs)zNH,CH3(C2H5)NH、白 などである。これらの中で沸点が低く、かつ炭素数の少
ないものが望ましい。具体的にはN)In、NH2NH
2、CH2NH2、C2H3NH2、(CHs)Jtl
等である。
Next, a method of infusible treatment of the obtained fibers with a nitrogen-containing compound will be described. The nitrogen-containing compound in the present invention is one having at least one N-H bond in the molecule, specifically NH3, NHzNHz, CHJH.
z, C2H3NH2, CHz=CH-CHzNHz,
(CHs)zNH, CH3(C2H5)NH, white, etc. Among these, those with a low boiling point and a small number of carbon atoms are desirable. Specifically, N)In, NH2NH
2, CH2NH2, C2H3NH2, (CHs)Jtl
etc.

不融化処理方法は本発明において特に制限するものでは
なく、液相あるいは気相のいずれの方法においても行い
得る。
The infusibility treatment method is not particularly limited in the present invention, and may be carried out in either a liquid phase or a gas phase.

例えば、液相で行う場合には、紡糸した繊維を上記した
含チン素化合物の液中に所定の時間浸漬させる方法があ
げられ、この場合にはベンゼン、トルエン、キシレン、
ヘキサン、ヘプタン、エーテル、ジオキサンなどの溶媒
を、またアルカリ金属やアルカリ金属のアマイドを触媒
に用いることができる。反応温度は通常0乃至200’
Cが好ましく、処理時間は反応温度によって異なるが、
通常数十秒から数時間の範囲である。一方、気相で行う
場合には、含チッ素化合物にNH3、CH,NH2、C
2H,、N82などの低沸点化合物を用いることが望ま
しく、反応温度は通常O乃至500℃1好ましくは50
乃至400℃の範囲、処理時間は前述のごとく反応温度
によって異なる。また触媒を用いることも可能である。
For example, when performing the process in a liquid phase, there is a method in which the spun fibers are immersed in a solution of the above-mentioned tinnic compound for a predetermined period of time, and in this case, benzene, toluene, xylene,
Solvents such as hexane, heptane, ether, dioxane, etc., and alkali metals and alkali metal amides can be used as catalysts. The reaction temperature is usually 0 to 200'
C is preferred, and the treatment time varies depending on the reaction temperature,
It usually ranges from several tens of seconds to several hours. On the other hand, when conducting in the gas phase, the nitrogen-containing compounds are NH3, CH, NH2, C
It is desirable to use a low boiling point compound such as 2H, N82, and the reaction temperature is usually 0 to 500°C, preferably 50°C.
The range of the temperature range from 400°C to 400°C and the treatment time vary depending on the reaction temperature as described above. It is also possible to use a catalyst.

引き続いて、不融化処理した繊維を真空中または窒素、
ヘリウム、ネオン、アルゴン、クリプトン等の不活性ガ
ス雰囲気中で、800〜2000“C程度において数分
乃至10時間の範囲で加熱して目的とする炭化ケイ素繊
維とするものである。
Subsequently, the infusible fibers are heated in vacuum or with nitrogen,
The silicon carbide fibers are heated in an inert gas atmosphere such as helium, neon, argon, krypton, etc. at about 800 to 2000"C for several minutes to 10 hours to obtain the desired silicon carbide fibers.

本発明における炭化ケイ素繊維製造方法の特色として、
後述の実施例において説明する如く、セラミックス(S
iC)収率が高いこと、および焼成後の繊維中に遊離の
炭素やシリカがきわめて少ないことがあげられる。
As a feature of the silicon carbide fiber manufacturing method of the present invention,
As explained in the examples below, ceramics (S
iC) High yield and very little free carbon and silica in the fired fibers.

例えば、下記の繰り返し構造単位からなるポリカルボシ
ラン: は、現在SiC繊維用プレポリマーとして使用されてい
るが、繊維化した場合のセラミックス収率はそこそこに
良いものの、遊離の炭素(10iyt%程度)が多く、
また繊維として使用する場合には紡糸過程で行われる酸
素による不融化処理でSiOz(20wt%程度)が混
入、これらが繊維強度に悪影響を与えるとされている。
For example, polycarbosilane consisting of the following repeating structural units is currently used as a prepolymer for SiC fibers, but although the yield of ceramics when made into fibers is moderate, it does not contain free carbon (about 10iyt%). There are many
Furthermore, when used as fibers, SiOz (approximately 20 wt%) is mixed in during the infusibility treatment using oxygen during the spinning process, and these are said to have an adverse effect on fiber strength.

本発明における繊維は、酸素でなく含チッ素化合物で不
融化処理を行うため繊維中に残存するシ=16 リカは殆ど認められず、また炭素が少ないこととあいま
ってすぐれた繊維強度を有する。このことは不融化処理
によって含有される5i3N4(チッ化ケイ素)がシリ
カのように繊維強度に悪影響を与えないことにもよる。
Since the fibers of the present invention are made infusible using a nitrogen-containing compound instead of oxygen, almost no silica remaining in the fibers is observed, and combined with the low carbon content, the fibers have excellent fiber strength. This is also due to the fact that 5i3N4 (silicon nitride) contained in the infusible treatment does not have a negative effect on fiber strength unlike silica.

かくして本発明によれば従来にない高温強度にすぐれた
繊維が得られる。
Thus, according to the present invention, fibers with unprecedented high-temperature strength can be obtained.

本発明による炭化ケイ素繊維は、炭素およびシリカの含
量が少ないことを反映して、以下の実施例にも示すごと
く、従来の方法による繊維に比較して、遥かに高温強度
に優れている。
Reflecting the low carbon and silica content, the silicon carbide fibers of the present invention have far superior high-temperature strength compared to fibers produced by conventional methods, as shown in the Examples below.

なお、本発明の方法において、セラミックス収率が高く
、繊維中に遊離の炭素が少ない理由は明らかではないが
、熱分解過程で最初に5i83基の5i−H結合が切断
されて架橋し、オリゴマーとして系外に飛散しにくくな
ること、また、この分解水素がポリマーの炭化を防いで
いるためと推定される。
Although it is not clear why the method of the present invention has a high ceramic yield and little free carbon in the fibers, the 5i-H bonds of the 5i83 groups are first broken and crosslinked during the thermal decomposition process, forming oligomers. It is presumed that this is because the decomposed hydrogen is less likely to scatter out of the system, and this decomposed hydrogen prevents carbonization of the polymer.

〔実施例〕〔Example〕

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.

実施例1 窒素雰囲気下にてSiH4とアセチレンのヒドロシリル
化反応によって合成したビニルシラン36.7 g 。
Example 1 36.7 g of vinylsilane was synthesized by a hydrosilylation reaction of SiH4 and acetylene under a nitrogen atmosphere.

オレフィン重合用三塩化チタン型触媒(東邦チタン社製
) 1 g、 AI(i−CJq)+ 3.3 ml、
11−ヘプタン150mF!を容量200dのオートク
レーブに仕込み、70℃にて4時間反応させた。反応終
了後、反応液をメタノール中の装入し、ポリマー中の触
媒残渣を除去すると同時に生成したポリマーを析出させ
た。得られたポリマーは19gで、rR1元素分析等の
結果から −f−CI+2− CH→− 3iH+ の繰り返し構造単位を有するポリマーであることを確認
した。このポリマーは空気中室温では安定で、約150
℃で急激に5iHs基が消失しシロキサン結合が生成し
た。また結晶化度は約60%、融点は170乃至180
℃であった。またこの平均分子量は約100,000で
あった(粘度法による。以下同じ)。
Titanium trichloride type catalyst for olefin polymerization (manufactured by Toho Titanium Co., Ltd.) 1 g, AI (i-CJq) + 3.3 ml,
11-Heptane 150mF! was charged into an autoclave with a capacity of 200 d, and reacted at 70°C for 4 hours. After the reaction was completed, the reaction solution was poured into methanol to remove the catalyst residue in the polymer and simultaneously precipitate the produced polymer. The obtained polymer weighed 19 g, and it was confirmed from the results of rR1 elemental analysis etc. that it was a polymer having a repeating structural unit of -f-CI+2-CH→-3iH+. This polymer is stable in air at room temperature and has a
The 5iHs group suddenly disappeared at ℃ and a siloxane bond was formed. Also, the crystallinity is about 60% and the melting point is 170 to 180.
It was ℃. The average molecular weight was approximately 100,000 (based on the viscosity method; the same applies hereinafter).

このポリマーを溶融紡糸法にて紡糸し、しかる後40”
Cに設定したn−プロピルアミンを40wt%、カリウ
ムを5wt%含むジオキサン溶液に通しく接触時間約1
0分間)、直径10μmの有機ケイ素高分子化合物の繊
維を得た。
This polymer was spun using a melt spinning method, and then 40"
A contact time of about 1 is passed through a dioxane solution containing 40 wt% n-propylamine and 5 wt% potassium set at C.
(0 minutes) to obtain organosilicon polymer fibers with a diameter of 10 μm.

この繊維を真空中(I Xl0−’mmHg) 、10
00℃まで10時間かけて昇温予備加熱し、さらにアル
ゴンガス雰囲気中で1200’Cまで昇温し、該温度で
2時間高温焼成し、SiC繊維を得た。この繊維製造に
おけるセラミックス収率は48%、繊維引張強さは84
0Kg/mm2、また焼成物を更に2000℃にて焼成
し、X線回折で調べたが、遊離の炭素による回折ピーク
は8忍められなかった。
This fiber was placed in vacuum (I Xl0-'mmHg), 10
The sample was preheated to 00°C over 10 hours, further heated to 1200'C in an argon gas atmosphere, and fired at this temperature for 2 hours to obtain SiC fibers. The ceramic yield in this fiber production is 48%, and the fiber tensile strength is 84.
The fired product was further fired at 2000°C and examined by X-ray diffraction, but the diffraction peak due to free carbon could not be tolerated.

実施例2〜3 実施例1において、重合用モノマーとしてビニルシラン
のかわりにプロピルシラン、ブテニルシランを用いた以
外は実施例1と同様に実験を行い、それぞれ →C1l□−C1l□千CH2−CH−(JI2SIH
3 CtLzC)IzSiHz の繰り返し構造単位のポリマーを得た。
Examples 2 to 3 Experiments were conducted in the same manner as in Example 1, except that propylsilane and butenylsilane were used instead of vinylsilane as the polymerization monomer, and the results were as follows: →C1l□-C1l□1,000CH2-CH- JI2SIH
A polymer having a repeating structural unit of 3CtLzC)IzSiHz was obtained.

このポリマーを用い、実施例2と同様にして、炭化ケイ
素繊維を得た。
Using this polymer, silicon carbide fibers were obtained in the same manner as in Example 2.

評価結果を第1表に示す。The evaluation results are shown in Table 1.

比較例1 なる繰り返し構造単位のパーメチルポリシラン(新日曹
化工社製、平均分子量的2000 )をオートクレーブ
中400℃1100気圧にて時間加熱焼成して得られた
、 なる繰り返し構造単位のポリカルボシランをそれぞれ用
いた以外は、実施例1と同様にしてポリマー評価を行っ
た。
Comparative Example 1 A polycarbosilane with a repeating structural unit of: permethylpolysilane (manufactured by Shin Nisso Kako Co., Ltd., average molecular weight: 2000) having a repeating structural unit of Polymer evaluation was performed in the same manner as in Example 1, except that each of the following was used.

評価結果を第1表に示す。The evaluation results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明は、新規な含ケイ素高分子化合物を炭化ケイ素繊
維用プレポリマーとして使用する炭化ケイ素セラミック
スの製造方法を提供するものである。本発明において使
用する含ケイ素高分子化合物は、可塑性、溶媒溶解性等
にすぐれ、紡糸が容易であるばかりでなく、これから繊
維を得る方法は、従来のポリカルボシランを原料とする
炭化ケイ素繊維に比較して、セラミックス収率が高いこ
と、および紡糸後の不融化処理工程において酸素の取込
みがないこと、繊維中に含まれる遊離の炭素や特にシリ
カが少ない等のすぐれた特色を有している。このため、
従来の繊維に比較して、引張強度が格段に向上した繊維
が得られるのである。
The present invention provides a method for producing silicon carbide ceramics using a novel silicon-containing polymer compound as a prepolymer for silicon carbide fibers. The silicon-containing polymer compound used in the present invention has excellent plasticity, solvent solubility, etc., and is easy to spin. In comparison, it has superior characteristics such as a high ceramic yield, no oxygen uptake during the infusibility treatment process after spinning, and less free carbon and especially silica contained in the fibers. . For this reason,
This results in fibers with significantly improved tensile strength compared to conventional fibers.

なお、この本発明で使用する繊維用プレポリマーは、例
えば、工業的に入数容易なモノシランからシリル基を含
有するα−オレフィンを製造し、該α−オレフィンを重
合すること等により容易に製造することが可能である。
The fiber prepolymer used in the present invention can be easily produced by, for example, producing an α-olefin containing a silyl group from monosilane, which is industrially easy to produce, and then polymerizing the α-olefin. It is possible to do so.

特許出願人 三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1)一般式(1) ▲数式、化学式、表等があります▼(1) (但し、nは0または1乃至10の正の整数、R_1は
水素、アルキル基またはアリール基、R_2はアルキレ
ン基またはフェニレン基を示す) で表される繰り返し構造単位を含有する含ケイ素高分子
化合物を紡糸して繊維となし、 (2)該繊維を分子中に少なくともひとつのN−H結合
を含有する含チッソ素化合物と接触させ不融化処理し、 (3)さらに、該不融化処理した繊維を真空中または不
活性ガス中で800〜2000℃で加熱することを特徴
とする炭化ケイ素繊維の製造方法。 2 含ケイ素高分子化合物がビニルシランの重合体であ
る特許請求の範囲第1項記載の方法。 3 含ケイ素高分子化合物がブテニルシランの重合体で
ある特許請求の範囲第1項記載の方法。 4 含チッ素化合物が一般式R_1R_2NH(R_1
、R_2は水素、アルキル基、アリール基、あるいはア
ルケニル基)である特許請求の範囲第1項記載の方法。
[Claims] 1) General formula (1) ▲Mathematical formulas, chemical formulas, tables, etc.▼(1) (However, n is 0 or a positive integer from 1 to 10, and R_1 is hydrogen, an alkyl group, or an aryl group. , R_2 represents an alkylene group or a phenylene group) into a fiber by spinning a silicon-containing polymer compound containing a repeating structural unit represented by (3) The silicon carbide fiber is further heated at 800 to 2000°C in vacuum or in an inert gas. manufacturing method. 2. The method according to claim 1, wherein the silicon-containing polymer compound is a vinylsilane polymer. 3. The method according to claim 1, wherein the silicon-containing polymer compound is a polymer of butenylsilane. 4 The nitrogen-containing compound has the general formula R_1R_2NH(R_1
, R_2 is hydrogen, an alkyl group, an aryl group, or an alkenyl group).
JP62307491A 1987-01-28 1987-12-07 Production of silicon carbide fiber Pending JPH026614A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP62307491A JPH026614A (en) 1987-12-07 1987-12-07 Production of silicon carbide fiber
KR1019880701187A KR910001078B1 (en) 1987-01-28 1988-01-28 Process for preparing organosilicon compounds and silicon carbide
DE3855646T DE3855646T2 (en) 1987-01-28 1988-01-28 METHOD FOR PRODUCING ORGANIC SILICON COMPOUNDS AND SILICON CARBIDE
EP88901299A EP0301099B1 (en) 1987-01-28 1988-01-28 Processes for preparing organosilicon compounds and silicon carbide
PCT/JP1988/000065 WO1988005779A1 (en) 1987-01-28 1988-01-28 Processes for preparing organosilicon compounds and silicon carbide
KR1019900702572A KR920001354B1 (en) 1987-01-28 1988-01-28 Process for preparing organosilicon compounds and silicon carbide
KR1019900702573A KR910008295B1 (en) 1987-01-28 1988-01-28 Production of silicon carbide
CA000559220A CA1340699C (en) 1987-02-20 1988-02-18 Preparation process of organosilicon compounds and production process of silicon carbide
US08/383,712 US5596117A (en) 1987-01-28 1995-02-03 Preparation process of organo silicon compounds and production process of silicon
US08/413,115 US5508363A (en) 1987-01-28 1995-03-29 Preparation process of organosilicon compounds and production of silicon carbide
US08/413,169 US5620934A (en) 1987-01-28 1995-03-29 Production process of silicon carbide from organosilicon compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307491A JPH026614A (en) 1987-12-07 1987-12-07 Production of silicon carbide fiber

Publications (1)

Publication Number Publication Date
JPH026614A true JPH026614A (en) 1990-01-10

Family

ID=17969729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307491A Pending JPH026614A (en) 1987-01-28 1987-12-07 Production of silicon carbide fiber

Country Status (1)

Country Link
JP (1) JPH026614A (en)

Similar Documents

Publication Publication Date Title
US4869854A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
Bacque et al. New polycarbosilane models. 1. Poly [(methylchlorosilylene) methylene], a novel, functional polycarbosilane
EP0295062B1 (en) Polysilacyclobutasilazanes
Duguet et al. High molar mass polysilazane: a new polymer
Bourg et al. New stable titanocene and zirconocene catalyst precursors for polysilane synthesis via dehydrocoupling of hydrosilanes
TW201938600A (en) Polyolefin - polydiorganosiloxane block copolymer and method for the synthesis thereof
US5091485A (en) Low viscosity, crosslinkable liquid polysilanes
KR19990022517A (en) Anionic Polymeric Block Copolymers of Ethylene and Cyclic Siloxane Monomers
EP0323062B1 (en) Process for manufacturing organic silazane polymers
Laine et al. Synthetic routes to oligosilazanes and polysilazanes
JPS6317282B2 (en)
JPH026614A (en) Production of silicon carbide fiber
ES2226275T3 (en) PROCEDURE FOR THE PREPARATION OF A CATALYTIC COMPOSITION FOR THE POLYMERIZATION OF ALFA-OLEFINS, CATALYTIC COMPOSITION OBTAINED AND POLYMERIZATION PROCEDURE USING SUCH CATALYTIC COMPOSITION.
JPH0238127B2 (en)
JPS6367486B2 (en)
JPH01239115A (en) Production of silicon carbide fiber
Zhang et al. Synthesis and characterization of a novel preceramic polymer for SiBNC ceramic fibers
JPH01242593A (en) Production of silicon-containing polymer
US20160280810A1 (en) Method to Fabricate Polyolefin Polymer with Hydroxyl Functional Group
EP0301099B1 (en) Processes for preparing organosilicon compounds and silicon carbide
JPH07121801B2 (en) Method for producing silicon carbide
CN115894940B (en) Preparation method of Zr-C-Si main chain-containing single-source ultrahigh-temperature ceramic precursor
Soum et al. Polysilazanes (Through Ring-Opening Polymerization)
US5145813A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
JPH07121802B2 (en) Method for producing silicon carbide