JPH0266104A - Method for forming solid lubricator film on metal member surface - Google Patents

Method for forming solid lubricator film on metal member surface

Info

Publication number
JPH0266104A
JPH0266104A JP21438688A JP21438688A JPH0266104A JP H0266104 A JPH0266104 A JP H0266104A JP 21438688 A JP21438688 A JP 21438688A JP 21438688 A JP21438688 A JP 21438688A JP H0266104 A JPH0266104 A JP H0266104A
Authority
JP
Japan
Prior art keywords
coated film
film
solid lubricant
metal member
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21438688A
Other languages
Japanese (ja)
Other versions
JPH0826365B2 (en
Inventor
Yasuo Sakamoto
坂本 靖雄
Yoshiki Hirai
佳樹 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP63214386A priority Critical patent/JPH0826365B2/en
Publication of JPH0266104A publication Critical patent/JPH0266104A/en
Publication of JPH0826365B2 publication Critical patent/JPH0826365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To form a dense and firm coated layer on a surface of a metallic member at a low cost by pressurizing the metallic member in a die to execute plastic working as well as compressing the coated film after forming dry coated film of solid lubricant on the necessary surface of the metallic member. CONSTITUTION:On the necessary surface of the metallic material, which can be subjected to a cold and hot plastic-working, the solid lubricant dispersant liquid dispersed into a volatile dispersion medium is coated and dried, to form the coated film having thickness of about two or three times of the aimed coated film thickness. Then, the preferable metal material is a sintered metal member, and the void of which exhibits the same adhesion enhancement action of the above coated film. Further, as the solid lubricant coating material, for example, a material in which MoS2 powder and the dispersant are added in a thinner and mixed, is exemplified. Successively, the metal material with the coated film is pressurized with the die, to execute the plastic working, and by compressing the above coated film with the die wall, the coated layer of the dense and firm coated layer is formed on the surface of the above metal member. In this case, the average thickness of the compressed coated film is 2 - 10mum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高い面圧下で使用される焼結合金による機械
要素の形成方法に関し、特に上記金属部材の表面に緻密
で強固な固体潤滑剤の被膜層を形成する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method of forming a mechanical element using a sintered alloy that is used under high surface pressure. The present invention relates to a method of forming a coating layer.

(従来の技術) 従来より、固体潤滑剤は真空中で使用される部品のよう
に油潤滑できない場合であるとか、高い面圧下などの摺
動部に採用されており、また、潤滑油との併用等として
も用いられている。
(Prior art) Solid lubricants have traditionally been used for parts that cannot be lubricated with oil, such as parts used in a vacuum, or for sliding parts that are under high surface pressure. It is also used in combination.

固体潤滑剤は、黒鉛、 MOS 2 、 WS 21 
M。
Solid lubricants include graphite, MOS 2, WS 21
M.

Se2.WSe2等があり、その潤滑方法は、金属部材
の要所表面に固体潤滑剤を塗布あるいは擦り付ける方法
が一般的である。
Se2. There are WSe2 and the like, and the general method of lubrication thereof is to apply or rub a solid lubricant on the important surfaces of the metal member.

その他、真空蒸着、イオンブレーティング、スパッタリ
ング等により潤滑剤被膜を金属部材の表面に形成する方
法があり、この種の被膜形成方法は、[真空中および清
浄環境中のベアリング技術」(MMB編)の第16〜第
24頁、「潤滑ハンドブック」 (日本潤滑学会綿)の
第1131〜第1134頁等の文献中に記載されており
従来より周知の技術である。
There are other methods of forming a lubricant film on the surface of a metal member by vacuum evaporation, ion blasting, sputtering, etc. This type of film formation method is described in [Bearing Technology in Vacuum and Clean Environments] (MMB Edition). It is a conventionally well-known technique, and is described in documents such as pages 16 to 24 of ``Lubricant Handbook'' (published by Japan Society of Lubrication), pages 1131 to 1134.

一方、鉄系あるいは銅系の金属基地中に固体潤滑剤を分
散させた焼結複合材料があり、滑り軸受やリテーナ等に
採用されている。
On the other hand, there are sintered composite materials in which a solid lubricant is dispersed in an iron-based or copper-based metal matrix, and these materials are used in sliding bearings, retainers, and the like.

(発明が解決しようとする課題) 一般に、金属部材の摺動面には多少凹凸があり、充分に
潤滑をしないと凸部が摺りあって摩擦し摩耗してしまう
(Problems to be Solved by the Invention) Generally, the sliding surface of a metal member has some unevenness, and if sufficient lubrication is not provided, the protrusions will rub against each other, resulting in friction and wear.

従来技術のうち油分散固体潤滑剤塗料等を塗布する方法
によれば、金属部材の表面に容易に被膜形成できる反面
、固体潤滑剤膜の量が僅かであるため、高い血圧下の摺
動部としては不十分なことが多く、しかも油の存在に不
具合な部品には適用できないという欠点を有している。
Among the conventional techniques, the method of applying oil-dispersed solid lubricant paint can easily form a film on the surface of the metal member, but on the other hand, the amount of solid lubricant film is small, so it cannot be used on sliding parts under high blood pressure. Moreover, it has the disadvantage that it is often insufficient as a solvent, and it cannot be applied to parts where the presence of oil is problematic.

この場合、揮発性分散媒の塗料を用いて塗布乾燥したも
のは、塗布膜が粗であり金属部材との密着性が悪いため
、摩擦により容易に脱落し易く、潤滑油を伴う場合は簡
単に流出してしまう。
In this case, paints coated and dried using a volatile dispersion medium have a rough coating film and poor adhesion to metal parts, so they easily fall off due to friction, and if lubricating oil is involved, it can easily fall off. It will leak out.

乾燥被膜を得ることができる方法の1つの擦り付は方法
は、潤滑剤を金属基地の凹凸レベルで付着させるもので
、被膜を厚く形成することが困難であり、部材との接着
性は塗布より良いものの金属面が容易に表われ潤滑寿命
は余り期待できない。
One of the methods for obtaining a dry film is the rubbing method, in which the lubricant is applied to the uneven level of the metal base, but it is difficult to form a thick film, and the adhesion to the component is better than coating. Although it is good, the metal surface is easily exposed and the lubrication life is not very promising.

また、真空蒸着、イオンブレーティング、スパッタリン
グ等は、約1μm位までの丈夫な乾燥膜を作ることがで
き、他の方法では得られない優れた耐摩耗性を示す特徴
はあるが、筒状部材の内径奥部に形成しにくく、費用が
高価であるという欠点がある。
Additionally, vacuum evaporation, ion blating, sputtering, etc. can produce a durable dry film down to about 1 μm, and although they have the characteristic of exhibiting excellent abrasion resistance that cannot be obtained with other methods, The drawback is that it is difficult to form deep within the inner diameter of the tube and is expensive.

一方、固体潤滑剤を金属基地中に分散した焼結合金は、
上記したように真空中で使用される部品のように油潤滑
できない場合、高い血圧下など摺動部に利用するには好
適であるが、多量の固体潤滑剤を添加すると材料の強度
が低くなるため、要部に十分な量の固体潤滑を設けるこ
とができない等の問題点を有していた。
On the other hand, sintered alloys with solid lubricants dispersed in the metal matrix are
As mentioned above, when oil lubrication is not possible, such as parts used in a vacuum, it is suitable for use in sliding parts such as under high blood pressure, but adding a large amount of solid lubricant will reduce the strength of the material. Therefore, there were problems such as not being able to provide a sufficient amount of solid lubrication in the main parts.

本発明は、上記のような問題点に鑑みてなされたもので
あり、その目的とするところは、鍛造。
The present invention was made in view of the above-mentioned problems, and its purpose is to forge.

押出し、サイジング、コイニング等の塑性加工によって
作られる金属部品の表面に、緻密で強固な被膜層を低コ
ストに形成する方法を提供することにある。
The object of the present invention is to provide a method for forming a dense and strong coating layer at low cost on the surface of metal parts made by plastic working such as extrusion, sizing, and coining.

(問題点を解決するための手段) すなわち、本発明に係る形成方法は、上記目的を達成す
るために、塑性加工するための金属部材を準備し、その
要部表面に固体潤滑剤の乾燥塗膜を目標被膜厚さの2〜
3倍程度に形成させた後、金属部材を押型内で加圧し塑
性加工するとともに、塗膜を圧縮することにより平均厚
さ2〜10μmの緻密で強固な固体潤滑の層を形成させ
るものである。
(Means for Solving the Problems) That is, in order to achieve the above object, the forming method according to the present invention prepares a metal member for plastic working, and applies a dry solid lubricant to the surface of the main part. The target film thickness is 2~
After being formed to about 3 times the size, the metal member is pressurized in a mold and plastically worked, and the coating film is compressed to form a dense and strong solid lubricant layer with an average thickness of 2 to 10 μm. .

(作用) 本発明に用いられる金属部祠は、冷間および温間で塑性
加工できる金属材料であり、溶製材の場合には、切削加
工面を粗くしたりプラスチングで凹凸を設ける等の加工
を施すと後述する被膜付着性が良くなる。
(Function) The metal part used in the present invention is a metal material that can be plastically worked in cold and warm conditions, and in the case of ingot material, it can be processed by roughening the cut surface or creating unevenness with plasting. By applying this, the film adhesion, which will be described later, will be improved.

従って、好ましい材料は焼結金属部材であり、焼結金属
部材の空孔が上記被膜付着性向上と同じ作用を示す。
Therefore, a preferred material is a sintered metal member, in which the pores exhibit the same effect of improving film adhesion as described above.

鍛造や粉末冶金のサイジング押型のような閉塞型で塑性
加工する場合は、塑性加工する前の部材形状は横断面を
仕上がり形状より小さく、すなわち、部材を押型キャビ
ティに供給する際に、ダイおよびコアに強く接しないク
リアランスを設けた大きさに設計しておくことが必要で
ある。
When plastic forming is performed in a closed die such as a sizing die in forging or powder metallurgy, the part shape before plastic forming has a cross section smaller than the finished shape, which means that when the part is fed into the die cavity, the die and core It is necessary to design the product to a size that provides a clearance to prevent it from coming into strong contact with the material.

これは、キャビティ断面より太いと部材供給時に押型の
人口で塗膜が欠き削られてしまうからである。
This is because if it is thicker than the cavity cross section, the coating film will be chipped and scraped by the force of the die when supplying the member.

固体潤滑材の塗膜は、揮発性分散媒の塗料に浸漬、噴霧
、または刷毛塗りした後乾燥して得られるが、この塗膜
には空隙があり、用いられた固体潤滑剤の粉末粒度およ
び分散濃度によって異なり、塗膜の厚さは仕上がり被膜
厚さの約2〜3倍程度に設定される。
A solid lubricant coating film is obtained by dipping, spraying, or brushing a volatile dispersion medium coating and then drying it, but this coating film has voids and depends on the powder particle size of the solid lubricant used and Depending on the dispersion concentration, the thickness of the coating film is set to about 2 to 3 times the thickness of the finished film.

なお、塗膜は、液が垂れ落ちて不均一な厚さの部分を生
ずるが、後述の圧縮工程でほぼ均一になるとともに、塗
料は有機溶剤などの揮発性液に約20重量%の固体潤滑
剤粉末を分散されたものが好ましく、粉末の沈降や凝集
を防ぐために樹脂。
Note that the coating film will have areas with uneven thickness due to dripping of the liquid, but it will become almost uniform in the compression process described later, and the coating will be coated with a volatile liquid such as an organic solvent and a solid lubricant of approximately 20% by weight. Preferably, the agent powder is dispersed in a resin to prevent the powder from settling or agglomerating.

セルロース等の分散剤が添加される。A dispersant such as cellulose is added.

しかして、所望する面に固体潤滑剤塗膜を設けた金属部
材を押型に入れ、部材の変形抵抗を越えて加圧すると、
部材はキャビティを充填するまで変形し、最終的には押
型内壁に密着し成形されるとともに、潤滑剤塗膜は圧縮
され緻密化し部材表面の四部を充填し強く密着する。
When a metal member with a solid lubricant coating on the desired surface is placed in a mold and pressure is applied beyond the deformation resistance of the member,
The part is deformed until it fills the cavity, and finally it is molded in close contact with the inner wall of the mold, and the lubricant coating is compressed and becomes dense, filling all four parts of the part's surface and adhering strongly.

この場合の加圧力は、通常の鍛造やサイジングと同様に
、金属部材の材料特性および前述したりリアランスの大
きさによって最適条件が決定されるが、本発明にあって
は、押型から抜き出した後の被膜を含む部材寸法が押型
寸法と同じか10μm以下の差になるように設定する。
In this case, as in normal forging and sizing, the optimum conditions for the pressing force are determined by the material properties of the metal member and the above-mentioned tolerance size, but in the present invention, The dimensions of the member including the coating are set so that they are the same as the dimensions of the mold or have a difference of 10 μm or less.

つまり、圧力が低い領域では、部材の変形が少なく押型
壁まで達しないか、固体潤滑剤塗膜を圧縮しないのであ
るが、圧力が高い場合には、部材が押型内にあるとき固
体潤滑剤膜がしっかり固着しているものの、除圧し押型
から抜き出すと、押型および部材の変形復帰が大きいた
め、−旦形成された潤滑被膜に応力がかかり、ひび割れ
または剥離してしまうことによる。
In other words, in areas where the pressure is low, the part deforms so little that it does not reach the mold wall or compresses the solid lubricant film, but in high pressure areas, the solid lubricant film deforms when the part is inside the mold. Although the material is firmly fixed, when the pressure is removed and the material is removed from the mold, the mold and the member undergo a large degree of deformation recovery, which causes stress to be applied to the previously formed lubricating film, causing it to crack or peel off.

通常の溶製金属材料の場合は、部材の弾性限以上の加圧
力が選ばれる。
In the case of ordinary molten metal materials, a pressure greater than the elastic limit of the member is selected.

空孔を有する焼結金属の場合には、応力と歪みの関係が
溶製材料と異なり、低い圧力でも変形するので有利であ
り、かつクリアランスを小さくすることは変形量が少な
くて済む分、圧力が少なくて良い。
In the case of sintered metals that have pores, the relationship between stress and strain is different from that of molten metals, and it is advantageous because it deforms even at low pressures, and reducing the clearance reduces the amount of deformation, so the pressure It's good to have less.

圧縮された被膜の平均厚さは、一般に余り厚すぎると使
用中に変形したり、摩耗して相手部材との隙間が大きく
なる他、材料が無駄であるため10μmが上限とされる
The average thickness of the compressed film is generally set at an upper limit of 10 μm because if it is too thick, it will deform during use, wear out, increase the gap with the mating member, and waste material.

一方、薄い被膜は、高い面圧の場合に潤滑寿命が短いこ
と、および本発明は厚膜の形成を目的としていることか
ら下限を2μmに限定した。
On the other hand, since a thin film has a short lubrication life under high surface pressure and the present invention aims at forming a thick film, the lower limit was limited to 2 μm.

低速荷重でスラスト摺接するような部品には、厚い被膜
が採用可能であり、通常の外接または内接の摺動部品に
は2〜4μmの被膜の厚さが選ばれる。
A thick coating can be used for parts that make thrust sliding contact under low speed loads, and a coating thickness of 2 to 4 μm is selected for ordinary external or internal sliding parts.

なお、被膜の平均厚さは、被膜表面から金属部材の空孔
など大きい凹凸を含まない平均面までの距離で、切断面
を電子顕微鏡で観測して求める。
Note that the average thickness of the coating is the distance from the coating surface to the average surface that does not include large irregularities such as holes in the metal member, and is determined by observing the cut surface with an electron microscope.

上述の塑性加工は、クリアランスを設けた密閉押型を用
いて上下方向を圧縮する方法であるが、この他に、押出
しにより直角方向の断面を減少する方法によっても同様
に被膜を形成することができる。
The above-mentioned plastic working is a method of compressing the film in the vertical direction using a sealed mold with a clearance, but a film can also be formed in the same way by reducing the cross section in the right angle direction by extrusion. .

この場合、小さいダイス角が望ましく、固体潤滑の被膜
状態は断面減少率で制御される。
In this case, a small die angle is desirable, and the state of the solid lubricant coating is controlled by the area reduction rate.

金属部材の内径だけに被膜を施す場合には、コアはテー
パを付けず密閉押型と同様にクリアランスを設け、外径
を圧縮して押出す方法によれば良好な被膜が得られる。
When applying a coating only to the inner diameter of a metal member, a good coating can be obtained if the core is not tapered and a clearance is provided in the same manner as in a closed mold, and the outer diameter is compressed and extruded.

本願発明に係る金属表面の固体潤滑被膜形成方法によれ
ば、通常のサイジングや押出しなどと同じ塑性加工作業
で厚く強固にしかも経済的に固体潤滑被膜を形成するこ
とができる。
According to the method for forming a solid lubricant coating on a metal surface according to the present invention, a thick, strong, and economical solid lubricant coating can be formed by the same plastic working operations as normal sizing and extrusion.

(実施例) 以下、本発明を実施例により詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to Examples.

この実施例は、円筒形状をした焼結金属の内径と外径に
二硫化モリブデンの被膜を施したもので、通常のサイジ
ングと同様な押型を用いて塑性加工する。
In this example, a molybdenum disulfide coating is applied to the inner and outer diameters of a sintered metal having a cylindrical shape, and plastic working is performed using a mold similar to that used for normal sizing.

用いられる焼結金属部材は、密度が6.88/cm’(
密度比86%)の鉄系材料で、表面硬さがHRF30、
圧環強さが45Kg/IIIII12で、寸法はφ6×
φ13X20mmである。
The sintered metal member used has a density of 6.88/cm' (
Iron-based material with density ratio of 86%, surface hardness of HRF30,
The radial crushing strength is 45Kg/III12, and the dimensions are φ6×
It is φ13×20mm.

押型は、ダイ、コア、および上下パンチからなる通常の
金型で、キャビティ入口のグイとコアは、金属部材が入
りやすいようにテーパを設けである。
The press mold is a normal mold consisting of a die, a core, and an upper and lower punch, and the goo at the entrance of the cavity and the core are tapered to allow the metal member to enter easily.

また、グイとコア寸法は、焼結部材との隙間が大きすぎ
ず十分な塗膜厚さを設けられるように、それぞれ焼結金
属部材との隙間を45μmになるようにした。
Further, the dimensions of the goo and the core were such that the gap between the goo and the sintered metal member was 45 μm, so that the gap between the goo and the sintered member was not too large and a sufficient coating thickness could be provided.

固体潤滑剤塗料は、シンナーに二硫化モリブデン粉末を
20重量%および分散剤を添加混合したものであり、こ
の塗料に、金属部材を浸漬および乾燥し、塗膜の厚さを
約15μmにした。
The solid lubricant paint was a mixture of thinner, 20% by weight of molybdenum disulfide powder, and a dispersant, and a metal member was immersed in this paint and dried to give a coating film thickness of approximately 15 μm.

端面部近傍の塗膜の厚さは、塗料が垂れ落ちるため部分
的に厚いところがあるが、そのまま試料とした。
The thickness of the coating film near the end face was partially thick due to the paint dripping down, but it was used as a sample.

第1図は、加圧力と試料寸法との関係を示したもので、
縦軸は押型から取出した試料の寸法と押型寸法との差の
1/2(押型と試料の間隔に相当する)を表わしており
、十符号はダイまたはコアの寸法より大きい状態、−符
号は小さい状態を表わしている。
Figure 1 shows the relationship between pressing force and sample size.
The vertical axis represents 1/2 of the difference between the dimensions of the sample taken out from the mold and the dimensions of the mold (corresponding to the distance between the mold and the sample), where the plus sign indicates a state larger than the dimension of the die or core, and the minus sign indicates a state larger than the die or core dimension. It represents a small state.

また、押型から取出した試料の断面を電子顕微鏡で観察
し固体潤滑剤被膜状況を調べた結果、圧縮が不十分で密
着性が悪い加圧力領域を点線、均一かつ強固に付着して
いる領域を実線、ひび割れや剥離が認められる領域を一
点鎖線で示しである。
In addition, as a result of observing the cross section of the sample taken out from the mold with an electron microscope to examine the state of the solid lubricant coating, we found that the dotted line indicates the pressurized area where compression is insufficient and poor adhesion, and the area where the adhesion is uniform and strong is indicated. The solid line shows the area where cracks and peeling are observed, and the dashed line shows the area.

しかして、試料の外径において、無加圧時の塗膜とダイ
内面との間隔は30μmである。
Therefore, in terms of the outer diameter of the sample, the distance between the coating film and the inner surface of the die when no pressure is applied is 30 μm.

加圧力を増すとともに、間隔が小さくなって2t/cJ
のときダイ寸法とほぼ同じになり、さらに加圧力を高く
するとダイ寸法より太き(なった。
As the pressure increases, the distance decreases to 2t/cJ.
When the pressure was increased, it became almost the same as the die size, and when the pressure was increased further, it became thicker than the die size.

it/c♂では、塗膜が圧縮されていないことを示して
おり、3t/cJ以上ではダイおよび焼結金属部材が変
形復帰している。
It/c♂ indicates that the coating film is not compressed, and above 3t/cJ, the die and sintered metal member return to deformation.

良好な被膜が得られる圧力は、2〜4t/c♂で、それ
以下では不十分であるとともに、それ以上では剥離現象
が認められる。
The pressure at which a good coating can be obtained is 2 to 4 t/c♂; anything less than that is insufficient, and more than that, a peeling phenomenon is observed.

試料の内径において、外径と同様に無加圧時の間隔が3
0μmであり、加圧力を増すとともに間隔が小さくなり
約5t/c+#のときダイ寸法と同じになった。
On the inner diameter of the sample, the interval when no pressure is applied is 3, similar to the outer diameter.
The distance was 0 μm, and as the pressing force was increased, the interval became smaller and became the same as the die size at about 5t/c+#.

部材の塑成変型は、外径方向が優先していることを表わ
している。
The plastic deformation of the member indicates that the outer radial direction has priority.

良好な被膜が得られる圧力は、2t/c♂以」二であり
、それ以下では不十分である。
The pressure at which a good coating can be obtained is 2t/c♂ or higher, and anything less than that is insufficient.

本実施例の場合、内径と外径ともに良好な被膜が得られ
る加圧力は、2〜4t/cdで、被膜平均厚さは6μm
であった。
In the case of this example, the pressing force to obtain a film with good inner and outer diameters was 2 to 4 t/cd, and the average thickness of the film was 6 μm.
Met.

良好な被膜の断面を拡大してみると、固体潤滑着剤が基
材表面部の空孔を埋めており、鉄筆で引き掻いてもその
周辺が剥がれるようなことはない。
If you enlarge the cross section of a good coating, you will see that the solid lubricant fills the pores on the surface of the base material, and the area around it will not peel off even if you scratch it with a pencil.

また、被膜の結合状態を評価するため、3t/cJで塑
性加工した試料と、前記した塗布乾燥試料を有機溶剤に
浸漬し、超音波振動を与えた後乾燥して固体潤滑剤の脱
落重量を測定したが、この結果後者の試料は2時間の浸
漬で82%脱落したが、本実施例の試料は8時間でも重
量減少しなかった。
In addition, in order to evaluate the bonding state of the coating, a sample plastically worked at 3t/cJ and the above-mentioned coated dried sample were immersed in an organic solvent, subjected to ultrasonic vibration, and then dried to determine the weight of the solid lubricant that had fallen off. As a result, 82% of the latter sample fell off after 2 hours of immersion, but the sample of this example did not lose weight even after 8 hours.

さらに、前記と同じ各試料の耐摩耗性を比較した。Furthermore, the wear resistance of the same samples as above was compared.

試験方法は、試料を軸に固定し、この外径面に幅10m
mのS CM415材で作られた固定片を当接して40
Kgの荷重を加え、周速15m1分で摺動させた試料の
摩耗状況を調べたが、その結果、15μm塗膜試料は5
.5時間経過したとき急激に摩耗が激しくなり試験を中
止したが、本実施例の試料は、30時間経過しても異常
摩耗を起こさなかった。
The test method was to fix the sample on a shaft and place a width of 10 m on the outer diameter surface of the sample.
m S 40 by touching the fixed piece made of CM415 material
The wear condition of the sample was examined by applying a load of Kg and sliding at a circumferential speed of 15 m/min. As a result, the 15 μm coating sample was
.. After 5 hours, the wear suddenly became severe and the test was stopped, but the sample of this example did not suffer from abnormal wear even after 30 hours.

(効果) 上記のように、本発明に係る固体潤滑材被膜の形成方法
によれば、金属部材表面に固体潤滑剤分散液を塗布およ
び乾燥して塗膜を形成した後、上記金属部材を押型で加
圧し塑性加工するとともに、押型壁で上記塗膜を圧縮す
るものであるから、通常の塗布では得られない緻密で強
固な被膜で、またスパッタリング等では困難な内径にも
均一な厚膜を形成することができる上、通常のプレス機
械を用いた塑性加工方法により効率良く低コストに形成
できる等の効果を有する。
(Effects) As described above, according to the method for forming a solid lubricant film according to the present invention, after a solid lubricant dispersion is applied to the surface of a metal member and dried to form a coating film, the metal member is pressed into a mold. The coating is pressurized and plastically processed, and the coating film is compressed using the mold wall, so it is possible to create a dense and strong coating that cannot be obtained with normal coating, and it also produces a uniformly thick coating even on the inner diameter, which is difficult to achieve with sputtering, etc. It has the advantage that it can be formed efficiently and at low cost by a plastic working method using an ordinary press machine.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は塑性加工圧力と部材寸法挙動および被膜の状況と
の関係を示すグラフである。 特許出願人 日立粉末冶金株式会社
The drawing is a graph showing the relationship between plastic working pressure, member dimensional behavior, and coating condition. Patent applicant Hitachi Powder Metallurgy Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、金属部材表面に固体潤滑剤分散液を塗布および乾燥
して塗膜を形成した後、上記金属部材を押型で加圧し塑
性加工するとともに、押型壁で上記塗膜を圧縮すること
を特徴とする金属部材表面の固体潤滑剤被膜形成方法。
1. After applying a solid lubricant dispersion to the surface of a metal member and drying it to form a coating film, the metal member is pressurized with a press mold to be plastically worked, and the coating film is compressed with the wall of the press mold. A method for forming a solid lubricant film on the surface of a metal member.
JP63214386A 1988-08-29 1988-08-29 Method for forming solid lubricant film on metal member surface Expired - Fee Related JPH0826365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63214386A JPH0826365B2 (en) 1988-08-29 1988-08-29 Method for forming solid lubricant film on metal member surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63214386A JPH0826365B2 (en) 1988-08-29 1988-08-29 Method for forming solid lubricant film on metal member surface

Publications (2)

Publication Number Publication Date
JPH0266104A true JPH0266104A (en) 1990-03-06
JPH0826365B2 JPH0826365B2 (en) 1996-03-13

Family

ID=16654930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214386A Expired - Fee Related JPH0826365B2 (en) 1988-08-29 1988-08-29 Method for forming solid lubricant film on metal member surface

Country Status (1)

Country Link
JP (1) JPH0826365B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837309A (en) * 1971-09-14 1973-06-01
JPS56163202A (en) * 1980-05-20 1981-12-15 Tokico Ltd Production of sintered body parts
JPS61166904A (en) * 1985-01-18 1986-07-28 Isamu Kikuchi Manufacture of sintered metallic body using molybdenum disulfide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837309A (en) * 1971-09-14 1973-06-01
JPS56163202A (en) * 1980-05-20 1981-12-15 Tokico Ltd Production of sintered body parts
JPS61166904A (en) * 1985-01-18 1986-07-28 Isamu Kikuchi Manufacture of sintered metallic body using molybdenum disulfide

Also Published As

Publication number Publication date
JPH0826365B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
Kato et al. Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide
US4118009A (en) Sintered ball valve
US4228670A (en) Process for the isothermal forging of a work piece
US3574658A (en) Dry-lubricated surface and method of producing such surfaces
Sagisaka et al. Evaluation of environmentally friendly lubricant for aluminum cold forging using friction test based on spline extrusion
JP2009293128A (en) Surface treatment method for high-strength steel machine part and sealing system obtained by implementing the method
Sliney Self-lubricating composites of porous nickel and nickel-chromium alloy impregnated with barium fluoride-calcium fluoride eutectic
Tang et al. Tribological performance of MoS2 coating on slipper pair in axial piston pump
US4232436A (en) Powder metallurgy production of spherical articles, such as bearing elements
Raadnui et al. Tribological behaviour of sintered 316L stainless steel impregnated with MoS2 plain bearing
US1923514A (en) Low limit bearing and method of making same
Hansen et al. Two new methods for testing lubricants for cold forging
US3127224A (en) Bearing
Nevosad et al. Tribological interaction of manganese phosphate coatings with grease and solid lubricant particles
JPH0266104A (en) Method for forming solid lubricator film on metal member surface
JPH11293304A (en) Double-layered sintered sliding member and its production
Prasad et al. Effects of some solid lubricants suspended in oil toward controlling the wear performance of a cast iron
CN109852869B (en) Anti-occlusion sintering material and preparation method and application thereof
Chen et al. Tribological properties of copper-embedded self-lubricating bearing materials
JP2002363616A (en) Sintered product with excellent sliding characteristic, and its manufacturing method
EP1159097B1 (en) Method for forming metal parts by cold deformation
EP0719608A2 (en) Self-lubricating composite powder alloy
Liu et al. Effect of surface rolling process on rolling contact fatigue behavior and failure mechanism of powder metallurgy steel
Ankudimov et al. The effect of vibro-finishing treatment on the porosity of the surface layer of powder metallurgy products
Bay et al. Simulation of friction and lubrication in cold forging

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees