JPH026592B2 - - Google Patents

Info

Publication number
JPH026592B2
JPH026592B2 JP24666985A JP24666985A JPH026592B2 JP H026592 B2 JPH026592 B2 JP H026592B2 JP 24666985 A JP24666985 A JP 24666985A JP 24666985 A JP24666985 A JP 24666985A JP H026592 B2 JPH026592 B2 JP H026592B2
Authority
JP
Japan
Prior art keywords
anaerobic
sludge
treatment
wastewater
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24666985A
Other languages
Japanese (ja)
Other versions
JPS62106894A (en
Inventor
Ryoji Terai
Eiji Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Plastics Co Ltd
Original Assignee
Dainippon Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Plastics Co Ltd filed Critical Dainippon Plastics Co Ltd
Priority to JP60246669A priority Critical patent/JPS62106894A/en
Publication of JPS62106894A publication Critical patent/JPS62106894A/en
Publication of JPH026592B2 publication Critical patent/JPH026592B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は汚水処理槽に使用する濾材に関する。
更に詳しくは、本発明は汚水を生物学的処理によ
り浄化する嫌気性濾床に用いる濾材の構造に関す
る。 (ロ) 従来の技術及びこの発明が解決しようとする
問題点 廃水の生物学的処理は好気性菌による好気性処
理と嫌気性菌による嫌気性処理に大別される。好
気性処理は反応時間が短く、良好な処理水質が得
られるために、一般的に廃水は活性汚泥法及び生
物模法で代表される好気性処理で処理されてき
た。一方嫌気性処理はごく小規模の前処理として
採用されたものの、殆んどは、し尿や汚泥処理の
一部に使われたにすぎない。しかしながら、最近
廃水処理に省エネルギー化が推進される様になつ
て、嫌気性処理が見直されてきた。つまり好気性
処理は絶えず曝気により酸素を供給しなければな
らず、この装置に大きな動力費が必要となる。こ
れに対し嫌気性処理では酸素の供給を必要としな
いばかりではなく、反対に酸素の存在は反応を阻
害するのである。このように曝気操作が不要であ
ることは動力費が著しく節減されることになり省
エネルギー化ができる。また嫌気性処理の終産物
はメタンと炭酸ガスであり、前者のメタンはエネ
ルギー源として回収できるし、廃水中の病原微生
物や寄生虫卵は速やかに死滅する。嫌気性処理は
このような利点があるものの反応速度が遅い、処
理水質が悪い、微生物と汚濁物質との接触効率が
悪いなどの欠点がある。 ところで具体的に産業排水、下水道、し尿等の
排水処理或いは生活雑排水との合併処理には主に
好気性菌による生物学的処理が普及し主流となつ
いるが好気性菌による接触曝気槽の前に沈澱分離
槽又は嫌気性濾床を配置して、接触曝気槽の負荷
を軽減し浄化能力を向上する方法が最近行なわれ
つある。沈澱分離槽は処理装置の構造が簡単であ
り、維持管理は容易であるが嫌気性微生物の反応
速度が遅いことから滞留時間を長くとる必要があ
り、そのため2槽以上4槽以下位の槽を接続した
り、槽容量を大きくするほか、流量変動が大きい
と嫌気性菌が洗い出されてしまい、浄化能力が著
しく低下する等の問題点がある。従つて現在の構
造では汚水中の固形物を分離する働きしか行なわ
れていない。これに対して濾床を充填した嫌気性
濾床法は多量の嫌気性菌の棲息を可能とし、かな
りの汚水中の有機物の分解が期待できることから
最近とくに合併式浄化槽の前処理法として実用化
が進められつつある。この方法の利点としては、 生物処理槽内に接触濾材が充填されているの
で汚泥を返送する必要がなく維持管理が容易で
ある。 汚泥生成量が少なく、かつ汚泥の沈降性も良
好である。 多量の電力を要する曝気を全く必要としな
い。 等がある。しかし反面、嫌気性菌の膜体に対する
付着力が一般的に弱く、捕促がしにくい欠点があ
る。 かくして、嫌気性濾床に使用されている濾材の
多くは立体網状体やひも状接触材で好気性菌に用
いられる平板状接触材が使用される場合もある。
網状体・ひも状体は好気性濾床の濾材としては好
適であるが嫌気性濾床はエヤーレーシヨンによる
曝気撹拌がないために嫌気性濾材としては次の問
題があつた。 菌(微生物)の捕促性が良くない。 槽内の汚水の流れを阻害する様な構造であり
撹拌効果が悪い。 目づまりして汚泥の閉塞が生じ易い。 網状体は充填する容器や枠体を、ひも状体は
上下に張る枠体を必要とするため設備や充填作
業に手間がかかり建設コスト高になる。 一方、好気性菌に使用される平板状接触材(例
えば特公昭47−7301号公報参照)、又は水平断面
で屈曲しているが各屈曲面が垂直な接触材を用い
ると嫌気性菌は付着力が弱いため、捕促効率が著
しく低下するという問題点があつた。 (ハ) 問題点を解決するための手段及びその作用 この発明は、同一形状で略垂直の多数のシート
を、平面上で交互に半回転させて重ね合せ、接触
部分を接着してブロツク状に構成してなり、 その各シートは、水平断面では連続して屈曲
し、その各屈曲面が全体的に垂直に対し一方に傾
斜して、それらの傾斜する各屈曲面に垂直断面略
L字状の汚泥一時捕促用凹部を傾斜方向に間隔を
有して形成し、 且つその凹部の底面部が、幅方向に傾斜し、更
に奥行方向に汚泥流下抵抗用凸条を備えてなる嫌
気性汚水処理用濾材である。 すなわち、この発明は、各シートを特定の傾斜
屈曲面を連続して有し、且つ交互に反転して重ね
合せられているので、上方から傾斜して降下する
汚水を交差するように混合できると共に、その交
差によつて全体として旋回流を生じさせ、更にそ
の混合旋回流が隣接するシートの接触部にて逆に
分割を繰り返し受けることになる。 またこの発明は、特定の汚泥一時捕促用凹部を
有し、且つその凹部に汚泥流下抵抗用凸条を形成
しているので、汚泥(嫌気性微生物を含む)の一
方的な降下を阻止して廃水と嫌気性微生物との接
触時間を確保できるようにしている。 この発明において使用できる各シートとして
は、プラスチツク、例えば塩化ビニル樹脂の押出
成形シートを真空成形にて賦形したもの、又は塩
化ビニル樹脂の射出成型したもの、その他金属板
に凹凸成形したものが使用できる。特に押出成形
シートを真空成形したものは、汚泥一時捕促用凹
部の成形において、その凹部の肉厚を小さくする
ことになるので、一般の構造材、発生するメタ
ン、炭酸ガスによつて生じる浮力に耐える構造材
等として、汚泥流下抵抗用凸条の形成が強度アツ
プになり好適である。 この発明のシートに形成される屈曲面の傾斜
は、汚泥の捕促と脱落を適度にするため水平に対
し50〜70゜が好ましく、約60゜がより好ましい。 (ニ) 実施例 以下図に示す実施例に基づきこの発明を詳述す
る。なお、これによつてはこの発明が限定される
ものではない。 まず、第3図において、嫌気性汚水処理用濾材
1は、廃水処理装置Hの前処理槽である嫌気性濾
床2内に浸漬使用され、3は廃水流入路、4はガ
ス抜き管、5は汚泥排出路である。 なお、6は接触曝気槽で、7はこの槽と嫌気性
濾床2との接続路、8はその好気性接触材、9は
散気管である。10は最終処理用付属槽で、11
はその余剰汚泥排出路、12は処理水取出路であ
る。 而して、嫌気性汚水処理用濾材1は、特に第1
〜2図において、同一形状で垂直の多数のシート
15,16,17…を平面上で交互に半回転
(180゜)させて重ね合せ、接触部分を接着しブロ
ツク状に構成してなる。 シート15は、押出成形により得られた塩化ビ
ニル樹脂板を真空成形したもので、水平断面では
連続して屈曲し、その各屈曲面18,19…が全
体的に垂直に対し一方に傾斜している。 またそれらの各屈曲面18,19…には、垂直
断面略L字状の汚泥一時捕促用凹部20,21…
を傾斜方向に間隔を有して形成し、且つその凹部
の底面部22を幅方向に傾斜させ(例えば水平に
対し約30゜)、更にその奥行方向、つまり傾斜方向
(下向き)に対して略直角に、垂直面部23に延
びる汚泥流下抵抗用凸条24,25を形成してい
る。なお、シート16,17はシート15と全く
同一の形状であるので説明を省略する。 ところでこれらのシート15,16,17…
は、重ね合せる際に、隣接するシートの接触部に
適宜接着剤〔例えば、70容量%のテトラハイドロ
フランと30容量%のメチルエチルケトン(MEK)
とからなる溶剤にシート材料を溶かしたもの〕を
用いて強固に接着されている。 かくして、嫌気性濾床2内に流入する廃水(例
えば産業排水又は下水道)は、相隣接するシート
15,16の屈曲面18,19…26,27…に
より、交差混合し、且つ接着される部分により分
流してこれらを繰り返し降下する。また相隣接す
るシート15,16の各屈曲面18,19…2
6,27…は対向しているので、廃水は旋回流と
なつて降下する。 このような旋回流と交差混合分流とにより、嫌
気性微生物と廃水との接触が十分行なわれると共
にシートへの汚泥の必要以上の付着が防止でき、
且つメタン、炭酸ガス等のガスの滞留が防止でき
る。なお、ガスの滞留はブロツク状の嫌気性汚水
処理用濾材1全体に大きな浮力を与えるので、危
険である。 更にこのように嫌気性汚水処理用濾材1内を降
下する廃水は、嫌気性微生物との接触により、汚
泥(嫌気性微生物を含む)を形成し、その汚泥が
徐々に降下して余剰汚泥排出路5から適宜排出さ
れる。しかし通常嫌気性微生物及びそれを含む汚
泥はその性質上好気性微生物に比しシート表面へ
の付着性がきわめて悪く、しかも処理時間が長
い。従つて、上述のような大きな流動性を付与さ
れた廃水は、その汚泥を短時間に降下し、嫌気性
微生物による処理が不十分になるおそれがあつ
た。 しかるに嫌気性汚水処理用濾材1は、汚泥一時
捕促用凹部20,21…を有し、且つその内面部
に汚泥流下抵抗用凸条24,25を形成している
ので、その凹部の底面部22と凸条24,25に
より廃水中の汚泥降下が適宜制限され、汚泥中の
嫌気性微生物と廃水の接触時間を十分確保でき、
廃水の前処理効率の向上がはかれる。要するに、
嫌気性汚水処理用濾材1は、嫌気性微生物を付着
しやすく、しかも増殖した余剰汚泥が容易に脱落
して新しい嫌気性微生物が付着するという適度の
捕促と脱落を交互に繰り返すことによつて新鮮な
汚泥が再生し、処理効果があがるわけである。 またシート間の空間が区切られることなく連通
しているので(シート間の空間が屈曲峯で区切ら
れることがなく)、濾床中に発生するメタンガス、
炭酸ガスなどが抜けやすく、特に上述のごとく嫌
気性汚水処理用濾材に加わる浮力を小さくでき
る。 以上の実施例とは異なり、嫌気性汚水処理用濾
材を構成する各シートに多数の小孔(例えば10〜
50mmφの通孔)を分散配設し、廃水の流量分布を
より均一にすることもできる。更に各シートを重
ね合せて接着する際の接着面積を十分確保するた
めに、各屈曲面の屈曲峯の反応接触個所に例えば
平坦な接着用円形部を形成してもよい(例えば各
シートに円形平坦ボスとそのボスを受ける円形平
坦受けを形成する)。 ここで参考までに嫌気性汚水処理用濾材を構成
するシートに形成される汚泥一時捕促用凹部及び
その凹部内の汚泥流下抵抗用凸条の一般的寸法仕
様例及び実験例を挙げる。 〔一般的寸法仕様例〕 (A) 汚泥一時捕促用凹部 底面部 奥行:5〜15mm,幅:40〜120mm 垂直面部 高さ:15〜45mm,幅:40〜120mm (B) 汚泥流下抵抗用凸条 高さ:1〜3mm 幅:1〜3mm 条数:2〜5条 〔実験例〕 (A) 嫌気性汚水処理用濾材 〈本発明品〉 縦・横・高さ:500×500×500(mm) 構成シート:塩化ビニル樹脂押出成形板(板厚
さ約0.5mm)を真空成形したもの、 屈曲ピツチ:200mm 構成シート間のビツチ(波の1サイクル):80
mm 屈曲高さ(波の全高さ):80mm 汚泥一時捕促用凹部 底面部 奥行:10mm,幅:80mm 垂直面部 高さ:30mm,幅:80mm 汚泥流下抵抗用凸条 高さ:2mm 幅:2mm 条数:2条 〈比較対照品〉 大日本プラスチツク(株)製市販品:クレオパツキ
ン(登録商標)PW80 縦・横・高さ:500×500×480(mm) 構成シート:本発明と同じ 構成シート間のピツチ:80mm 屈曲ピツチ(波のサイクル):125mm 屈曲高さ(波の全高さ):50mm シート間のピツチを確保すると共に両シートを
接着するための平面ボスとそのボスを受ける平面
受けとを形成している。 (B) 嫌気性菌 下水より入手したMLSS濃度約20000ppmの嫌
気性菌(水温24℃) (C) 実験装置 水槽 縦・横・高さ 1×1×2(m) 高さ約500mmの架台上に嫌気性汚水処理用濾材
を載置 水位 1.3m (D) 実験方法 バキユームカーにより徐々に嫌気性菌を水槽中
に入れた(約1.3m3)。この後48時間放置し、次い
で水槽内の嫌気性菌を抜き取り1週間放置後濾材
に付着した菌体の重量をはかりm3当りの濾材の菌
体保持量を換算した。 (E) 試験結果
(a) Industrial Application Field The present invention relates to a filter medium used in a sewage treatment tank.
More specifically, the present invention relates to the structure of a filter medium used in an anaerobic filter bed for purifying wastewater by biological treatment. (b) Prior art and problems to be solved by the present invention Biological treatment of wastewater is broadly classified into aerobic treatment using aerobic bacteria and anaerobic treatment using anaerobic bacteria. Since aerobic treatment requires a short reaction time and provides good treated water quality, wastewater has generally been treated by aerobic treatment, typified by the activated sludge method and the biological simulation method. On the other hand, although anaerobic treatment was adopted as a small-scale pretreatment, it was mostly used only for part of the treatment of human waste and sludge. However, recently, as energy conservation has been promoted in wastewater treatment, anaerobic treatment has been reconsidered. In other words, aerobic treatment requires constant supply of oxygen through aeration, which requires large power costs for this equipment. In contrast, anaerobic treatment not only does not require the supply of oxygen, but on the contrary, the presence of oxygen inhibits the reaction. Since no aeration operation is required in this way, power costs are significantly reduced, resulting in energy savings. Furthermore, the end products of anaerobic treatment are methane and carbon dioxide gas, and the former methane can be recovered as an energy source, and pathogenic microorganisms and parasite eggs in wastewater are quickly killed. Although anaerobic treatment has these advantages, it has disadvantages such as slow reaction rate, poor quality of treated water, and poor contact efficiency between microorganisms and pollutants. By the way, specifically, biological treatment using aerobic bacteria has become popular and mainstream for the treatment of industrial wastewater, sewage, human waste, etc., or the combined treatment with domestic wastewater, but contact aeration tank treatment using aerobic bacteria has become mainstream. Recently, methods have been used to reduce the load on the contact aeration tank and improve the purification capacity by arranging a sedimentation separation tank or an anaerobic filter bed in front of the contact aeration tank. Sedimentation separation tanks have a simple structure and are easy to maintain and manage, but the reaction rate of anaerobic microorganisms is slow, so it is necessary to have a long residence time. In addition to having to connect the tank or increasing the tank capacity, there are also problems such as large fluctuations in the flow rate will wash out anaerobic bacteria and significantly reduce the purification ability. Therefore, the current structure only serves to separate solids from wastewater. On the other hand, the anaerobic filter bed method, in which a filter bed is filled, allows a large number of anaerobic bacteria to live and can be expected to decompose a considerable amount of organic matter in wastewater, so it has recently been put into practical use as a pretreatment method for combined septic tanks. is being advanced. The advantage of this method is that the biological treatment tank is filled with contact filter media, so there is no need to return the sludge and maintenance is easy. The amount of sludge produced is small and the sludge settles well. Aeration, which requires a large amount of electricity, is not required at all. etc. However, on the other hand, the adhesion of anaerobic bacteria to the membrane is generally weak, making it difficult to trap them. Thus, most of the filter media used in anaerobic filter beds are three-dimensional mesh bodies or string-like contact materials, and in some cases, plate-like contact materials used for aerobic bacteria are also used.
Although net-like bodies and string-like bodies are suitable as filter media for aerobic filter beds, anaerobic filter beds have the following problems as they do not require aeration and agitation by air ration. It does not have good ability to trap bacteria (microorganisms). The structure obstructs the flow of wastewater in the tank, and the stirring effect is poor. It tends to become clogged and cause sludge blockage. The net-like material requires a container and frame to be filled, and the string-like material requires a frame to be stretched above and below, which requires time and effort for equipment and filling work, resulting in high construction costs. On the other hand, if a flat contact material used for aerobic bacteria (for example, see Japanese Patent Publication No. 47-7301) or a contact material that is bent in horizontal section but each curved surface is vertical is used, anaerobic bacteria will not be attracted to it. There was a problem in that the trapping efficiency was significantly reduced due to the weak adhesion. (C) Means for solving the problems and their effects This invention involves stacking a large number of substantially vertical sheets of the same shape on a plane by alternately rotating them half a turn, and bonding the contacting parts to form a block. Each of the sheets is continuously bent in a horizontal cross section, each bent surface is inclined to one side with respect to the vertical as a whole, and each inclined bent surface has a substantially L-shaped vertical section. anaerobic sewage comprising recesses for temporarily trapping sludge formed at intervals in the inclination direction, the bottom surface of the recesses being inclined in the width direction, and further provided with protrusions for resisting sludge flow in the depth direction. It is a filter medium for processing. That is, in this invention, each sheet has a specific inclined curved surface in succession, and is alternately reversed and overlapped, so that the sewage that descends from above at an angle can be mixed in a crosswise manner. , their intersection generates a swirling flow as a whole, and furthermore, the mixed swirling flow is repeatedly split at the contact portions of adjacent sheets. In addition, this invention has a specific recess for temporarily trapping sludge, and a protrusion for resisting sludge flow is formed in the recess, so that the unilateral descent of sludge (including anaerobic microorganisms) is prevented. This ensures sufficient contact time between wastewater and anaerobic microorganisms. The sheets that can be used in this invention include plastics, such as extrusion molded sheets of vinyl chloride resin that are formed by vacuum forming, injection molded vinyl chloride resin sheets, and other metal plates that are molded with concave and convex shapes. can. In particular, when extruded sheets are vacuum-formed, the wall thickness of the recesses for temporary sludge collection must be reduced, so the buoyancy generated by general structural materials, methane, and carbon dioxide gas is Formation of protrusions for resistance to sludge flow is suitable for use as a structural material that can withstand high temperatures, as it increases strength. The inclination of the bent surface formed in the sheet of the present invention is preferably 50 to 70 degrees, more preferably about 60 degrees with respect to the horizontal, in order to moderate the capture and shedding of sludge. (d) Examples This invention will be described in detail based on examples shown in the figures below. Note that this invention is not limited to this. First, in FIG. 3, a filter medium 1 for anaerobic wastewater treatment is used by immersing it in an anaerobic filter bed 2 which is a pre-treatment tank of a wastewater treatment device H, 3 is a wastewater inflow channel, 4 is a gas vent pipe, and 5 is the sludge discharge channel. In addition, 6 is a contact aeration tank, 7 is a connection path between this tank and the anaerobic filter bed 2, 8 is its aerobic contact material, and 9 is an aeration pipe. 10 is an attached tank for final treatment, 11
12 is the excess sludge discharge path, and 12 is the treated water extraction path. Therefore, the filter medium 1 for anaerobic wastewater treatment is particularly suitable for the first filter medium 1.
In Figures 1 to 2, a large number of vertical sheets 15, 16, 17, etc. having the same shape are stacked on top of each other by alternately turning half a turn (180 degrees) on a plane, and the contact portions are glued to form a block shape. The sheet 15 is formed by vacuum forming a vinyl chloride resin plate obtained by extrusion molding, and is continuously bent in a horizontal cross section, and each of its bent surfaces 18, 19... is inclined to one side with respect to the overall vertical direction. There is. Further, in each of the bent surfaces 18, 19..., sludge temporary trapping recesses 20, 21... having a substantially L-shaped vertical section are provided.
are formed at intervals in the inclination direction, and the bottom surface part 22 of the recess is inclined in the width direction (for example, about 30 degrees with respect to the horizontal), and furthermore, the bottom part 22 of the recess is inclined in the depth direction, that is, in the inclination direction (downward). Sludge flow resistance protrusions 24 and 25 extending at right angles to the vertical surface portion 23 are formed. It should be noted that the sheets 16 and 17 have exactly the same shape as the sheet 15, so a description thereof will be omitted. By the way, these sheets 15, 16, 17...
When overlapping, apply an appropriate adhesive [e.g., 70% by volume of tetrahydrofuran and 30% by volume of methyl ethyl ketone (MEK) to the contact areas of adjacent sheets.
The sheet material is dissolved in a solvent consisting of the following: Thus, wastewater (for example, industrial wastewater or sewerage) flowing into the anaerobic filter bed 2 is cross-mixed and bonded by the bent surfaces 18, 19, . . . 26, 27 of the adjacent sheets 15, 16. The flow is divided by the flow and these are repeatedly descended. In addition, each bent surface 18, 19...2 of the adjacent sheets 15, 16
6, 27... are facing each other, so the waste water becomes a swirling flow and descends. Such swirling flow and cross-mixing branch flow allow sufficient contact between anaerobic microorganisms and wastewater, and prevent unnecessary adhesion of sludge to the sheet.
In addition, retention of gases such as methane and carbon dioxide can be prevented. Note that gas retention is dangerous because it imparts a large buoyancy to the entire block-shaped filter medium 1 for anaerobic wastewater treatment. Furthermore, the wastewater that descends in the filter medium 1 for anaerobic sewage treatment forms sludge (including anaerobic microorganisms) through contact with anaerobic microorganisms, and the sludge gradually descends into the excess sludge discharge channel. 5 is discharged as appropriate. However, due to their nature, anaerobic microorganisms and sludge containing them generally have extremely poor adhesion to the sheet surface compared to aerobic microorganisms, and furthermore, the treatment time is long. Therefore, the wastewater imparted with the above-mentioned high fluidity descends into sludge in a short period of time, and there is a risk that the treatment by anaerobic microorganisms will be insufficient. However, the filter medium 1 for anaerobic sewage treatment has recesses 20, 21 for temporarily trapping sludge, and has protrusions 24, 25 for resisting sludge flow formed on the inner surface thereof, so that the bottom surface of the recess 22 and the protrusions 24 and 25 appropriately limit the fall of sludge in the wastewater, ensuring sufficient contact time between the anaerobic microorganisms in the sludge and the wastewater,
The efficiency of wastewater pretreatment can be improved. in short,
The filter medium 1 for anaerobic sewage treatment easily attracts anaerobic microorganisms, and furthermore, the excess sludge that has proliferated easily falls off and new anaerobic microorganisms adhere to it. Fresh sludge is regenerated, increasing treatment efficiency. In addition, since the spaces between the sheets are connected without being separated (the spaces between the sheets are not separated by curved ridges), the methane gas generated in the filter bed,
Carbon dioxide gas etc. can escape easily, and in particular, as mentioned above, the buoyancy force applied to the filter medium for anaerobic wastewater treatment can be reduced. Unlike the above embodiments, each sheet constituting the filter medium for anaerobic wastewater treatment has a large number of small holes (for example, 10 to 10 holes).
The flow rate distribution of wastewater can be made more uniform by distributing the holes (50mmφ). Furthermore, in order to ensure a sufficient bonding area when stacking and bonding each sheet, a flat adhesive circular part may be formed at the reaction contact point of the curved ridge of each curved surface (for example, a flat circular part for bonding may be formed on each sheet). form a flat boss and a circular flat receiver that receives the boss). Here, for reference, examples of general dimensional specifications and experimental examples of recesses for temporarily trapping sludge formed in a sheet constituting a filter medium for anaerobic sewage treatment and protrusions for resisting sludge flow within the recesses are listed. [Example of general dimensional specifications] (A) Recess for temporary sludge capture Bottom part Depth: 5 to 15 mm, Width: 40 to 120 mm Vertical part Height: 15 to 45 mm, Width: 40 to 120 mm (B) For sludge flow resistance Convex strips Height: 1 to 3 mm Width: 1 to 3 mm Number of strips: 2 to 5 [Experiment example] (A) Filter medium for anaerobic sewage treatment (product of the present invention) Length, width, and height: 500 x 500 x 500 (mm) Constituent sheet: Vacuum formed from a vinyl chloride resin extrusion molded plate (plate thickness approx. 0.5mm), Bending pitch: 200mm Bitch between constituent sheets (1 cycle of waves): 80
mm Bending height (total height of waves): 80mm Concave part for temporary sludge capture Bottom part Depth: 10mm, Width: 80mm Vertical part Height: 30mm, Width: 80mm Convex strip for resisting sludge flow Height: 2mm Width: 2mm Number of threads: 2 (comparative product) Commercial product manufactured by Dainippon Plastics Co., Ltd.: Kleopatzkin (registered trademark) PW80 Length/width/height: 500 x 500 x 480 (mm) Composition sheet: Same composition as the present invention Pitch between sheets: 80mm Bending pitch (wave cycle): 125mm Bending height (total height of waves): 50mm A flat boss to secure the pitch between sheets and to bond both sheets, and a flat receiver to receive the boss. and is formed. (B) Anaerobic bacteria Anaerobic bacteria with a MLSS concentration of approximately 20,000 ppm obtained from sewage (water temperature 24°C) (C) Experimental equipment Water tank Length/width/height 1 x 1 x 2 (m) On a pedestal with a height of approximately 500 mm A filter medium for anaerobic sewage treatment was placed in the water tank. Water level: 1.3 m (D) Experimental method Anaerobic bacteria were gradually introduced into the tank using a vacuum cleaner (approximately 1.3 m 3 ). After this, it was left to stand for 48 hours, and then the anaerobic bacteria in the aquarium were extracted, and after being left for one week, the weight of the bacteria adhering to the filter medium was measured, and the amount of bacteria held by the filter medium per m 3 was calculated. (E) Test results

【表】 メタン発酵法に代表される嫌気性処理は嫌気性
微生物の増殖および代謝活性を利用した処理法で
あるが、処理効果は菌体保持量の多い方がそれに
反応して大きい。本結果では発明品の濾材は比較
対照品の約10倍の菌体保持量が得られた。 (ホ) 発明の効果 この発明によれば、廃水と嫌気性微生物との接
触を適度に確保でき、高い処理効率が得られ、更
に構造材としての十分な強度が得られる。
[Table] Anaerobic treatment, typified by methane fermentation, is a treatment method that utilizes the growth and metabolic activity of anaerobic microorganisms, but the treatment effect is greater as the amount of bacteria retained increases. In the present results, the filter medium of the invention was able to retain approximately 10 times more bacterial cells than the comparative product. (E) Effects of the Invention According to the present invention, it is possible to ensure appropriate contact between wastewater and anaerobic microorganisms, to obtain high treatment efficiency, and to obtain sufficient strength as a structural material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す部分説明斜
視図、第2図はその汚泥一時捕促用凹部の縦断面
図、第3図はそれを組み込んだ廃水処理装置の一
例を示す構成説明図である。 1……嫌気性汚水処理用濾材、15,16,1
7……シート、18,19……屈曲面、20,2
1……汚泥一時捕促用凹部、24,25……汚泥
流下抵抗用凸条。
Fig. 1 is a partial explanatory perspective view showing an embodiment of the present invention, Fig. 2 is a vertical cross-sectional view of the recess for temporarily trapping sludge, and Fig. 3 is a structural explanation showing an example of a wastewater treatment device incorporating the same. It is a diagram. 1... Filter medium for anaerobic sewage treatment, 15, 16, 1
7... Sheet, 18, 19... Bent surface, 20, 2
1... Concavities for temporary sludge trapping, 24, 25... Convex lines for resisting sludge flow.

Claims (1)

【特許請求の範囲】 1 同一形状で略垂直の多数のシートを、平面上
で交互に半回転させて重ね合せ、接触部分を接着
してブロツク状に構成してなり、 その各シートは、水平断面では連続して屈曲
し、その各屈曲面が全体的に垂直に対し一方に傾
斜して、それらの傾斜する各屈曲面に垂直断面略
L字状の汚泥一時捕促用凹部を傾斜方向に間隔を
有して形成し、 且つその凹部の底面部が、幅方向に傾斜し、更
に奥行方向に汚泥流下抵抗用凸条を備えてなる嫌
気性汚水処理用濾材。
[Scope of Claims] 1. A large number of substantially vertical sheets of the same shape are stacked on top of each other by alternately turning half a turn on a plane, and the contact parts are glued together to form a block shape, and each sheet has a horizontal The cross section is continuously bent, and each of the bent surfaces is inclined to one side with respect to the vertical direction, and a sludge temporary trapping recess with a substantially L-shaped vertical section is formed in each of the inclined bending surfaces in the inclined direction. A filter medium for anaerobic sewage treatment, which is formed with intervals, the bottom surface of the recessed portion is inclined in the width direction, and further provided with protrusions for resisting sludge flow in the depth direction.
JP60246669A 1985-11-01 1985-11-01 Filter material for anaerobic treatment of sanitary sewage Granted JPS62106894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60246669A JPS62106894A (en) 1985-11-01 1985-11-01 Filter material for anaerobic treatment of sanitary sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60246669A JPS62106894A (en) 1985-11-01 1985-11-01 Filter material for anaerobic treatment of sanitary sewage

Publications (2)

Publication Number Publication Date
JPS62106894A JPS62106894A (en) 1987-05-18
JPH026592B2 true JPH026592B2 (en) 1990-02-09

Family

ID=17151850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60246669A Granted JPS62106894A (en) 1985-11-01 1985-11-01 Filter material for anaerobic treatment of sanitary sewage

Country Status (1)

Country Link
JP (1) JPS62106894A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139897U (en) * 1988-03-18 1989-09-25
KR100555826B1 (en) 2003-10-04 2006-03-03 엘지전자 주식회사 Refrigerator
CN108483630B (en) * 2018-03-12 2019-09-27 江西省万年中南环保产业协同研究院有限公司 The processing method and processing unit of organic wastewater based on GY-1 type water treatment filler

Also Published As

Publication number Publication date
JPS62106894A (en) 1987-05-18

Similar Documents

Publication Publication Date Title
US7297274B2 (en) Fixed-film anaerobic digestion of flushed waste
US6811701B2 (en) Fixed-film anaerobic digestion of flushed manure
US5091315A (en) Bioconversion reactor
AU2002348041A1 (en) Fixed-film anaerobic digestion of flushed manure
CN101514047B (en) Compound biological membrane sewage treatment process and system
CN108455799A (en) Sewage disposal system and method
CN108996690A (en) A kind of bio-reaction system and progress control method based on suspended flexible filler
US5560819A (en) Treating system for organic wastes and waste water
CN1935697A (en) Integrated membrane biological fluidized bed sewage treating method and apparatus
CN208218617U (en) Sewage disposal system
CN1821123B (en) Device and method for anaerobic treating waste water and method of propagating active granular bacteria strain at normal termperature
JPH026592B2 (en)
CN101891351B (en) Two-stage anaerobic membrane bioreactor
CN216972119U (en) Black and odorous water biochemical treatment device
EP0560981B1 (en) System for treating organic wastes and waste water
CN201209128Y (en) Composite biological film sewage disposal technique system and apparatus
CN211111290U (en) Three-dimensional layered step-by-step biological purification tank
CN210261475U (en) Rural domestic sewage rewet processing apparatus
CN201737815U (en) Double-stage anaerobic membrane bioreactor
CN208577510U (en) A kind of microkinetic combined film bioreactor
CN208200678U (en) A kind of microorganism sewage water processing system
CN206799388U (en) Container-type variable volume integrated effluent disposal system
CN1061324C (en) Automatic and quick wastewater purification system by biological method
JPS60166094A (en) Treatment of waste water
CN205204995U (en) Livestock/fowl culture wastewater treatment system