JPH0265214A - Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor - Google Patents

Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor

Info

Publication number
JPH0265214A
JPH0265214A JP21697788A JP21697788A JPH0265214A JP H0265214 A JPH0265214 A JP H0265214A JP 21697788 A JP21697788 A JP 21697788A JP 21697788 A JP21697788 A JP 21697788A JP H0265214 A JPH0265214 A JP H0265214A
Authority
JP
Japan
Prior art keywords
mol
weight
parts
terms
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21697788A
Other languages
Japanese (ja)
Other versions
JPH0472369B2 (en
Inventor
Junichi Watari
淳一 渡辺
Katsuhiko Arai
克彦 荒井
Yasushi Inoue
泰史 井上
Koichiro Tsujiku
浩一郎 都竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP21697788A priority Critical patent/JPH0265214A/en
Publication of JPH0265214A publication Critical patent/JPH0265214A/en
Publication of JPH0472369B2 publication Critical patent/JPH0472369B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To contrive accomplishment of a large capacitance all the more with high withstand voltage being maintained by a method wherein the title porcelain composition is composed of the main components of specific parts by weight, Mn compound and SiO2, and said main components are composed of BaTiO3, La2O3, an oxide of the rare-earth element consisting at least of a kind selected from among Ce, Pr, Nd, Sm and Y, TiO2 and CaZrO3. CONSTITUTION:The title porcelain composition is composed of the main components of 100.00 pts.wt., an Mn compound of 0.03 to 0.30 pts.wt. in terms of Mn, and SiO2 of 0.05 to 0.50 pts.wt. The main components are composed of BaTiO3 of 81.5 to 96.5mol.%, La2O3 of 1.0 to 4.0mol% in terms of La, an oxide of the above-mentioned rare-earth element of 0.5 to 3.0mol% in terms of rare-earth element consisting at least of a kind selected from Ce, Pr, Nd, Sm and Y, TiO2 of 1.9 to 10.0mol%, and CaZrO3 of 0.1 to 1.5mol%. When a reduction reoxidation type semiconductor capacitor is manufactured using the above-mentioned porcelain composition, the electrostatic capacitance C of 0.6/cm<2> or more per unit area and dielectric breakdown voltage C of 500V or higher can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は還元再酸化型半導体コンデンサ用磁器組成物及
び磁器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic composition and ceramic for reduction and reoxidation type semiconductor capacitors.

[従来の技術] 半導体磁器コンデンサの1種として還元再酸化型半導体
磁器コンデンサが知られている。この還元再酸化型半導
体磁器コンデンサの誘電体はチタン酸バリウム系磁器か
ら成り、例えば特公昭63−28492号公報に開示さ
れているように、炭酸バリウム(B a CO2)と酸
化チタン(TiO2)と希土類元素の酸化物(Nd、P
r、3m、Bu、Gd、Dy、Laの酸化物の少なくと
も1種)と、Cr、Mn、、Fe、Co及びNiの内の
少なくとも1種の酸化物とから成る混合eA(原料組成
物)を用意し、この成形体を形成し、これを酸化性雰囲
気中で焼結させ、得られた焼結体を還元性雰囲気で加熱
処理し、更に酸化性雰囲気中で加熱処理(再酸化処理)
して得る。
[Prior Art] A reduction and reoxidation type semiconductor ceramic capacitor is known as a type of semiconductor ceramic capacitor. The dielectric of this reduction-reoxidation type semiconductor ceramic capacitor is made of barium titanate ceramic, and as disclosed in Japanese Patent Publication No. 63-28492, for example, it is made of barium carbonate (B a CO2) and titanium oxide (TiO2). Oxides of rare earth elements (Nd, P
Mixture eA (raw material composition) consisting of at least one oxide of r, 3m, Bu, Gd, Dy, La) and at least one oxide of Cr, Mn, , Fe, Co and Ni is prepared, this molded body is formed, this is sintered in an oxidizing atmosphere, the obtained sintered body is heat-treated in a reducing atmosphere, and further heat-treated in an oxidizing atmosphere (re-oxidation treatment).
and get it.

[発明が解決しようとする課題] 上述の還元再酸化型半導体磁器コンデンサは、小型化、
大容量化が図れ、且つ高い耐電圧を得ることかできると
いう特長を有する。しかし、従来の磁器組成物では高耐
電圧を保ったままより一層の大容量化を図ることが困難
であった。即ち、絶縁破壊電圧Vbdを例えば600■
以上にしようとすると、単位面積当りの静電容量Cが0
.3〜0.6μF / c m 2種度に低下し、逆に
容量Cを0.7μF/Cm2以上にしようとすると、絶
縁破壊電圧Vbdが300〜400■程度に低下しな。
[Problems to be solved by the invention] The reduction and reoxidation type semiconductor ceramic capacitor described above has the following problems:
It has the advantage of being able to increase capacity and obtain a high withstand voltage. However, with conventional ceramic compositions, it has been difficult to increase the capacity while maintaining a high withstand voltage. That is, the dielectric breakdown voltage Vbd is set to 600 cm, for example.
If you try to make it more than that, the capacitance per unit area C becomes 0.
.. If the capacitance C is reduced to 3 to 0.6 μF/cm2 or more, and if the capacitance C is increased to 0.7 μF/cm2 or more, the dielectric breakdown voltage Vbd will decrease to about 300 to 400 μF.

そこで、本発明の目的は、絶縁破壊電圧Vbdか500
V以上、単位面積当りの静電容量Cか06μF/cm2
以上の還元再酸化型半導体磁器コンデンサを得ることが
可能な磁器組成物及び磁器を提供することにある。
Therefore, an object of the present invention is to reduce the dielectric breakdown voltage Vbd to 500
V or more, capacitance per unit area C or 06μF/cm2
The object of the present invention is to provide a ceramic composition and ceramic that can produce the above-mentioned reduction and reoxidation type semiconductor ceramic capacitor.

[課題を解決するための手段] 上記目的を達成するための本発明は、10000重量部
の主成分と、Mn(マンガン)に換算して0.03〜0
.30重量部のMn化合物と、0.05〜0.50重量
部ノ8102 (’ei化ケイ素)とから成り、前記主
成分か81.5〜965モル%のBa(チタン酸バリウ
ム)と、La(ランタン)に換算して1.0〜4.0モ
ル%のL a 203 <酸化ランタン)と、Ce(セ
リウム)、Pr(プラセオジム)、Nd(ネオジム)、
Sm(サマリウム)及びY(イツトリウム)の内の少な
くとも1種から成る希土類元素に換算して05〜3.0
モル%の前記希土類元素の酸化物と、1.9〜10.0
モル%のT i O2(酸化チタン)と、0.1〜1.
5モル%のCa Z r O3(ジルコン酸カルシウム
)とから成ることを特徴とする還元再酸化型半導体磁器
コンデンサ用磁器組成物に係わるものである。
[Means for Solving the Problems] The present invention for achieving the above object includes 10,000 parts by weight of the main component and 0.03 to 0 in terms of Mn (manganese).
.. It consists of 30 parts by weight of Mn compound, 0.05 to 0.50 parts by weight of 8102 (silicon 'ei), and the main components include 81.5 to 965 mol% of Ba (barium titanate) and La. (calculated as lanthanum), 1.0 to 4.0 mol% of La 203 <lanthanum oxide), Ce (cerium), Pr (praseodymium), Nd (neodymium),
05 to 3.0 in terms of rare earth element consisting of at least one of Sm (samarium) and Y (yttrium)
mol % of said rare earth element oxide, and 1.9 to 10.0
mol % of T i O2 (titanium oxide) and 0.1 to 1.
The present invention relates to a ceramic composition for a reduction and reoxidation type semiconductor ceramic capacitor characterized by comprising 5 mol% of Ca Z r O3 (calcium zirconate).

なお、上記磁器組成物を焼成及び熱処理することにより
、請求項2に示す磁器を得ることができる。
Incidentally, the porcelain according to claim 2 can be obtained by firing and heat-treating the above-mentioned porcelain composition.

[作 用] 本発明に従う磁器組成物によって還元再酸化型半導体磁
器コンデンサを作製すると、500V以上の絶縁破壊電
圧Vbdを有し且つ0.6μF / cm2以上の単位
面積当りの静電容量Cを得ることができる。
[Function] When a reduced and reoxidized semiconductor ceramic capacitor is manufactured using the ceramic composition according to the present invention, it has a dielectric breakdown voltage Vbd of 500 V or more and a capacitance C per unit area of 0.6 μF/cm2 or more. be able to.

[実施例] 次に、本発明の詳細な説明する。[Example] Next, the present invention will be explained in detail.

第1表の試料No、 1の組成物の主成分を得るために
、 B a T i O3を2000.OOg (90,8
モル%)、 La2O3を29.23g (Laに換算して19モル
%)、 Nd2O3を12.71g (Ndに換算して0゜8モ
ル%)、 Ce O2を11.38g (Ceに換算して0゜7モ
ル%)、 Pr2o3を9.34g (Prに換算して0゜6モル
%)、 T iO2を31.69g (4,2モル%)、Ca 
Z r O3を16.93g (1,0モル%)秤量し
た。即ち、B a T iO3の90.8モル%と、L
aの1.9モル%と、Ndの0.8モル%と、Ceの0
.7モル%と、Prの0.6モル%と、T 102の4
,2モル%と、CaZrO3の1.0モル%との和が1
00モル%となるようにB a T iOL a  O
N d 203、CeO3・    2 3゛ Pr  OTiO2,、CaZrO3を秤量2−23 
゛ しな。
In order to obtain the main component of the composition of Sample No. 1 in Table 1, B a T i O3 was mixed at 2000. OOg (90,8
mol%), 29.23g of La2O3 (19mol% in terms of La), 12.71g of Nd2O3 (0°8 mol% in terms of Nd), 11.38g of CeO2 (in terms of Ce) 0°7 mol%), 9.34 g of Pr2o3 (0°6 mol% in terms of Pr), 31.69 g of TiO2 (4.2 mol%), Ca
16.93 g (1.0 mol %) of Z r O3 was weighed. That is, 90.8 mol% of B a T iO3 and L
1.9 mol% of a, 0.8 mol% of Nd, and 0 of Ce.
.. 7 mol%, 0.6 mol% of Pr, and 4 of T 102
, 2 mol% and 1.0 mol% of CaZrO3 is 1
B a T iOL a O so that it becomes 00 mol%
Weighing N d 203, CeO3・2 3゛Pr OTiO2,, CaZrO3 2-23
゛Shina.

また、添加成分としてM n C03(炭酸マンガン)
を4.42 g 、 S i 02を4.22g秤量し
た。なお、上記主成分の合計重量と4.42gのM n
、 C03との割合は、100重量部の上記主成分と0
.1重量部のMnとの割合に対応する。また、上記主成
分の合計重量と4.22gのSiO2との割合は、10
0重量部の上記主成分と02重量部のS jO2との割
合に対応する。要するに、1. O0重量部の主成分に
対してMnか0.1重量部、S 102か0.2重量部
となるようにMn、 COと5102を秤量しな。
In addition, M n C03 (manganese carbonate) is added as an additive component.
and 4.22 g of S i 02 were weighed. In addition, the total weight of the above main components and 4.42 g of M n
, C03 is 100 parts by weight of the above main component and 0 parts by weight.
.. This corresponds to a ratio of 1 part by weight of Mn. Also, the ratio between the total weight of the above main components and 4.22 g of SiO2 is 10
This corresponds to a ratio of 0 parts by weight of the main component and 02 parts by weight of SjO2. In short, 1. Weigh Mn, CO, and 5102 so that the amount of Mn is 0.1 part by weight and the amount of S102 is 0.2 part by weight based on the main component of O0 parts by weight.

次に、上記主成分及び添加成分を湿式混合し、脱水乾燥
後有機バインダを入れて混練し、しかる後、外径1.5
11111、内径0.9mm、厚み0.3null、長
さ3.71の円筒状成型体を得な。
Next, the above main components and additive components are wet-mixed, and after dehydration and drying, an organic binder is added and kneaded.
11111, obtain a cylindrical molded body with an inner diameter of 0.9 mm, a thickness of 0.3 null, and a length of 3.71 mm.

次に、得られた成型体を大気中1320°Cで2時間焼
成して誘電体(絶縁体)磁器の焼結体を得、この誘電体
磁器を還元性雰囲気中1050℃で2時間熱処理(半導
体化処理)して半導体磁器に変化させ、更に得られた半
導体磁器を大気中970℃で1時間然処理(再酸化処理
)を行って図面で原理的に示すように半導体磁器1の表
面に誘電体層2を作った。なお、半導体磁器1の組成は
原料組成に対応している。また、表面誘電体層2は半導
体磁器1の酸化物から成る。
Next, the obtained molded body is fired at 1320°C in the air for 2 hours to obtain a sintered body of dielectric (insulator) porcelain, and this dielectric porcelain is heat-treated at 1050°C for 2 hours in a reducing atmosphere ( The obtained semiconductor porcelain is further treated in the atmosphere at 970°C for 1 hour (reoxidation treatment) to form the surface of the semiconductor porcelain 1 as shown in principle in the drawing. Dielectric layer 2 was created. Note that the composition of the semiconductor ceramic 1 corresponds to the raw material composition. Further, the surface dielectric layer 2 is made of an oxide of the semiconductor ceramic 1.

次に、表面誘電体層2の上に銀(Ag)ペース1〜を塗
布し、850℃で10分間焼付けるごとによって一対の
電極3.4を形成し、半導体磁器コンデンサを完成させ
た。
Next, silver (Ag) pastes 1 to 1 were coated on the surface dielectric layer 2 and baked at 850° C. for 10 minutes to form a pair of electrodes 3.4, thereby completing a semiconductor ceramic capacitor.

得られたコンデンサの電極3.4にそれぞれリード線を
半田付けし、単位面積当りの静電容量C2tanδ、絶
縁抵抗IR1絶縁破壊電圧Vbdを測定したところ、第
2表に示すように、Cは0゜80JJ、F/cm2、t
anδは3,2%、IRは1.9X104MΩ、Vbd
は750■であった。
Lead wires were soldered to the electrodes 3.4 of the obtained capacitor, and the capacitance per unit area C2 tan δ and insulation resistance IR1 dielectric breakdown voltage Vbd were measured, and as shown in Table 2, C was 0.゜80JJ, F/cm2, t
anδ is 3.2%, IR is 1.9X104MΩ, Vbd
was 750■.

なお、C及びtanδは測定電圧0.1■、測定周波数
1kH2の条件で測定し、IRは直流電圧50Vを15
秒間印加した後に測定し、Vbdは直流昇圧破壊方式で
測定した。
Note that C and tan δ were measured under the conditions of a measurement voltage of 0.1■ and a measurement frequency of 1kHz, and IR was measured at a DC voltage of 50V at 15V.
The voltage was applied for a second and then measured, and Vbd was measured using a DC boost breakdown method.

大気中での焼成(−次焼成)の温度の変化による特性変
動が少ないことを確かめるために、−次焼成温度を13
10°C11300℃に変えた他は1320°Cの場合
と同一条件で半導体コンデンサを作成し、その特性を測
定したところ、第2表に示すように、Cは0.78及び
0,77μF / cm2 tanδはそれぞれ31%
、IRは1゜9X104及び1.8X104MΩ、Vb
dはそれぞれ700Vであった。
In order to confirm that there is little variation in characteristics due to changes in temperature during firing in the atmosphere (-second firing), the -second firing temperature was set to 13.
A semiconductor capacitor was made under the same conditions as in the case of 1320°C except that the temperature was changed to 10°C and 11300°C, and its characteristics were measured.As shown in Table 2, C was 0.78 and 0.77μF/cm2. tan δ is 31% each
, IR is 1°9X104 and 1.8X104MΩ, Vb
d was 700V each.

試料No、 2〜44においても、組成を第1表に示す
ように変えた他は試料No、 1と同一方法でコンデン
サを作り、同一方法で電気的特性を測定した。
Capacitors for Samples Nos. 2 to 44 were made in the same manner as in Sample No. 1, except that the compositions were changed as shown in Table 1, and the electrical characteristics were measured in the same manner.

磁器組成物の組成を示す第1表において、主成分のB 
a T io 3とLaとXとTiO2とCaZr O
3はモル%で示されている。主成分に含まれているXは
Ce、Pr、Nd、、Sm、Yの内の少なくとも1種か
ら成る希土類元素である。添加成分のMn及びS 10
2は主成分100重量部に対する添加重量部で示されて
いる。
In Table 1 showing the composition of the porcelain composition, the main component B
a T io 3 and La and X and TiO2 and CaZr O
3 is given in mole %. X contained in the main component is a rare earth element consisting of at least one of Ce, Pr, Nd, Sm, and Y. Additional components Mn and S 10
2 is shown in parts by weight added to 100 parts by weight of the main component.

第 表 第 表 続 き 〕 第 表 (続き 第 表 続 な 〕 第 表 (続き 第 表 続き 第 表 C続き 第 表 続 さ 第 2表 (続き〕 第1表及び第2表から明らかなように、本発明に従う組
成物によれば、絶縁破壊電圧Vbdか500〜800■
、単位面積当りの静電容量が06〜0.8μF / c
 m ”のコンデンサを得ることかできる。
Table 2 (Continued)] Table 2 (Continued) Table 2 (Continued) Table 2 (Continued) As is clear from Tables 1 and 2, According to the composition according to the invention, the dielectric breakdown voltage Vbd is 500 to 800
, the capacitance per unit area is 06~0.8μF/c
m'' capacitor can be obtained.

一方、試料No、 2.6.20.21.23.26.
27.30.31.34.35.39.40.44では
本発明の目的を達成することかできない。
On the other hand, sample No. 2.6.20.21.23.26.
27.30.31.34.35.39.40.44 cannot achieve the purpose of the present invention.

従って、これ等は本発明の範囲外のものであり、比軸例
として掲載されている。
Therefore, these are outside the scope of the present invention and are listed as ratio axis examples.

次に組成の限定理由を説明する。Next, the reason for limiting the composition will be explained.

L aが1.0モル%未満になると、Laの添加効果が
小さくなり過ぎてコンデンサの絶縁破壊電圧Vbdか目
標値よりも低くなる。一方、L、 aか4.0モル%よ
りも多くなると、表面誘電体層2の誘電率が低くなり、
単位面積当りの静電容量Cか目標値よりも小さくなる。
When La is less than 1.0 mol%, the effect of adding La becomes too small, and the dielectric breakdown voltage Vbd of the capacitor becomes lower than the target value. On the other hand, when L and a exceed 4.0 mol%, the dielectric constant of the surface dielectric layer 2 decreases,
The capacitance C per unit area becomes smaller than the target value.

従って、Laの好ましい範囲は10〜4.0モル%であ
る。
Therefore, the preferred range of La is 10 to 4.0 mol%.

X (Ce、Pr、Nd、Sm、Yの少なくとも1種)
が1種又は複数種の合計で0.5モル%未満になると、
表面誘電体層2の誘電率を上げる効果を十分に得ること
かできなくなり、静電容量Cが目標値未満になる。一方
、Xが3,0モル%よりも多くなると、絶縁破壊電圧V
bdか目標値よりも低くなる。従ってXの好ましい範囲
は0.5〜3.0モル%である。
X (at least one of Ce, Pr, Nd, Sm, Y)
When the total of one or more types is less than 0.5 mol%,
It becomes impossible to obtain a sufficient effect of increasing the dielectric constant of the surface dielectric layer 2, and the capacitance C becomes less than the target value. On the other hand, when X exceeds 3.0 mol%, the breakdown voltage V
bd becomes lower than the target value. Therefore, the preferred range of X is 0.5 to 3.0 mol%.

B a T jO3を81.5〜96.5モル%の範囲
外及びT 102を1.9〜10.0モル%の範囲外に
すると、焼結性か悪くなり、静電容量C及び絶縁破壊電
圧Vbdが低下する。
When B a T jO3 is outside the range of 81.5 to 96.5 mol % and T 102 is outside the range of 1.9 to 10.0 mol %, sinterability deteriorates, and capacitance C and dielectric breakdown occur. Voltage Vbd decreases.

CaZrO3は焼結性改善効果を有するか、01モル%
未満だとその効果をほとんど得ることができず、1.5
モル%を越えると表面誘電体層2の誘電率か下がる。従
って、Ca Z r 03の好ましい範囲は0.1〜1
.5モル%である。
Does CaZrO3 have the effect of improving sinterability?01 mol%
If it is less than 1.5, you will hardly get the effect.
If the amount exceeds mol%, the dielectric constant of the surface dielectric layer 2 decreases. Therefore, the preferred range of Ca Z r 03 is 0.1 to 1
.. It is 5 mol%.

Mnを0.03重量部未満にすると、表面誘電体層2を
均一に形成することが困難になり、絶縁破壊電圧Vbd
か低下する。Mnを0.30重量部よりも多くすると、
表面誘電体層2を薄く形成することが困難になり、絶縁
破壊電圧Vbdを高く保ったまま静電容量Cを高くする
ことかきない。
If Mn is less than 0.03 parts by weight, it becomes difficult to uniformly form the surface dielectric layer 2, and the dielectric breakdown voltage Vbd
or decrease. When Mn is increased more than 0.30 parts by weight,
It becomes difficult to form the surface dielectric layer 2 thinly, and it is impossible to increase the capacitance C while keeping the dielectric breakdown voltage Vbd high.

従って、Mnの好ましい範囲は0.03〜0,30重量
部である。
Therefore, the preferred range of Mn is 0.03 to 0.30 parts by weight.

SiO□は一次焼成温度の範囲を広げる効果を有するが
、このS iO2か0.05重量未満だと、その効果を
ほとんど期待することができない。SiO2か0.5重
量部を越えると、誘電体層2の誘電率か下かり、静電容
量か低下すると共に、焼結状態か悪くなり、絶縁破壊電
圧か下がる。従って、S 102の好ましい範囲は0.
05〜0.50の重量部である。
SiO□ has the effect of widening the range of primary firing temperature, but if this SiO2 is less than 0.05 weight, hardly any effect can be expected. If SiO2 exceeds 0.5 parts by weight, the dielectric constant and capacitance of the dielectric layer 2 will decrease, the sintering condition will deteriorate, and the dielectric breakdown voltage will decrease. Therefore, the preferred range for S102 is 0.
05 to 0.50 parts by weight.

[変形例] 本発明は上述の実施例に限定されるものでなく、例えば
次の変形が可能なものである。
[Modifications] The present invention is not limited to the above-described embodiments, and, for example, the following modifications are possible.

(1)  MnC0の代りにM n O2を使用しても
よい。
(1) MnO2 may be used instead of MnC0.

(2) 酸化性雰囲気による焼成(焼結)時の温度を1
260〜1400°C1還元性雰囲気の加熱処理温度を
900〜1180°C1再酸化処理の温度を900〜1
100℃の範囲で変えることかできる。
(2) The temperature during firing (sintering) in an oxidizing atmosphere is set to 1
260-1400°C1 Reducing atmosphere heat treatment temperature 900-1180°C1 Re-oxidation treatment temperature 900-1
It can be changed within a range of 100°C.

(3)  B a T iO3の代りにB a CO3
とTiO2を出発材料としてもよい。
(3) B a CO3 instead of B a T iO3
and TiO2 may be used as starting materials.

(4) 電極3,4の内の一方の下の誘電体層2を省く
ことができる。
(4) The dielectric layer 2 under one of the electrodes 3, 4 can be omitted.

[発明の効果] 上述のように本発明によれば、絶縁破壊電圧が500V
以上、単位面積当りの静電容量が0.6μF / c 
m 2以上の半導体磁器コンデンサを提供することが可
能になる。
[Effects of the Invention] As described above, according to the present invention, the dielectric breakdown voltage is 500V.
Above, the capacitance per unit area is 0.6μF/c
It becomes possible to provide a semiconductor ceramic capacitor of m 2 or more.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に係わる磁器コンデンサを原理的
に示す断面図である。 1・・・半導体磁器、2・・・表面誘電体層、3.4・
・・電極。
The drawing is a sectional view showing the principle of a ceramic capacitor according to an embodiment of the present invention. 1... Semiconductor ceramic, 2... Surface dielectric layer, 3.4.
··electrode.

Claims (1)

【特許請求の範囲】 [1]100.00重量部の主成分と、Mn(マンガン
)に換算して0.03〜0.30重量部のMn化合物と
、0.05〜0.50重量部のSiO_2(酸化けい素
)とから成り、 前記主成分が81.5〜96.5モル%のBaTiO_
3(チタン酸バリウム)と、La(ランタン)に換算し
て1.0〜4.0モル%のLa_2O_3(酸化ランタ
ン)と、Ce(セリウム)、Pr(プラセオジム)、N
d(ネオジム)、Sm(サマリウム)及びY(イットリ
ウム)の内の少なくとも1種から成る希土類元素に換算
して0.5〜3.0モル%の前記希土類元素の酸化物と
、1.9〜10.0モル%のTiO_2(酸化チタン)
と、0.1〜1.5モル%のCaZrO_3(ジルコン
酸カルシウム)とから成ることを特徴とする還元再酸化
型半導体コンデンサ用磁器組成物。 [2]100重量部の主成分と、0.03〜0.30重
量部のMnと、SiO_2に換算して0.05〜0.5
0の重量部のSiとを含有している半導体磁器と、前記
半導体磁器の表面に形成された前記半導体磁器の酸化物
から成る誘電体層とから成り、 前記主成分が81.5〜96.5モル%のBaTiO_
3と、1.0〜4.0モル%のLaと、0.5〜3.0
モル%のX(但し、XはCe、Pr、Nd、Sm及びY
の内の少なくとも1種の希土類元素)と、TiO_2に
換算して1.9〜10.0モル%のTiと、0.1〜1
.5モル%のCaZrO_3とを含むものであることを
特徴とする還元再酸化型半導体コンデンサ用磁器。
[Scope of Claims] [1] 100.00 parts by weight of the main component, 0.03 to 0.30 parts by weight of Mn compound in terms of Mn (manganese), and 0.05 to 0.50 parts by weight SiO_2 (silicon oxide), the main component of which is 81.5 to 96.5 mol% BaTiO_
3 (barium titanate), 1.0 to 4.0 mol% La_2O_3 (lanthanum oxide) in terms of La (lanthanum), Ce (cerium), Pr (praseodymium), N
0.5 to 3.0 mol % of the rare earth element oxide, calculated as a rare earth element, consisting of at least one of d (neodymium), Sm (samarium), and Y (yttrium); 10.0 mol% TiO_2 (titanium oxide)
and 0.1 to 1.5 mol% of CaZrO_3 (calcium zirconate). [2] 100 parts by weight of the main component, 0.03 to 0.30 parts by weight of Mn, and 0.05 to 0.5 in terms of SiO_2
It consists of a semiconductor ceramic containing 0 parts by weight of Si, and a dielectric layer made of an oxide of the semiconductor ceramic formed on the surface of the semiconductor ceramic, and the main component is 81.5 to 96. 5 mol% BaTiO_
3, 1.0 to 4.0 mol% La, and 0.5 to 3.0
Mol% of X (where X is Ce, Pr, Nd, Sm and Y
at least one rare earth element), 1.9 to 10.0 mol% Ti in terms of TiO_2, and 0.1 to 1
.. A reduction and reoxidation type semiconductor capacitor porcelain characterized by containing 5 mol% of CaZrO_3.
JP21697788A 1988-08-31 1988-08-31 Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor Granted JPH0265214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21697788A JPH0265214A (en) 1988-08-31 1988-08-31 Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21697788A JPH0265214A (en) 1988-08-31 1988-08-31 Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor

Publications (2)

Publication Number Publication Date
JPH0265214A true JPH0265214A (en) 1990-03-05
JPH0472369B2 JPH0472369B2 (en) 1992-11-18

Family

ID=16696881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21697788A Granted JPH0265214A (en) 1988-08-31 1988-08-31 Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor

Country Status (1)

Country Link
JP (1) JPH0265214A (en)

Also Published As

Publication number Publication date
JPH0472369B2 (en) 1992-11-18

Similar Documents

Publication Publication Date Title
JP4446324B2 (en) Dielectric porcelain composition and capacitor using the same
KR910009895B1 (en) Ceramic composition for reduction-reoxidation type semiconductor capacitor
JPH04218207A (en) Dielectric porcelain composition
JP3275799B2 (en) Dielectric porcelain composition
JPH02123614A (en) High permittivity type porcelain composition
JPH059066A (en) Nonreducible dielectric porcelain composition
JP2958819B2 (en) Non-reducing dielectric porcelain composition
JP2958818B2 (en) Non-reducing dielectric porcelain composition
JP2915217B2 (en) Dielectric porcelain and porcelain capacitor
JPH0265214A (en) Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor
JPH0265213A (en) Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor
JP2779740B2 (en) Dielectric porcelain and porcelain capacitor
JPH0265210A (en) Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor
JP2681981B2 (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JPH0265212A (en) Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JPH0265211A (en) Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor
JPH0265209A (en) Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor
JP3185333B2 (en) Non-reducing dielectric ceramic composition
JP2958823B2 (en) Non-reducing dielectric porcelain composition
JPH01236608A (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JP2958824B2 (en) Non-reducing dielectric porcelain composition
JPH0597509A (en) Nonreducble dielectric porcelain composition
JPH06104138A (en) Dielectric ceramics and ceramic capacitor
JPH0794020A (en) Composition for barium titanate semiconductor ceramic