JPH0265187A - Method of replacing laser medium gas in gas laser device - Google Patents

Method of replacing laser medium gas in gas laser device

Info

Publication number
JPH0265187A
JPH0265187A JP21567688A JP21567688A JPH0265187A JP H0265187 A JPH0265187 A JP H0265187A JP 21567688 A JP21567688 A JP 21567688A JP 21567688 A JP21567688 A JP 21567688A JP H0265187 A JPH0265187 A JP H0265187A
Authority
JP
Japan
Prior art keywords
gas
laser
pressure
laser medium
evacuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21567688A
Other languages
Japanese (ja)
Other versions
JPH0758816B2 (en
Inventor
Akihiro Otani
昭博 大谷
Tsukasa Matsuno
松野 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21567688A priority Critical patent/JPH0758816B2/en
Publication of JPH0265187A publication Critical patent/JPH0265187A/en
Publication of JPH0758816B2 publication Critical patent/JPH0758816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To sufficiently evacuate deteriorated gas, and to eliminate a low pressure sensor by connecting a vacuum evacuator, and then sealing new laser medium gas therein. CONSTITUTION:When replacement of laser gas in an oscillator housing 24 is started, a vacuum pump 30 is operated, a vacuum valve 33 is opened, and vacuum evacuation is started. Thus, when the housing is set to a set (low) pressure therein, a timer is operated, its evacuation is continued until its counting time becomes a set time, the evacuation is then stopped, and the evacuation of the deteriorated gas is finished. Thereafter, new laser medium gas is filled, and when it becomes a set (high) pressure laser operating gas pressure, the filling is finished, thereby completing the replacement of the gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスレーザ装置におけるレーザ媒質ガス交換方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for exchanging a laser medium gas in a gas laser device.

〔従来の技術〕[Conventional technology]

第3(2)、第4図は例えば特開昭60−25468号
公報に示され1こガス循環型封じ切り動作の002ガス
レ一ザ発振器の斜視図及び断面図である。図において(
2)はレーザ光、(4)はこのレーザ光(2)全発振す
る発振手段、(6)は発振手段(4)を介してレーザガ
スを矢印aの方向に循環させるブロア、(8)は循環し
ているレーザガスを途中で冷却する熱交換器である。
FIGS. 3(2) and 4 are a perspective view and a cross-sectional view of a 002 gas laser oscillator which is disclosed in, for example, Japanese Unexamined Patent Application Publication No. 60-25468 and which has a single gas circulation type sealing operation. In the figure (
2) is a laser beam, (4) is an oscillation means that oscillates the entire laser beam (2), (6) is a blower that circulates the laser gas in the direction of arrow a through the oscillation means (4), and (8) is a circulation device. This is a heat exchanger that cools the laser gas midway through the process.

発振手段(4)は上下に対向する一対の横長の電極α0
. a2を有し、電極QO,Q3は上下に対向する一対
の横長の偏平柱状のブローIりα4.08に側面の一部
を残して埋め込まれている。発振手段(4)の両端には
レーザ(2)を反覆反射して増幅するTこめの一対の反
射手段(ト)、(1)が設けられている。
The oscillation means (4) is a pair of horizontally long electrodes α0 facing each other vertically.
.. a2, and the electrodes QO and Q3 are embedded in a pair of horizontally long flat columnar blow I angles α4.08 that face each other vertically, leaving a part of the side surface. At both ends of the oscillation means (4), a pair of T-shaped reflection means (G) and (1) are provided which repeatedly reflect and amplify the laser (2).

発振手段(4)と熱交換器(8)との間にはレーザガス
を導くTこめのダクト(イ)が設けられており、熱交換
器(8)は発振器筐体(ハ)に取付けられている。熱交
換器(8)の隣りにはブロワ取付台(7)を介してブロ
ワ(6)が発振器筐体(至)に取付けられている。
A T-shaped duct (A) for guiding the laser gas is provided between the oscillation means (4) and the heat exchanger (8), and the heat exchanger (8) is attached to the oscillator housing (C). There is. Next to the heat exchanger (8), a blower (6) is attached to the oscillator housing (to) via a blower mount (7).

ブロワ(6)の上には発振手段(4)が取り付けられて
イル。(至)、@は発振器筐体(ハ)の扉である。レー
ザガスは所定濃度のCOlを含有するガスからなり、矢
印aに示す経路に沿って流れる。
An oscillating means (4) is attached to the top of the blower (6). (to), @ is the door of the oscillator housing (c). The laser gas is composed of a gas containing COI at a predetermined concentration, and flows along the path shown by arrow a.

従来のレーザ発振器は上記のようlこ構成され、レーザ
ガスは電tMQO,(L5間で放電により励磁され、そ
の誘導放出によりレーザ光(2)を生ずる。レーザ起 光(2)は励磁されTコレーザガス中を反射手段as、
mによって反覆通過しながら増幅され、矢印すの方間に
出力される。
A conventional laser oscillator is configured as described above, and the laser gas is excited by electric discharge between the electric currents tMQO and (L5), and its stimulated emission produces laser light (2). reflective means as,
It is amplified while repeatedly passing through m, and is output in the direction of the arrow.

レーザガスは[極α10口間で放電によって励起されろ
とともに温度が上昇する。レーザガスは温度が上昇する
とレーザ光に対するレーザガスの吸収率が増大し、ひい
てはレーザ光(2)の出力が低下する。このため、レー
ザガスは循環中に熱交換器(8)で冷却され、レーザ光
(2)の出力が低下しr)いようになっている。
The temperature of the laser gas increases as it is excited by a discharge between the poles α10. When the temperature of the laser gas increases, the absorption rate of the laser gas with respect to the laser beam increases, and as a result, the output of the laser beam (2) decreases. For this reason, the laser gas is cooled by the heat exchanger (8) during circulation, so that the output of the laser beam (2) is prevented from decreasing.

このような封じ切り動作を行うが7レーザ装置はレーザ
ガス封入後リークの為、大気中のHχ00N102等が
レーザ媒質ガス中に混入しTこり、まTこレーザ媒質ガ
スの解離(例えば200 l−2CO+Oりによりレー
ザ動作における放電の安定性、レーザ発振効率の低下が
起る。従って一定期間毎にレーぜ媒質ガスの交換が必要
となる。
Although such a sealing operation is performed, the 7 laser device leaks after the laser gas is filled in, so Hχ00N102 in the atmosphere mixes into the laser medium gas, resulting in the dissociation of the laser medium gas (e.g. 200 l-2CO+O). This causes a decrease in discharge stability and laser oscillation efficiency during laser operation.Therefore, it is necessary to replace the laser medium gas at regular intervals.

m56にレーザ発振器のレーザ媒質ガス交換システムに
ついて示す。■は真空ポンプ、(2)(ハ)は真空バル
ブ、(ト)は圧力センサである。
Figure m56 shows the laser medium gas exchange system of the laser oscillator. (2) is a vacuum pump, (2) (c) is a vacuum valve, and (g) is a pressure sensor.

従来の方法においては、所定時間封じ切り動作し1こ後
、レーザ媒質ガス交換はまず真空ポンプ(至)ト動作さ
せ、真空バルブ(至)を開して発振器筐体(ハ)中の劣
化したレーザ媒質ガスを圧力センサ(ト)により検出し
ている圧力がある設定値(低)になるまで排出し、発振
器筐体(ハ)内圧力が該設定値(低)に至れば、真空バ
ルブ(至)を閉し真空ポンプ■を停止する。その後真空
バルブ(イ)を開し新しいレーザ媒質ガスを筐体内圧力
が設定値(動作)例えば、100Torrになるまで封
入し、真空バルブ(至)を閉する。
In the conventional method, after a predetermined period of shut-off operation, the laser medium gas exchange is performed by first operating the vacuum pump (to) and opening the vacuum valve (to) to remove the deteriorated gas in the oscillator housing (c). The laser medium gas is exhausted until the pressure detected by the pressure sensor (g) reaches a certain set value (low), and when the pressure inside the oscillator housing (c) reaches the set value (low), the vacuum valve ( ) and stop the vacuum pump ■. Thereafter, the vacuum valve (a) is opened, a new laser medium gas is filled in until the pressure inside the housing reaches a set value (operation), for example, 100 Torr, and the vacuum valve (to) is closed.

第6図にガス交換のフローチセートを示す。Figure 6 shows the gas exchange flow rate.

00ル−ザの場合、劣化しπレーザ媒質ガスは0.1〜
0.0ITorr(設定値(低〕の圧カッまでの真空引
きが必要であり、これ以上の圧力で真空引St止め1こ
場合には、リークによろH2Oあるいは筐体内からのア
ウトガス等の十分な排気が行なわれずガス交換の十分な
効果が期待できない。
In the case of 00 laser, the deteriorated π laser medium gas is 0.1~
It is necessary to evacuate to a pressure of 0.0 ITorr (set value (low)), and if the pressure is higher than this, the vacuum must be stopped at St1. Since exhaustion is not performed, a sufficient effect of gas exchange cannot be expected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のレーザ媒質ガス交換方法は以上のように構成され
ているので、圧力センサ(至)には動作圧の数10〜1
00Torrおよび真空引き圧0.0ITorrを検出
できろものが必要である。しかし数10〜100’l’
orr ft検出する圧力センサは0.01Torr付
近の圧力を精度よく検出することが難しく、例えば、半
導体圧力センサではせいぜいQ、l’l’orr程度の
分解能しかない。ま1こピラニーセンサは0.001T
orrの検出が可能であるが、2QTorr程度以上の
検出が精度悪くま1こガスの組成により検出値が変化し
、まγこ定期的な校正が必要であるなどレーザ動作圧と
真空排気設定値(低)の両方を精度良く検出できる圧力
センサがなく、真空排気圧検出精度を犠牲にオろか、ま
1こ相方に対応する圧力センサをもうけることによるコ
ストア咋ブをまねくなどの課題があつ1こ。
Since the conventional laser medium gas exchange method is configured as described above, the pressure sensor (up to) has an operating pressure of several tens to one.
A device that can detect 0.00 Torr and vacuum pressure of 0.0 ITorr is required. However, the number 10 to 100'l'
It is difficult for a pressure sensor that detects orr ft to accurately detect a pressure around 0.01 Torr, and, for example, a semiconductor pressure sensor has a resolution of at most Q, l'l'orr. Ma1ko Pirani sensor is 0.001T
It is possible to detect 2Q Torr or more, but the detection accuracy is poor and the detection value changes depending on the composition of the gas, and regular calibration is required.The laser operating pressure and evacuation setting value There is no pressure sensor that can accurately detect both (low and low), which not only sacrifices the accuracy of vacuum exhaust pressure detection, but also causes problems such as cost savings due to providing a pressure sensor that corresponds to the other side. child.

ま1こ真空排気を設定圧力(低)まで行うのではなく、
真空排気時間として筐体内圧力が0.01Torrとな
るであろう時間を設定オろ方法があるが、この場合は真
空ポンプ■や真空バルブ(2)の動作に異常があった場
合に検出することができず、十分な劣化ガスの排気が行
なわれないまま新しいガスが封入され、十分なガス交換
ができないという課題がある。
Rather than performing vacuum evacuation to the set pressure (low),
There is a method of setting the time when the pressure inside the case will reach 0.01 Torr as the evacuation time, but in this case, it is possible to detect if there is an abnormality in the operation of the vacuum pump (■) or vacuum valve (2). There is a problem that new gas is filled in without sufficient exhaustion of degraded gas, and sufficient gas exchange is not possible.

本発明におけるレーザ媒質ガス交換方法は上記のような
課題を解消するためになされ1こもので、十分な劣化ガ
スの排気ができるとともに、高価な低圧力用圧力センサ
を必要とすることがない方法を得ろことを目的とする。
The laser medium gas exchange method of the present invention has been made to solve the above-mentioned problems, and provides a method that can sufficiently exhaust degraded gas and does not require an expensive low-pressure pressure sensor. The purpose is to obtain.

〔課題を解決する1こめの手段〕 本発明に係るレーザ装置のレーザ媒質ガス交換方法は、
劣化ガスと設定圧力(低)まで真空排気しTこ後もある
設定時間さらに真空排気を続けに後、新しいレーザ媒質
ガスを封入するようにしにものである。
[First Means to Solve the Problem] A method for exchanging a laser medium gas in a laser device according to the present invention includes:
After the deteriorated gas is evacuated to a set pressure (low), evacuation is continued for a set time, and then a new laser medium gas is filled.

本発明におけるレーザ媒質ガス交換方法は、劣化ガスの
排気を設定圧と設定時間の併用により行なうものである
In the laser medium gas exchange method of the present invention, deteriorating gas is exhausted by using both a set pressure and a set time.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例について説明する。レーザ発振器
の構成については第1図〜第8図に示し1こ従来の装置
と同様であるので説明を省略する。
An embodiment of the present invention will be described below. The structure of the laser oscillator is shown in FIGS. 1 to 8 and is the same as that of the conventional device, so a description thereof will be omitted.

第1図にレーザ媒質ガス交換のフローチャートを示す。FIG. 1 shows a flow chart of laser medium gas exchange.

レーザガス交換開始すると、真空ポンプ作動し真空バル
ブ開となり真空引きが開始する、真空引きにより筐体内
圧が設定圧(低)になるとタイマーが作動開始し、タイ
マによるカウント時間が設定時間となるまで真空引きが
続けられ1こ後真空引きは停止し、劣化ガスの真空排気
が終了する。
When the laser gas exchange starts, the vacuum pump operates, the vacuum valve opens, and vacuuming begins. When the internal pressure of the housing reaches the set pressure (low) due to vacuuming, the timer starts operating, and the vacuum continues until the timer counts up to the set time. The evacuation continues and after one time, the evacuation stops, and the evacuation of the degraded gas is completed.

この後、新しいレーザ媒質ガスを充填し、設定圧(高ル
−ザ動作ガス圧になると充填終了し、ガス交換完了する
After this, a new laser medium gas is filled, and when the set pressure (high laser operating gas pressure) is reached, the filling is completed and the gas exchange is completed.

上記設定圧(低Jは約3Torr程度に設定されろ。該
設定圧(低]は真空近くのレーザ動作圧(設定圧(高)
)を検出する。圧力セン廿00により検出可能な圧力で
あればよい、 ま1こ、上記設定時間はレーザ発振器篩体(ハ)の容積
と真空ポンプ(1)の排気速度により異なるが、真空引
き終了後に筐体内の劣化レーザガスを十分排口 出できるように設定すればよい。例えば@−本容量40
01、真空ポンプ排気速度800 (! /m+ rr
テあれば設定圧力(低〕が3 ’l’o r rとすれ
は設定時間10分で十分な排出が可能であり、この時の
真空到達圧は0.01TOrr以下である。
The above set pressure (low J should be set to about 3 Torr. The set pressure (low) is the laser operating pressure near vacuum (set pressure (high)
) is detected. Any pressure that can be detected by the pressure sensor 200 is sufficient.Although the above setting time varies depending on the volume of the laser oscillator sieve (c) and the pumping speed of the vacuum pump (1), the pressure inside the housing after evacuation is completed is The setting may be made so that the degraded laser gas can be sufficiently discharged. For example @-capacity 40
01, vacuum pump pumping speed 800 (!/m+ rr
If the set pressure (low) is 3'l'orr, sufficient discharge is possible within the set time of 10 minutes, and the ultimate vacuum pressure at this time is 0.01 TOrr or less.

上記実施例では真空排気系にトラブルが発生しrコ場合
には十分な真空引きが行えず、設定圧(低)にならない
あるいは異常に時間を要するが、このことを利用して上
記トラブルを検出才ろ方法を示し1このが第2図のフロ
ーチャートである。真空引き開始後、タイマ(1)を作
動させて時間カウントし、タイマ(1)の設定時間を過
ぎても設定圧(低)とならない場合には真空引きを停止
し、異常表示を行う。
In the above embodiment, if a problem occurs in the vacuum evacuation system, sufficient evacuation cannot be performed and the set pressure (low) is not achieved or it takes an abnormally long time.This fact can be used to detect the above trouble. The method is illustrated in the flowchart of FIG. After the evacuation is started, the timer (1) is activated to count the time, and if the set pressure (low) is not reached even after the set time of the timer (1) has passed, the evacuation is stopped and an abnormality is displayed.

なお上記実施例はガス循環型Cotレーザの一例につい
て説明し1こが、特にレーザ発振器の構成について限定
するものではなく、レーザ媒質ガス交換手順がフローチ
ャートのごとくであればよい。
Note that the above embodiment describes an example of a gas circulation type Cot laser; however, the structure of the laser oscillator is not particularly limited, and the procedure for exchanging the laser medium gas may be as shown in the flowchart.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば劣化ガスの排気を、設定圧
と設定時間の併用により行うので装置が安価で、かつ十
分な劣化ガスの排出が行えるようなレーザ媒質ガスの交
換が可能となる。
As described above, according to the present invention, the deteriorated gas is exhausted by using a set pressure and a set time in combination, so the device is inexpensive and the laser medium gas can be replaced in a manner that allows sufficient discharge of the deteriorated gas. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明によるレーザ媒質ガス交換方法
のフローチャート、第3図及び第4図はレー→+′発振
器の一例を示す斜視図、断面図、第5図は従来方法を説
明する概略図、第6図は従来のレーザ媒質ガス交換方法
によるフローチャートである。 図中、(至)は発振器筐体、■は真空ポンプ、c!3@
は真空バルブ、■は圧力センサである。 なお図中、同一符号は同一、又は相当部分を示す。 第1図 第 図 第5 図 第 図 中 図 第6 図
Figures 1 and 2 are flowcharts of the laser medium gas exchange method according to the present invention, Figures 3 and 4 are perspective views and cross-sectional views showing an example of a Ray→+' oscillator, and Figure 5 explains the conventional method. FIG. 6 is a flowchart of a conventional laser medium gas exchange method. In the figure, (to) is the oscillator housing, ■ is the vacuum pump, and c! 3@
is a vacuum valve, and ■ is a pressure sensor. In the figures, the same reference numerals indicate the same or equivalent parts. Figure 1 Figure 5 Figure Middle Figure 6

Claims (1)

【特許請求の範囲】[Claims]  封じ切り動作を行い、間欠的に筐体内のレーザ媒質ガ
スの交換を行なうようなガス循環方式ガスレーザ装置の
レーザ媒質ガス交換方法において、ガス交換は、真空排
気により設定された圧力まで上記筐体円のレーザ媒質ガ
スを真空引きした後、該設定された圧力から真空排気に
よりレーザ媒質ガスを設定された時間の間さらに真空引
きを行った後、真空排気を停止し、その後、レーザ媒質
ガスをレーザ動作ガス圧まで上記筐体内に封入すること
を特徴とするガスレーザ装置におけるレーザ媒質ガスの
交換方法。
In a laser medium gas exchange method for a gas circulation type gas laser device that performs a sealing operation and intermittently exchanges the laser medium gas inside the housing, the gas exchange is carried out by evacuation until the pressure is set in the housing circle. After evacuating the laser medium gas, the laser medium gas is further evacuated from the set pressure for a set time, the evacuation is stopped, and the laser medium gas is A method for exchanging a laser medium gas in a gas laser device, characterized in that the gas is sealed in the housing up to an operating gas pressure.
JP21567688A 1988-08-30 1988-08-30 Gas exchange method for laser medium in gas laser device Expired - Lifetime JPH0758816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21567688A JPH0758816B2 (en) 1988-08-30 1988-08-30 Gas exchange method for laser medium in gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21567688A JPH0758816B2 (en) 1988-08-30 1988-08-30 Gas exchange method for laser medium in gas laser device

Publications (2)

Publication Number Publication Date
JPH0265187A true JPH0265187A (en) 1990-03-05
JPH0758816B2 JPH0758816B2 (en) 1995-06-21

Family

ID=16676317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21567688A Expired - Lifetime JPH0758816B2 (en) 1988-08-30 1988-08-30 Gas exchange method for laser medium in gas laser device

Country Status (1)

Country Link
JP (1) JPH0758816B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190935A (en) * 1992-01-10 1993-07-30 Mitsubishi Electric Corp Laser oscillator continuous gas exchanging equipment
DE112011103512T5 (en) 2010-10-19 2013-09-26 Mitsubishi Electric Corporation Gas laser oscillator and gas exchange method for a gas laser oscillator
DE102015001886A1 (en) 2014-02-20 2015-08-20 Fanuc Corporation Gas laser device that performs an improved commissioning process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190935A (en) * 1992-01-10 1993-07-30 Mitsubishi Electric Corp Laser oscillator continuous gas exchanging equipment
DE112011103512T5 (en) 2010-10-19 2013-09-26 Mitsubishi Electric Corporation Gas laser oscillator and gas exchange method for a gas laser oscillator
US8576891B2 (en) 2010-10-19 2013-11-05 Mitsubishi Electric Corporation Gas laser oscillator and gas exchange method for gas laser oscillator
DE102015001886A1 (en) 2014-02-20 2015-08-20 Fanuc Corporation Gas laser device that performs an improved commissioning process
US9240665B2 (en) 2014-02-20 2016-01-19 Fanuc Corporation Gas laser apparatus carrying out improved startup process

Also Published As

Publication number Publication date
JPH0758816B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
Benton et al. Cross sections for the de-excitation of helium metastable atoms by collisions with atoms
US6219368B1 (en) Beam delivery system for molecular fluorine (F2) laser
JP5547440B2 (en) Physics package for cold atom primary frequency standards
US20120258022A1 (en) Helium Barrier Atom Chamber
US6490305B2 (en) Beam delivery system for molecular fluorine (F2) laser
JPH0265187A (en) Method of replacing laser medium gas in gas laser device
JP4038225B2 (en) Gas laser oscillator and method for measuring laser gas replacement amount
WO1988005219A2 (en) Getter assembly
JP5241963B2 (en) Gas laser oscillator and gas exchange method in gas laser oscillator
JP2002208746A (en) Gas control method and laser controller
JP2000223757A (en) Gas laser
US3740110A (en) Fabrication method for gas lasers having integral mirrors
JPH0731554Y2 (en) Excimer laser oscillator
JP3029860B2 (en) Gas laser equipment
JPH01124277A (en) Laser oscillator
JP2000236125A (en) Vacuum ultraviolet laser
JPH043987A (en) Method of gas injection for gas laser
JP2009146804A (en) Plasma display panel and its manufacturing method
JP2022041129A (en) Gas laser device
JP3620211B2 (en) Lamp sealing device
JP4148488B2 (en) Ultraviolet laser device and gas supply method for ultraviolet laser device
JP3788850B2 (en) Control device for discharge pumped laser device
Steinhuebl et al. Development of electron guns for excimer light sources in the vacuum UV
JPH0754859B2 (en) Gas laser oscillator
JPH0480979A (en) Gas laser oscillation device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 14