JPH026504A - Low-temperature plasma apparatus - Google Patents

Low-temperature plasma apparatus

Info

Publication number
JPH026504A
JPH026504A JP63157235A JP15723588A JPH026504A JP H026504 A JPH026504 A JP H026504A JP 63157235 A JP63157235 A JP 63157235A JP 15723588 A JP15723588 A JP 15723588A JP H026504 A JPH026504 A JP H026504A
Authority
JP
Japan
Prior art keywords
plasma
sample
low
coating
scanning electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63157235A
Other languages
Japanese (ja)
Inventor
Kintaro Mori
森 金太郎
Nobuhiro Noto
能登 信博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP63157235A priority Critical patent/JPH026504A/en
Publication of JPH026504A publication Critical patent/JPH026504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Plasma Technology (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To make it possible to perform a pretreatment without coating for observing a biological sample with a scanning electron microscope and a plasma polymn. of an org. substance with only one plasma apparatus by attaching or detaching a magnet, by placing a magnet having its polarity in the axial direction of a cylinder on the periphery of a sample room receiving the plasma. CONSTITUTION:A low-temperature plasma apparatus is constituted of a plasma generating room 4 having an inert gas inlet 1 and an inert gas outlet 2, a plasma outlet 3, a sample room 8 contg. an electrode 9 for generating an electric field for drawing the plasma, drawing electrodes 10 and 11, and the following constitution is additionally attached. Namely, by placing a removable permanent magnet 13 on the periphery of the sample room 8 for increasing the plasma concn., it is possible to selectively use the apparatus for an application where the plasma concn. is relatively high such as plasma polymn. experiments or for an application where the plasma concn. is relatively low such as a pretreatment for observing a biological sample without coating with a scanning electron microscope.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、生物試料を走査電子顕微鏡で観察するための
、無コーティング前処理と有機物のプラズマ重合を1台
で行えるようにした低温プラズマ装置に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a low-temperature plasma device capable of performing coating-free pretreatment and plasma polymerization of organic matter in one device for observing biological samples with a scanning electron microscope. .

〔発明の背景〕[Background of the invention]

走査電子顕微鏡で生物試料を観察するのに、蒸着または
スパッタによりAu等の金属を3〜5nm程コーティン
グし、2次電子イールドを良くして、2次電子像を得て
いる。しかし、雪の積もった河原の表面をi察するのと
同じで、微細構造が観察できない。それを解決する手段
として、当社では、プラズマ中のイオンを生物試料に照
射し、導電性をもたせるイオンボンバード法を開発し、
製品化している。しかし、生物試料に導電性をもたせる
メカニズムがあいまいであることと応用範囲が狭いため
1.普及しにくい難点があった。
When observing a biological sample with a scanning electron microscope, a metal such as Au is coated with a thickness of about 3 to 5 nm by vapor deposition or sputtering to improve the secondary electron yield and obtain a secondary electron image. However, just like observing the surface of a snow-covered riverbank, the fine structure cannot be observed. As a means to solve this problem, we have developed an ion bombardment method that irradiates biological samples with ions in plasma to make them conductive.
It has been commercialized. However, the mechanism for imparting electrical conductivity to biological samples is ambiguous and the scope of application is narrow. There were some drawbacks that made it difficult to spread.

〔発明の目的〕[Purpose of the invention]

本発明は生物試料を無コーティングでも走査電顕で2次
電子像が1!察できるように、しかも、組織を破壊しな
いよう、低温プラズマ処理が行える装置で、かつプラズ
マ重合も行えるようにすることを目的とする。
According to the present invention, even if a biological sample is not coated, the secondary electron image is 1! with a scanning electron microscope! The purpose is to provide an apparatus that can perform low-temperature plasma treatment and also perform plasma polymerization so that the tissue is not destroyed.

〔発明の概要〕[Summary of the invention]

本発明は1円筒の軸方向に極性をもつ磁石を、プラズマ
を受ける試料皿の外周に、設置することによって、プラ
ズマ中の電子の軌跡が長くなり、多くの不活性ガス分子
に衝突し、ガス分子をイオン化させ、プラズマ密度を高
めることに着目し、プラズマを発生させる高周波電力や
引出し電極に印加する電圧を変えずに、磁石を付けたり
はずしたりすることによって試料室のプラズマ濃度を変
化させることができるようにしたものである。
In the present invention, by installing a cylindrical magnet with polarity in the axial direction on the outer periphery of the sample dish that receives the plasma, the trajectory of electrons in the plasma is lengthened, colliding with many inert gas molecules, and causing the gas Focusing on increasing plasma density by ionizing molecules, the plasma concentration in the sample chamber can be changed by attaching or removing a magnet without changing the high-frequency power that generates plasma or the voltage applied to the extraction electrode. It was made so that it could be done.

〔発明の実施例〕[Embodiments of the invention]

生物試料を走査電子顕微鏡でwt察するのに、試料を○
To(オスミュウムータンニン酸−オスミュウム)処理
等の導電染色をほどこした後、金などの2次電子イール
ド(2次電子放出率)の大きい金属をコーティングし、
コントラストの良い2次電子像を結像させる。しかし、
微細構造部に金属コーティングを行うと、コーティング
粒子で微細構造が埋まり、微細構造をamすることはで
きない。したがって無コーティングで2次電子放出可能
な処理が必要になる。生物試料は蛋白質であり高分子で
ある。蛋白質内部は疎水的な環境にあり、親水性、解離
性の残基は分子表面に存在し。
When examining a biological sample with a scanning electron microscope, the sample is
After applying conductive dyeing such as To (osmium tannic acid-osmium) treatment, coating with a metal with a large secondary electron yield (secondary electron emission rate) such as gold,
A secondary electron image with good contrast is formed. but,
When a metal coating is applied to a microstructure, the microstructure is filled with coating particles and cannot be amended. Therefore, a treatment that allows secondary electron emission without coating is required. Biological samples are proteins and polymers. The interior of a protein is a hydrophobic environment, and hydrophilic and dissociative residues exist on the molecular surface.

水素結合を作りうる基はほとんどすべて、水素結合を作
っている。
Almost all groups that can form hydrogen bonds form hydrogen bonds.

生物試料を導電染色(例として、オスミュウムータンニ
ン酸−オスミュウム処理)を行い、導電性を持たせた後
に、本発明の装置の試料室12に入れ、アルゴン等の不
活性ガスをガス導入口から流し込み、30Pa〜100
Paの圧力になるように、ガス排気口2から真空ポンプ
にて排気を行う。高周波電源5によって最大10W程度
の高周波を誘導コイル6に印加して、不活性ガスを励起
しプラズマ化する。電極9、引出し電極10、引出し電
極11によって形成された電場により、プラズマの一部
が試料室8内に引き出され試料12を照射する。
After conducting conductive staining (for example, osmium tannic acid-osmium treatment) on the biological sample to make it conductive, it is placed in the sample chamber 12 of the apparatus of the present invention, and an inert gas such as argon is introduced into the gas inlet. Pour from 30Pa to 100
The gas is evacuated from the gas exhaust port 2 using a vacuum pump so that the pressure becomes Pa. A high frequency power of about 10 W at maximum is applied to the induction coil 6 by the high frequency power source 5 to excite the inert gas and turn it into plasma. Due to the electric field formed by the electrode 9, the extraction electrode 10, and the extraction electrode 11, a part of the plasma is extracted into the sample chamber 8 and irradiates the sample 12.

生物試料は試料室内でプラズマ照射中に次のような変化
を起し、水素や水醜基の引き抜きが起こり、試料表面の
炭素原子は次のように炭素ラジカルに変化する。
Biological samples undergo the following changes during plasma irradiation in the sample chamber: hydrogen and water-unfriendly groups are extracted, and carbon atoms on the sample surface change into carbon radicals as shown below.

電子またはイオン ■イオンラジカル 水素ラジカル 
        !素うジカルC:H−+ C+・H子
電子 → C+2次電子等の低エネルギー → C・共
有結合     水酸基ラジカル C:O)I  −+  C+−OH+電子 →    
   〃        →  〃ラジカル状態を保っ
ている試料を走査電子顕微鏡でamすると、次のように
電子銃からの1次電子によって、炭素ラジカルから2次
電子が発生し2次電子を結像する。
Electron or ion ■Ion radical Hydrogen radical
! Radical C: H-+ C+/H electron → C+ low energy such as secondary electron → C/covalent bond Hydroxyl radical C:O)I −+ C+-OH+ electron →
〃 → 〃When a sample that maintains a radical state is subjected to scanning electron microscopy, secondary electrons are generated from carbon radicals by the primary electrons from the electron gun, and the secondary electrons are imaged as shown below.

1次電子           2次電子結像となるC
・ → C+・2次電子 1次電子は導電染色された試料内を通り、接地電位び試
料ホルダに逃げるため帯電しない、また、炭素ラジカル
状態は4〜5日保たれる。やがて次のように変化し、効
果が無くなる。
Primary electron Secondary electron imaging C
・→C+・Secondary electrons The primary electrons pass through the conductive dyed sample and escape to the ground potential and sample holder, so they are not charged, and the carbon radical state is maintained for 4 to 5 days. Eventually, the effect will change as follows, and the effect will disappear.

C・ + C・ → C=C 炭ト!12重結合 空気中の                    カ
ルボニル基C・ +2)1.0+30.  → C・÷
(−008)  → Coo)1本発明の装置において
、プラスチラック等の有機物のプラズマ重合を行うとき
は、出力を増さなくても、第3図のような円筒の軸方向
に磁力線の向きを持つ磁束密度0.IT(テスラー)程
度の円筒磁石を試料室外周゛に設置することにより、プ
ラズマ密度が5〜10倍大きくなり、有機物の重合実験
用として用いることができる。
C・ + C・ → C=C Charcoal! 12 double bond carbonyl group in air C. +2) 1.0+30. → C・÷
(-008) → Coo) 1 In the apparatus of the present invention, when performing plasma polymerization of organic materials such as plasticac, the direction of the magnetic field lines can be adjusted in the axial direction of the cylinder as shown in Fig. 3 without increasing the output. The magnetic flux density is 0. By installing a cylindrical magnet on the order of IT (Tesler) around the outer periphery of the sample chamber, the plasma density can be increased by 5 to 10 times, and it can be used for polymerization experiments of organic substances.

なお、プラズマ重合とはプラズマ中の電子やイオンの働
きにより前述した水素引き抜きが起こり、炭素ラジカル
が多量に発生し、炭素間同志の二重結合が起きて架橋構
造が発達することを云う。
Note that plasma polymerization refers to the aforementioned hydrogen abstraction occurring due to the action of electrons and ions in plasma, generating a large amount of carbon radicals, forming double bonds between carbons, and developing a crosslinked structure.

プラズマを発生させるための高周波励起電極は第1図の
ように、誘導コイルを用いた誘導結合方式でも、2枚1
組の電極を向い合わせた、容量結合方式で同様な効果が
得られる。
As shown in Figure 1, the high-frequency excitation electrodes used to generate plasma can be made using an inductive coupling method using an induction coil.
A similar effect can be obtained using a capacitive coupling method in which a pair of electrodes face each other.

〔発明の効果〕〔Effect of the invention〕

本発明によれば試料室外周に円筒軸方向磁場を設けるこ
とに、プラズマ密度を高めることができたので、磁石を
取りはずしたときはプラズマが弱く走査電子顕微鏡用の
前処理装置として使え、磁石を取り付けたときはプラズ
マが強く、プラズマ重合実験装置として使用できる。
According to the present invention, the plasma density can be increased by providing a cylindrical axial magnetic field around the outer circumference of the sample chamber, so when the magnet is removed, the plasma is weak and can be used as a pretreatment device for a scanning electron microscope. When installed, the plasma is strong and can be used as a plasma polymerization experimental device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の低温プラズマ装置を走査顕微鏡用無コ
ーティング前処理装置として用いた縦断面図である6 第2図は本発明の低温プラズマ装置をプラズマ重合実験
装置として用いた縦断面図である。 第3図は本発明における円筒磁石の磁力線の方向を示し
た側面図、 1はガス導入口、2はガス排出口、3はプラズマ引出し
口、4はプラズマ発生室、5は高周波電源、6は誘導コ
イル、7はシールラバ、8は試料室、9は電極、10は
引出し電極、11は引出し電極、12は試料、13は円
筒磁石。 特許出願人の名称 日立工機株式会社 −′ 一一一)7 に ;8 」 二f13 \
Figure 1 is a vertical cross-sectional view of the low-temperature plasma device of the present invention used as a coating-free pretreatment device for a scanning microscope.6 Figure 2 is a vertical cross-sectional view of the low-temperature plasma device of the present invention used as a plasma polymerization experimental device. be. FIG. 3 is a side view showing the direction of the magnetic field lines of the cylindrical magnet in the present invention, 1 is a gas inlet, 2 is a gas outlet, 3 is a plasma extraction port, 4 is a plasma generation chamber, 5 is a high frequency power supply, 6 is a An induction coil, 7 a seal rubber, 8 a sample chamber, 9 an electrode, 10 an extraction electrode, 11 an extraction electrode, 12 a sample, and 13 a cylindrical magnet. Name of patent applicant Hitachi Koki Co., Ltd.-'111)7;8''2f13\

Claims (1)

【特許請求の範囲】[Claims] 高周波によって励起される不活性ガスを導入するガス導
入口1と、ガス排出口2を持つ、プラズマ発生室4の下
部にプラズマを引き出すプラズマ引出し口3を設けた低
温プラズマ装置において、引出し口3に取り付けられた
シールラバ7を介して気密を保たれた試料室8の中にプ
ラズマを引き出すための電界を発生させる電極9、引出
し電極10、引出し電極11によって、試料室8内部の
試料にプラズマを照射するとき、試料室8の外周にプラ
ズマ濃度を高めるための取りはずし可能な永久磁石を設
けることにより、プラズマ重合実験などの比較的プラズ
マ濃度の大きい用途と、生物試料を走査電子顕微鏡で無
コーティングで観察するための前処理法としてプラズマ
濃度の小さい用途に使い分け可能な低温プラズマ装置。
In a low-temperature plasma device, a plasma generation chamber 4 has a gas inlet 1 for introducing an inert gas excited by high frequency, a gas outlet 2, and a plasma outlet 3 for drawing out plasma at the lower part of the plasma generation chamber 4. The sample inside the sample chamber 8 is irradiated with plasma by an electrode 9, an extraction electrode 10, and an extraction electrode 11 that generate an electric field for extracting plasma into the sample chamber 8, which is kept airtight through the attached seal rubber 7. By installing a removable permanent magnet on the outer periphery of the sample chamber 8 to increase the plasma concentration, it is possible to perform applications with relatively high plasma concentrations such as plasma polymerization experiments, and to observe biological samples with a scanning electron microscope without coating. A low-temperature plasma device that can be used for applications with low plasma concentration as a pretreatment method for
JP63157235A 1988-06-24 1988-06-24 Low-temperature plasma apparatus Pending JPH026504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63157235A JPH026504A (en) 1988-06-24 1988-06-24 Low-temperature plasma apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63157235A JPH026504A (en) 1988-06-24 1988-06-24 Low-temperature plasma apparatus

Publications (1)

Publication Number Publication Date
JPH026504A true JPH026504A (en) 1990-01-10

Family

ID=15645196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63157235A Pending JPH026504A (en) 1988-06-24 1988-06-24 Low-temperature plasma apparatus

Country Status (1)

Country Link
JP (1) JPH026504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035479A1 (en) * 1999-11-05 2001-05-17 Ebara Corporation Method for purifying fuel for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035479A1 (en) * 1999-11-05 2001-05-17 Ebara Corporation Method for purifying fuel for fuel cell

Similar Documents

Publication Publication Date Title
JP3860954B2 (en) Plasma processing apparatus with real-time particle filter
JP4073174B2 (en) Neutral particle beam processing equipment
EP2457247B1 (en) Cleaning device for transmission electron microscopes
US4727029A (en) Apparatus and method for the pretreatment of biological specimens for use in scanning electron microscopes
JP3974442B2 (en) Sterilization apparatus and sterilization method
JP2017012970A (en) Plasma powder processing apparatus and method
Rangel et al. Treatment of PVC using an alternative low energy ion bombardment procedure
JPH10270430A (en) Plasma treating device
JP2002289581A (en) Neutral particle beam treatment device
JP4073173B2 (en) Neutral particle beam processing equipment
JPH026504A (en) Low-temperature plasma apparatus
Shimizu et al. Atmospheric microplasma application for surface modification of biomaterials
JP4035225B2 (en) Plasma processing method
TW200822161A (en) System and method for generating ions and radicals
Jin et al. A Magnetic Field Induced Cold Atmospheric Pressure Air Plasma Jet
JP3606842B2 (en) Electron gun and electron beam irradiation processing apparatus
Li et al. Dielectric barrier discharge using corona-modified silicone rubber
JPH1083899A (en) Neutral particle beam source
KISIKA Degradation of bacteria Escherichia coli by treatment with Ar ion beam and neutral oxygen atoms
JPS62235484A (en) Thin film device
JP2008108745A (en) Neutral particle beam treatment device
RU2199349C2 (en) Method and device for carrying out dry sterilization of medical products
KR100351197B1 (en) Method of forming a metal thin film by using plasma which contains metal ions
JPS62180747A (en) Electric discharge reaction device
JPS63155546A (en) Plasma treatment device