JPH0265045A - Electron beam scanning type analyzing device - Google Patents

Electron beam scanning type analyzing device

Info

Publication number
JPH0265045A
JPH0265045A JP21575188A JP21575188A JPH0265045A JP H0265045 A JPH0265045 A JP H0265045A JP 21575188 A JP21575188 A JP 21575188A JP 21575188 A JP21575188 A JP 21575188A JP H0265045 A JPH0265045 A JP H0265045A
Authority
JP
Japan
Prior art keywords
sample
signal
electron beam
relative
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21575188A
Other languages
Japanese (ja)
Inventor
Jiyunji Seimitsu
政光 順二
Kazuo Koyanagi
和夫 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP21575188A priority Critical patent/JPH0265045A/en
Publication of JPH0265045A publication Critical patent/JPH0265045A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the relative oscillation of a sample and an objective lens by adding the output signal of a relative displacement detecting means for detecting the relative displacement of a sample and electron optics systems to the signal for the deflection of an electron beam. CONSTITUTION:A relative oscillation detecting means 5 for detecting the relative oscillation is provided between electron optics systems 1, 2, 4 and a sample S, and the relative oscillation detecting signal detected by the relative oscillation detecting means 5 is added to the electron beam deflecting signal. Since the electron beam E is deflected by the quantity fitting for the oscillation of the sample S, adding to the original deflection for scanning, the relative displacement between the sample S and the electron optics systems 1, 2, 4 can be 0. Thereby, the influence caused by the relative oscillation between the sample S and the electron optics systems 1, 2, 4 can be electrically eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、EPMんとか走査型電子顕微鏡の相対振動解
消機構に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a relative vibration canceling mechanism for an EPM or a scanning electron microscope.

(従来の技術) EPMAとか走査型顕微鏡は、数万倍から数十万倍の倍
率で見ることができる。そのために僅かな振動でも、そ
の倍率に拡大されるために表示画像に影響が出てくる9
これらの振動は試料と電子レンズとの相対振動であり、
振動源としては装置内にある電子レンズを冷却する冷却
装置のモータ等や床等外部からくる振動等がある。そこ
で従来行われてきた対策として、弾性体(ゴム、バネ空
気等)を介して試料等を保持することによって、試料等
に伝達する振動を弾性体で吸収する方法とか、試料と電
子光学系を一体的な結合状態、例えば、試料から突出さ
せた剛体棒を電子レンズヨークに押圧することによって
、試料と電子光学系とを開本的に結合して両者間の相対
的な振動を無くそうとする方法等があるが、前者で完全
に振動を吸収・絶縁することは不可能であるし、後者で
も完全な剛体はなく、また、試料ステージを電子光学系
に対して移動させる場合、−々試料ステージを下げねば
ならず、操申が面倒になる。
(Prior Art) Scanning microscopes such as EPMA allow viewing at a magnification of tens of thousands to hundreds of thousands of times. Therefore, even the slightest vibration is magnified to that magnification, which affects the displayed image9.
These vibrations are relative vibrations between the sample and the electron lens,
Sources of vibration include the motor of a cooling device that cools an electronic lens in the device, and vibrations coming from an external source such as the floor. Conventional countermeasures have been to hold the sample through an elastic body (rubber, spring air, etc.) so that the vibrations transmitted to the sample are absorbed by the elastic body, and to connect the sample to the electron optical system. For example, by pressing a rigid rod protruding from the sample against the electron lens yoke, the sample and the electron optical system are radically coupled to eliminate relative vibration between the two. However, in the former case, it is impossible to completely absorb and insulate vibrations, and in the latter case, there is no completely rigid body, and when moving the sample stage relative to the electron optical system, it is impossible to completely absorb and insulate vibrations. The sample stage must be lowered, making operation difficult.

(発明が解決しようとする課題) 本発明は、上述した機械構造的方法とは、原理を異にし
た除振方法を提供しようとするもので、試料と電子光学
系との間の相対的振動の影響を電気的に解消することを
目的とする。
(Problems to be Solved by the Invention) The present invention aims to provide a vibration isolation method based on a principle different from the above-mentioned mechanical structure method. The purpose is to electrically eliminate the effects of

(課題を解決するための手段) 走査型電子顕微鏡において、試料と電子光学系との相対
的変位を検出する相対変位検出手段を設け、上記相対変
位検出手段の出力信号を電子ビーム偏向用信号に加算す
るようにした。
(Means for Solving the Problem) In a scanning electron microscope, a relative displacement detection means for detecting relative displacement between a sample and an electron optical system is provided, and an output signal of the relative displacement detection means is used as an electron beam deflection signal. I added it.

(作用) 本発明は、試料の電子光学系の対する相対振動を抑制す
る代わりに、電子ビームの方を試料の振動変位に追随さ
せることにより、振動の影響をなくすものである。
(Function) The present invention eliminates the influence of vibration by causing the electron beam to follow the vibrational displacement of the specimen instead of suppressing the relative vibration of the electron optical system of the specimen.

走査型電子詔微鏡において、電子光学系と試料との間に
相対的な振動を検出する相対振動検出手段を設け、同相
対振動検出手段で検出される相対振動検出信号を電子ビ
ーム偏向信号に加算すると、電子ビームは本来の走査用
偏向に加えて試料の振動に相当する分だけ偏向されるか
ら試料と電子光学系との間の相対的変位をOとすること
ができる。
In the scanning electron microscope, a relative vibration detection means for detecting relative vibration between the electron optical system and the sample is provided, and a relative vibration detection signal detected by the relative vibration detection means is converted into an electron beam deflection signal. When added, the electron beam is deflected by an amount corresponding to the vibration of the sample in addition to the original scanning deflection, so that the relative displacement between the sample and the electron optical system can be set to O.

上述したように機械構造的な方法だけでは、除振に限度
があるが、別にこのような原理の異なる方法を積重ねる
ことにより、単一手段の場合より除振効果を高めること
が可能となる。
As mentioned above, there are limits to vibration isolation using mechanical structural methods alone, but by stacking these methods with different principles, it is possible to increase the vibration isolation effect compared to a single method. .

(実施例) 第1図に本発明の一実施例を示す、第1図において、S
は試料、Dは電子銃で電子ビームEを発射する。1は電
子ビームEをXY方向に走査する走査コイル、2は対物
レンズ、3は試料ステージ、4は対物レンズ2に固定さ
れた光源で半導体装置検出素子5に光ビームを照射する
。半導体装置検出素子5は第3図に示すような4分割の
光検出素子5A〜5Dで構成されており、試料ステージ
3に固定されている。50は演算回路で対物レンズ2と
試料ステージ3との相対変位のX軸方向を、光検出素子
5Aと5Cの検出出力を加算した信号強度[5A +5
 C]と、光検出素子5Bと5Dの検出出力を加算した
信号強度[5B+5D]の比(又は差)で、Y軸方向を
X軸方向の時と同じように信号強度[5A+5B]と信
号強度[5C+5D]の比(又は差)で測定する。6は
加算回路6A、6A’ と走査信号発振器6B、6B 
 とコンデンサ6C,6C″と可変抵抗6R,6Rを有
し、X軸とY軸の電子ビームの偏向を制御する走査コイ
ル制御部である。X軸走査について説明すると、走査信
号発生器6Bで試料Sの測定領域を電子ビームが走査す
るように第3図Bに示すような信号を発生させ、演算回
路50からのX方向変位信号からコンデンサ6Cで直流
分をカットして第3図Aに示すような相対振動成分だけ
の信号を取り出し、可変抵抗Rで信号強度を電子ビーム
の偏向の大きさが相対振動と同じになるように調整し、
加算回路6Aで上記走査信号発生器6Bと可変抵抗6R
からの両方の信号を加算して、第3図Cに示すような上
記2つの信号が重畳した信号とし、この走査信号により
走査コイル1を制御し、電子ビームを試料の振動に合わ
せて偏向せしめる。7は電子ビームEによって励起され
た試料Sから放射される2次電子を検出する2次電子検
出器、8は2次電子検出器7の出力信号を増幅するアン
プ、9はアンプ8からの信号を表示するCRTである。
(Example) FIG. 1 shows an example of the present invention.
D is a sample, and D is an electron gun that emits an electron beam E. 1 is a scanning coil that scans the electron beam E in the X and Y directions; 2 is an objective lens; 3 is a sample stage; 4 is a light source fixed to the objective lens 2 and irradiates the semiconductor device detection element 5 with a light beam. The semiconductor device detection element 5 is composed of four divided photodetection elements 5A to 5D as shown in FIG. 3, and is fixed to the sample stage 3. 50 is an arithmetic circuit that calculates the signal intensity [5A +5
C] and the signal strength [5B+5D], which is the sum of the detection outputs of photodetecting elements 5B and 5D. It is measured by the ratio (or difference) of [5C+5D]. 6 are adder circuits 6A, 6A' and scanning signal oscillators 6B, 6B.
This is a scanning coil control section that has capacitors 6C and 6C'' and variable resistors 6R and 6R, and controls the deflection of the electron beam on the X and Y axes. A signal as shown in FIG. 3B is generated so that the electron beam scans the measurement area S, and the DC component is cut off from the X-direction displacement signal from the arithmetic circuit 50 using a capacitor 6C, as shown in FIG. 3A. Take out a signal with only the relative vibration component, and adjust the signal strength with a variable resistor R so that the magnitude of the deflection of the electron beam is the same as the relative vibration,
The above-mentioned scanning signal generator 6B and variable resistor 6R are connected to the adder circuit 6A.
The two signals from the sample are added to form a superimposed signal of the above two signals as shown in Figure 3C, and this scanning signal controls the scanning coil 1 to deflect the electron beam in accordance with the vibration of the sample . 7 is a secondary electron detector that detects secondary electrons emitted from the sample S excited by the electron beam E; 8 is an amplifier that amplifies the output signal of the secondary electron detector 7; 9 is a signal from the amplifier 8; This is a CRT that displays

試料と電子光学系の相対振動の影響を消去するための可
変抵抗6R,6R’調整動作について説明する。電子ビ
ームによる走査を停止し、試料の一点を照射して、その
ときの2次電子検出信号をCRTのY軸信号とし、CR
TのX軸を装置の振動源であるモータ駆動のサイクルに
同期させて掃引すると、CRT上に一つの波形が画かれ
る。これは試料の相対振動により電子ビームの照射点が
動いて2次電子放射率が変動するからである。こ)でX
方向変位検出信号をコンデンサ6Cを通して振動変位信
号だけを取り出し、振動変位信号を可変抵抗6Rを通し
てX方向偏向コイルに印加し、可変抵抗6Rによって変
位信号強度を調整すると、電子ビームが振動変位と同じ
動きをするようになり、電子ビームのX方向変位と試料
のX方向変位が全く一致した時点で、CRT上の波形が
最小になる。最小になる所が見出されないときは、試料
の変位方向と電子ビームの偏向方向が反対であると考え
られるから、変位信号の極性を変えて偏向コイルに印加
すればよい。この調整の後、Y軸方向について同様の調
節を行うことにより、CRT上の波形の振幅をOにすれ
ば良い、この調整は組立て調整時に行い、測定の都度行
う必要はない 測定時は、試料ステージ3を所定位置に駆動し、光ii
4からの光ビームを半導体装置検出素子5で検出する。
The adjustment operation of the variable resistors 6R and 6R' for eliminating the influence of relative vibration between the sample and the electron optical system will be described. Stop scanning with the electron beam, irradiate one point on the sample, and use the secondary electron detection signal at that time as the Y-axis signal of the CRT.
When the X-axis of T is swept in synchronization with the cycle of the motor drive, which is the vibration source of the device, a single waveform is drawn on the CRT. This is because the irradiation point of the electron beam moves due to the relative vibration of the sample, causing the secondary electron emissivity to fluctuate. X in this)
When only the vibrational displacement signal is taken out from the directional displacement detection signal through the capacitor 6C, the vibrational displacement signal is applied to the X-direction deflection coil through the variable resistor 6R, and the displacement signal strength is adjusted by the variable resistor 6R, the electron beam moves in the same manner as the vibrational displacement. When the X-direction displacement of the electron beam and the X-direction displacement of the sample completely match, the waveform on the CRT becomes minimum. If the minimum point is not found, it is considered that the direction of displacement of the sample and the direction of deflection of the electron beam are opposite, so the polarity of the displacement signal may be changed and applied to the deflection coil. After this adjustment, the amplitude of the waveform on the CRT can be set to O by making a similar adjustment in the Y-axis direction. Drive stage 3 to a predetermined position, and light II
The light beam from 4 is detected by a semiconductor device detection element 5.

検出信号は第2図に示すように、直流分と相対振動を表
す交流分が加算された信号となっているので、コンデン
サ6C或は6C″で直流分をカットし、相対振動を表す
交流分を取り出す、取り出した信号は抵抗6R等で強度
が調整されてから加算回路6A等で走査信号発生器6B
等からのX、Y軸走査信号と加算され、変位信号とX軸
およびY軸走査信号が重畳した走査信号(第3図C)と
なり、この信号を走査コイル1に送り、電子ビームEの
走査を制御する。この走査制御によって、試料Sの相対
変位に応じて電子ビームEが変位するので、対物レンズ
2と試料Sとの相対変位は無くなり、2次電子検出器7
で検出されて、CRT9に映写される像の振れは解消さ
れるなお、対物レンズ2と試料ステージ3との相対変位
を測定する方法は他に色々な方法が考えられる。第5図
に位置検出ダイオード(PSD)を用いる実施例を示す
1図において、5はPSDで半導体のpn接合素子であ
り、上面のX方向の両側縁に電f!5Xが取付けられて
おり、下面でY方向の両側縁に電極5Yが取付けられて
おり、対物レンズ2に取付けられた光源4から光ビーム
Kが上記素子の上面にpn接合面に垂直照射されている
。この光ビームの照射位置に対応して電極5X。
As shown in Figure 2, the detection signal is a signal in which a DC component and an AC component representing relative vibration are added, so the DC component is cut off with a capacitor 6C or 6C'' and the AC component representing relative vibration is added. The intensity of the extracted signal is adjusted using a resistor 6R, etc., and then sent to a scanning signal generator 6B using an adding circuit 6A etc.
The displacement signal and the X- and Y-axis scanning signals are added together to form a scanning signal (Fig. 3C), which is sent to the scanning coil 1 to scan the electron beam E. control. By this scanning control, the electron beam E is displaced according to the relative displacement of the sample S, so the relative displacement between the objective lens 2 and the sample S is eliminated, and the secondary electron detector 7
However, various other methods can be considered for measuring the relative displacement between the objective lens 2 and the sample stage 3. FIG. 5 shows an embodiment using a position detection diode (PSD). In the figure, 5 is a PSD, which is a semiconductor pn junction element, and an electric current f! 5X is attached, electrodes 5Y are attached to both edges in the Y direction on the bottom surface, and a light beam K from a light source 4 attached to the objective lens 2 is irradiated perpendicularly to the pn junction surface on the top surface of the element. There is. The electrode 5X corresponds to the irradiation position of this light beam.

5Yから得られるX方向、Y方向の変位検出信号の電圧
が変動するので、相対変位を電圧信号として取出すこと
ができる。この信号を用いて、第1実施例と同じように
電子ビームを制御することによって、CRT9に映写さ
れる像の振れを解消する。
Since the voltage of the displacement detection signal in the X direction and the Y direction obtained from 5Y fluctuates, the relative displacement can be extracted as a voltage signal. By using this signal to control the electron beam in the same manner as in the first embodiment, the shake of the image projected on the CRT 9 is eliminated.

高感度を必要とする場合には、第6図による方法を用い
ることも可能である。この方法の原理を第7図に示す、
高い反射率と低い透過率を持った2枚の精密な平行平面
板53に光を投射すると、平行平面板間に入射した光は
平行平面板53間で多数回(無限に近い回数)反射され
、干渉によって強まった光だけが透過する。即ち、波長
をλ、平行平面板53の間隔をdとすると、 d=nλ/2・・・・・・・・・・・・(1)を満足す
る波長の光だけが透過し、多数回反射をしているので、
透過率は平行平面板の間隔の変化に対して極めて敏感で
ある。第6図の方法はこの原理を用いたものであり、光
源に特定波長の半導体レーザー光を使用し、Y方向平行
平面板53の一方およびX方向平行平面板54の一方と
各方向の光源41.42を電子光学系の対物レンズに固
定し、他方を夫々試料ステージに固定しておくと、両平
面板間の間隔dの変動によって透過光の強度が変動する
。その透過光の変動を試料ステージに固定した光検出素
子51.52で測定する。測定した検出信号は(1)式
を満足するdの時が最大強度を示し、そこから離れると
信号強度が小さくなる第8図Aのような信号が得られる
。ここで、ステージ位置をcioで示すような位置にす
ると、ステージの位置変化に対する光強度の変化率がき
わめて大きくなる。このような位置はステージを光の半
波長ずつ動かすと存在するので、電子光学系の光軸が試
料のlII察領域の中心付近にある範囲で上記したよう
なステージ位置を設定することができる。平行平面板の
間隔を第8図AのdO付近に設定すると、変位信号強度
の変位に対する検出感度が最大となり、この状態で変位
を検出すると第8図Bのような検出信号が得られる。こ
の検出信号を第1図の走査コイル制御部6に入力して、
前述と同じ調整方法で2次電子検出信号の変動が0にな
るように可変抵抗6R,6R’ を調整する。
If high sensitivity is required, it is also possible to use the method shown in FIG. The principle of this method is shown in Figure 7.
When light is projected onto two precision plane-parallel plates 53 with high reflectance and low transmittance, the light incident between the plane-parallel plates 53 is reflected many times (almost an infinite number of times) between the plane-parallel plates 53. , only the light strengthened by interference is transmitted. That is, if the wavelength is λ and the distance between the parallel plane plates 53 is d, then only light with a wavelength that satisfies (1) is transmitted, and is transmitted many times. Because it is reflective,
The transmittance is extremely sensitive to changes in the spacing of the parallel plane plates. The method shown in FIG. 6 uses this principle, and uses semiconductor laser light of a specific wavelength as a light source, and connects one of the Y-direction parallel flat plates 53 and the X-direction parallel flat plate 54 to the light sources 41 in each direction. .42 is fixed to the objective lens of the electron optical system, and the other is fixed to the sample stage, the intensity of the transmitted light will vary depending on the variation of the distance d between both plane plates. Fluctuations in the transmitted light are measured by photodetecting elements 51 and 52 fixed to the sample stage. The measured detection signal shows the maximum intensity at d, which satisfies the equation (1), and the signal intensity decreases as the signal deviates from this point, resulting in a signal as shown in FIG. 8A. Here, if the stage position is set to the position shown by cio, the rate of change in light intensity with respect to a change in stage position becomes extremely large. Such a position exists when the stage is moved by a half wavelength of light, so the stage position as described above can be set within a range where the optical axis of the electron optical system is near the center of the III detection area of the sample. When the interval between the parallel plane plates is set near dO in FIG. 8A, the detection sensitivity of the displacement signal intensity to displacement is maximized, and when displacement is detected in this state, a detection signal as shown in FIG. 8B is obtained. This detection signal is input to the scanning coil control section 6 in FIG.
The variable resistors 6R and 6R' are adjusted using the same adjustment method as described above so that the fluctuation of the secondary electron detection signal becomes zero.

更に、試料と電子光学系との相対変位を検出方法として
、圧電素子を用いる方法もある。
Furthermore, there is also a method of using a piezoelectric element to detect the relative displacement between the sample and the electron optical system.

(発明の効果) 除振、防振に関し、単一原理だけでは限界があるときは
、別原理の採用或は両原理の重複使用が必要である。本
発明はそのような場合に、従来の機械構造的な手段とは
別原理の手段を提供した所に意味があり、これにより、
試料と対物レンズとの相対的振動が高度に解消され、解
像力が一段と向上し得るようになった。
(Effects of the Invention) Regarding vibration isolation and damping, when there is a limit to using a single principle alone, it is necessary to adopt another principle or to use both principles overlappingly. In such a case, the present invention is significant in that it provides a means based on a principle different from conventional mechanical structural means, and thereby,
Relative vibration between the sample and objective lens has been eliminated to a high degree, making it possible to further improve resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は半導体装
置検出素子によって得られる検出信号図、第3図は走査
コイル制御部における信号図、第4図は半導体装置検出
素子5の光検出面の状態を示す図、第5図は位置検出装
置の第2実施例の構成図、第6図は位置検出装置の第3
実施例の構成図、第7図は第6図に用いられる平行平面
板の側断面図、第8図は第6図の装置で得られた変位信
号の検出動作説明図である。 S・・・試料、E・・電子ビーム、K・・・光、D・・
・電子銃1・・・走査コイル、2・・・対物レンズ、3
・・・試料ステージ、4・・・光源、5・・・半導体装
置検出素子、50・・・演算回路、6・・・走査コイル
制御部、6A、6A′ ・・加算回路、6B、6B’・
・・走査信号発生器、6R,6R’・・・可変抵抗、6
C,6C’・・・コンデンサ、7・・・2次電子検出器
、8・・アンプ、9−・・CRT。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a detection signal diagram obtained by a semiconductor device detection element, FIG. 3 is a signal diagram in the scanning coil control section, and FIG. 4 is a semiconductor device detection element 5. FIG. 5 is a diagram showing the configuration of the second embodiment of the position detection device, and FIG. 6 is a diagram showing the third embodiment of the position detection device.
FIG. 7 is a side sectional view of the parallel plane plate used in FIG. 6, and FIG. 8 is an explanatory diagram of the detection operation of the displacement signal obtained by the apparatus shown in FIG. 6. S...sample, E...electron beam, K...light, D...
・Electron gun 1...scanning coil, 2...objective lens, 3
. . . Sample stage, 4 . . Light source, 5 .・
...Scanning signal generator, 6R, 6R'...Variable resistor, 6
C, 6C'... Capacitor, 7... Secondary electron detector, 8... Amplifier, 9-... CRT.

Claims (1)

【特許請求の範囲】[Claims] 試料と電子光学系との相対的変位を検出する相対変位検
出手段を設け、上記相対変位検出手段の出力信号を電子
ビームの偏光用信号に加算するようにしたことを特徴と
する電子線走査型分析装置。
An electron beam scanning type, characterized in that a relative displacement detection means for detecting a relative displacement between a sample and an electron optical system is provided, and an output signal of the relative displacement detection means is added to a polarization signal of an electron beam. Analysis equipment.
JP21575188A 1988-08-30 1988-08-30 Electron beam scanning type analyzing device Pending JPH0265045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21575188A JPH0265045A (en) 1988-08-30 1988-08-30 Electron beam scanning type analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21575188A JPH0265045A (en) 1988-08-30 1988-08-30 Electron beam scanning type analyzing device

Publications (1)

Publication Number Publication Date
JPH0265045A true JPH0265045A (en) 1990-03-05

Family

ID=16677616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21575188A Pending JPH0265045A (en) 1988-08-30 1988-08-30 Electron beam scanning type analyzing device

Country Status (1)

Country Link
JP (1) JPH0265045A (en)

Similar Documents

Publication Publication Date Title
US3715165A (en) Investigating the topography of reflecting surfaces
EP1806571B1 (en) Apparatus and method for evaluating driving characteristics of scanner
US4948971A (en) Vibration cancellation system for scanning electron microscopes
US5049745A (en) Phase-compensating vibration cancellation system for scanning electron microscopes
US4698513A (en) Position detector by vibrating a light beam for averaging the reflected light
JPS63131116A (en) Confocal microscope
JP3349779B2 (en) Scanner system and scanning microscope using the same
JPH0265045A (en) Electron beam scanning type analyzing device
JP4272043B2 (en) Charged particle beam equipment
JP3704952B2 (en) Medium measuring apparatus and measuring method
WO2010067570A1 (en) Method for processing output of scanning type probe microscope, and scanning type probe microscope
US4685804A (en) Method and apparatus for the measurement of the location or movement of a body
US20220390225A1 (en) Device and method for the measurement of inclination and angular stability of electromagnetic radiation beams, and for the measurement of a spatial shift of a focused electromagnetic radiation beam
JPS61210902A (en) Specimen height measuring instrument
JP2005276870A (en) Charged particle beam apparatus
JPH07244058A (en) Surface shape measuring device
SU1112436A1 (en) Electrone-beam probe device
JPH06174460A (en) Scanner system
JPH03280340A (en) Beam dia measuring device for charged particle rays
JPS61281905A (en) Angle and displacement measuring instrument
SU670804A2 (en) Autocollimator
JPH0720094A (en) Ultrasonic oscillation measuring apparatus
JPH03141544A (en) Scanning electron microscope provided with laser displacement gauge
JPH10221355A (en) Scanning type probe microscope and cantilever thereof
JPH0640003B2 (en) Sample surface position measurement method