JPH0264509A - Structure for optical coupling of optical fiber and photodetector - Google Patents

Structure for optical coupling of optical fiber and photodetector

Info

Publication number
JPH0264509A
JPH0264509A JP21525788A JP21525788A JPH0264509A JP H0264509 A JPH0264509 A JP H0264509A JP 21525788 A JP21525788 A JP 21525788A JP 21525788 A JP21525788 A JP 21525788A JP H0264509 A JPH0264509 A JP H0264509A
Authority
JP
Japan
Prior art keywords
optical fiber
light
optical
spherical lens
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21525788A
Other languages
Japanese (ja)
Inventor
Masaru Sasaki
勝 佐々木
Yoichi Oikawa
陽一 及川
Tetsuo Horimatsu
哲夫 堀松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21525788A priority Critical patent/JPH0264509A/en
Publication of JPH0264509A publication Critical patent/JPH0264509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To assure high coupling efficiency, wide band characteristic and low noise characteristic by providing a spherical lens part to the tip of an optical fiber and condensing propagated light through the reflecting film on the surface to a photodetector. CONSTITUTION:The spherical lens 2 is formed to the end of the optical fiber 1 by deviating a center 3 with respect to the optical axis 4. The reflecting film 5 is provided on the surface of this lens. The light propagated in the optical fiber 1 is introduced through the reflecting film 5 to the photodetecting surface 6 of the photodetector 7 by which the light is subjected to opto-electric conversion. The reflecting mirror 5 acts as a concave mirror and the spherical lens 2 acts as a convex lens in such a manner and, therefore, the light is condensed to the min. spot at the proper point of the photodetecting surface 6 parallel with the optical fiber axis 4. The high optical coupling efficiency is thus obtd. even with the small photodetecting surface 6. Since the photodetecting surface 6 can be formed in parallel with the optical axis of the optical fiber 1, the miniaturization of the device is possible.

Description

【発明の詳細な説明】 概要 光ファイバと受光素子の光学的結合構造に関し、高い光
結合効率、広帯域性及び低雑音性を確保することができ
小型化に適した光ファイバと受光素子の光学的結合構造
の提供を目的とし、光ファイバの端部に球形レンズ部を
形成し、この球形レンズ部の中心を上記光ファイバの軸
に対して偏らせ、上記球形レンズ部の表面で上記軸と交
わる部分の周辺に反射膜を形成し、上記光ファイバを伝
搬してきた光を上記反射膜で反射させて上記球形レンズ
部の反射膜が形成されていない部分から取り出して、上
記軸とほぼ平行な受光面を有する受光素子にて受光する
ようにして構成する。
[Detailed Description of the Invention] Overview Regarding the optical coupling structure of an optical fiber and a light receiving element, an optical coupling structure of an optical fiber and a light receiving element that can ensure high optical coupling efficiency, broadband property, and low noise property and is suitable for miniaturization. For the purpose of providing a coupling structure, a spherical lens part is formed at the end of the optical fiber, the center of this spherical lens part is biased with respect to the axis of the optical fiber, and the surface of the spherical lens part intersects with the axis. A reflective film is formed around the part, and the light propagated through the optical fiber is reflected by the reflective film and taken out from the part of the spherical lens part where the reflective film is not formed, so that the light is received almost parallel to the axis. It is configured so that light is received by a light receiving element having a surface.

産業上の利用分野 本発明は光ファイバと受光素子の光学的結合構造に関す
る。
INDUSTRIAL APPLICATION FIELD The present invention relates to an optical coupling structure between an optical fiber and a light receiving element.

近年、光通信又は光伝送の分野においては、IGb/s
以上の伝送速度を有する高速システムの開発が盛んに行
われており、これにともない個々のシステム構成要素に
おける高速化の要求が高まっている。具体的には、光伝
送路としては、本質的に広帯域なシングルモード光ファ
イバが使用され、受光素子としては、受光面積が小さく
素子容量の小さなものが使用されている。このようによ
り微細化する方向にある光ファイバ及び受光素子を光学
的に結合するに際して要求されることは、(イ) 高い
光結合効率の確保、 (ロ)  広帯域・低雑音性の確保、 (ハ) 小型化に適していること、 等である。
In recent years, in the field of optical communication or optical transmission, IGb/s
High-speed systems having higher transmission speeds are being actively developed, and as a result, demands for higher speeds in individual system components are increasing. Specifically, an essentially broadband single-mode optical fiber is used as the optical transmission line, and a light-receiving element with a small light-receiving area and small element capacity is used as the light-receiving element. What is required when optically coupling optical fibers and photodetectors, which are becoming increasingly miniaturized, are (a) ensuring high optical coupling efficiency, (b) ensuring broadband and low noise, and (c) ensuring high optical coupling efficiency. ) Suitable for downsizing, etc.

従来の技術 第4図は光ファイバと受光素子の従来の光学的結合構造
の一例を示す図である。光ファイバ21を伝搬してきた
光を、斜めに形成された光ファイバの端面21aで反射
させて光ファイバ21の側方から取り出し、その光を受
光素子22により光−電気変換するようにしたものであ
る。23は受光素子22の電気出力を処理□する増幅器
等の電子回路、24は受光素子22及び電子回路23を
保持している基板である。光ファイバ21の伝搬光をフ
ァイバ端面21aにて反射させるためには、全反射角と
なるように端面21aを形成するか、あるいは、端面2
1aに反射膜を形成すれば良い。
BACKGROUND OF THE INVENTION FIG. 4 is a diagram showing an example of a conventional optical coupling structure between an optical fiber and a light receiving element. The light propagating through the optical fiber 21 is reflected by the obliquely formed end face 21a of the optical fiber, extracted from the side of the optical fiber 21, and the light is converted into electricity by the light receiving element 22. be. 23 is an electronic circuit such as an amplifier for processing the electrical output of the light receiving element 22; 24 is a substrate holding the light receiving element 22 and the electronic circuit 23; In order to reflect the propagating light of the optical fiber 21 at the fiber end face 21a, the end face 21a is formed to have a total reflection angle, or the end face 21a is formed so as to have a total reflection angle.
A reflective film may be formed on 1a.

この構成によれば、光ファイバ21を基板24に対して
平行に保持することができるので、装置の小型化が容易
である。
According to this configuration, since the optical fiber 21 can be held parallel to the substrate 24, it is easy to downsize the device.

第5図は光ファイバと受光素子の従来の他の光学的結合
構造を示す図である。光ファイバ31の端部にテーパ先
球部31aを形成しておき、光ファイバ31の伝搬光を
テーパ先球部31aにより集束させて、電子回路33と
ともに基板34上に保持された受光素子32にて光−電
気変換するようにしたものである。この構成によれば、
比較的小さな受光径の受光素子を用いることができるの
で、広帯域性く高速動作性)及び低雑音性の確保が容易
である。
FIG. 5 is a diagram showing another conventional optical coupling structure between an optical fiber and a light receiving element. A tapered spherical portion 31a is formed at the end of the optical fiber 31, and the light propagating through the optical fiber 31 is focused by the tapered spherical portion 31a, and is directed to the light receiving element 32 held on the substrate 34 together with the electronic circuit 33. It is designed to perform light-to-electrical conversion. According to this configuration,
Since a light-receiving element with a relatively small light-receiving diameter can be used, it is easy to ensure broadband performance (high-speed operation) and low noise.

発明が解決しようとする課題 第4図の従来例であると、光ファイバの光軸方向(X方
向)とX方向に垂直で基板面に平行なX方向とで出射光
の拡がり方が異なるものの、いずれの方向についても出
射光は集束されないから、受光素子22の受光面22H
における照射パターンは、第6図に示すように、光ファ
イバと受光素子の離間距離に応じて大きなものとなる(
特にX方向に大きく拡がる。)。このため、高い光結合
効率を確保するためには、大受光面積で素子容量が大き
な受光素子が必要となり、広帯域性及び低雑音性が阻害
される。これを避けるために、光ファイバを受光素子に
接近させることが提案され得るが、こうすると受光面が
損傷するおそれが生じる。一方、光ファイバを離間させ
たまま小径の受光素子を使用すると、広帯域性は確保さ
れるものの、光結合効率が低下する。
Problems to be Solved by the Invention In the conventional example shown in Fig. 4, the way the emitted light spreads is different between the optical axis direction of the optical fiber (X direction) and the X direction perpendicular to the X direction and parallel to the substrate surface. , since the emitted light is not focused in any direction, the light receiving surface 22H of the light receiving element 22
As shown in Fig. 6, the irradiation pattern becomes larger depending on the distance between the optical fiber and the light receiving element (
In particular, it spreads greatly in the X direction. ). Therefore, in order to ensure high optical coupling efficiency, a light-receiving element with a large light-receiving area and large element capacity is required, which hinders broadband performance and low noise performance. In order to avoid this, it may be proposed to bring the optical fiber close to the light receiving element, but this may cause damage to the light receiving surface. On the other hand, if a small-diameter light-receiving element is used with the optical fibers separated, although broadband performance is ensured, the optical coupling efficiency decreases.

第5図に示される従来例であると、高い光結合効率、広
帯域性及び低雑音性の確保は可能になるが、光ファイバ
と基板とが垂直に配置されるため、装置の小型化が困難
であるという問題がある。
In the conventional example shown in Figure 5, it is possible to ensure high optical coupling efficiency, broadband performance, and low noise, but it is difficult to miniaturize the device because the optical fiber and the board are arranged vertically. There is a problem that.

本発明はこのような事情に鑑みて創作されたもので、高
い光結合効率、広帯域性及び低雑音性を確保することが
でき小型化に適した光ファイバと受光素子の光学的結合
構造の提供を目的としている。
The present invention was created in view of these circumstances, and provides an optical coupling structure between an optical fiber and a light receiving element that can ensure high optical coupling efficiency, broadband performance, and low noise, and is suitable for miniaturization. It is an object.

課題を解決するための手段 第1図は本発明の原理図である。Means to solve problems FIG. 1 is a diagram showing the principle of the present invention.

1は光ファイバ、2は光ファイバ1の端部に形成された
球形レンズ部であり、この球形レンズ部2の中心3は、
光ファイバ1の軸4に対して偏らされている。
1 is an optical fiber, 2 is a spherical lens part formed at the end of the optical fiber 1, and the center 3 of this spherical lens part 2 is
It is biased with respect to the axis 4 of the optical fiber 1.

5は球形レンズ部2の表面で軸4と交わる部分の周辺に
形成された反射膜である。
Reference numeral 5 denotes a reflective film formed around a portion of the surface of the spherical lens portion 2 that intersects with the axis 4.

そして、光ファイバ1を伝搬してきた光を、反射膜5で
反射させて球形レンズ部2の反射膜5が形成されていな
い部分から取り出して、軸4とほぼ平行な受光面6を有
する受光素子7にて受光するようにしている。
Then, the light propagating through the optical fiber 1 is reflected by the reflective film 5 and taken out from the part of the spherical lens part 2 where the reflective film 5 is not formed, and the light receiving element having the light receiving surface 6 substantially parallel to the axis 4 is formed. The light is received at 7.

作   用 本発明の構成によれば、光ファイバ1を伝搬してきた光
は、凹面鏡として作用する反射膜5で反射して、凸レン
ズとして作用する球形レンズ部2の側方から出射される
ので、この出射光の、光ファイバの軸に平行な面におけ
る照射面は、適当なところで最小となる。このため、小
さな受光面を有する受光素子で上記出射光を受光したと
しても、高い光結合効率を得ることができ、従って、高
い光結合効率、広帯域性及び低雑音性の確保が可能にな
る。又、受光素子の受光面は光ファイバの軸とほぼ平行
であるから、小型化が容易である。尚、球形レンズ部に
おける出射光取り出し部分にのみ正の屈折力を付与した
構成、つまり、例えば反射膜を形成すべき部分を平坦面
に形成するとともに、この平坦面が全反射条件を満たす
ようにした構成と本発明の構成とを比較した場合、反射
膜が凹面鏡として機能する分だけ、本発明の方が集光性
が増し、球形レンズ部の形状、その中心点のファイバ軸
からの偏り量、及び受光面の配置について自由度が増大
する。
Function According to the configuration of the present invention, the light propagated through the optical fiber 1 is reflected by the reflective film 5 which acts as a concave mirror and is emitted from the side of the spherical lens part 2 which acts as a convex lens. The irradiation surface of the emitted light in a plane parallel to the axis of the optical fiber is minimized at an appropriate location. Therefore, even if the emitted light is received by a light-receiving element having a small light-receiving surface, high optical coupling efficiency can be obtained, and therefore, high optical coupling efficiency, broadband performance, and low noise can be ensured. Further, since the light receiving surface of the light receiving element is substantially parallel to the axis of the optical fiber, miniaturization is easy. In addition, a configuration in which positive refractive power is imparted only to the outgoing light extraction portion of the spherical lens portion, that is, a portion where a reflective film is to be formed is formed on a flat surface, and this flat surface satisfies the total reflection condition. When comparing the configuration of the present invention with the configuration of the present invention, the present invention has a higher light focusing ability due to the reflective film functioning as a concave mirror, and the shape of the spherical lens portion and the amount of deviation of its center point from the fiber axis. , and the degree of freedom regarding the arrangement of the light-receiving surface increases.

本願明細書中、球形レンズ部というのは、必ずしも真球
の形状をしたレンズを意味するものでなく、反射膜が形
成された部分が凹面鏡として機能し、且つ、出射光を取
り出す部分が凸レンズとして機能するようなものを意味
する。
In the specification of this application, a spherical lens portion does not necessarily mean a lens having a true spherical shape, and does not mean that the portion on which the reflective film is formed functions as a concave mirror, and the portion that extracts the emitted light functions as a convex lens. It means something that works.

実  施  例 以下本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第2図は本発明の実施例を示す光受信機の部分破断側面
図である。11は光ファイバであり、その端部には、端
部に向かうに従って径が減少するようなテーパ部12が
形成されている。13はテーパ部12の先端に設けられ
た球形レンズ部であり、その中心は光ファイバ11の軸
に対して偏らされている。球形レンズ部にあける少なく
とも光ファイバ11の伝搬光の照射部分には、使用する
光の波長において反射率が充分に高い金属、誘電体多層
膜等からなる反射膜14が形成されている。
FIG. 2 is a partially cutaway side view of an optical receiver showing an embodiment of the present invention. Reference numeral 11 denotes an optical fiber, and a tapered portion 12 is formed at the end of the optical fiber, the diameter of which decreases toward the end. Reference numeral 13 denotes a spherical lens section provided at the tip of the tapered section 12, the center of which is deviated with respect to the axis of the optical fiber 11. A reflective film 14 made of a metal, dielectric multilayer film, or the like having a sufficiently high reflectance at the wavelength of the light used is formed at least on the irradiated portion of the optical fiber 11 that is opened in the spherical lens portion.

16はAPD(アバランシェホトダイオード)等の受光
素子であり、その受光面15は、広帯域性(〜数Gb/
s) 及び低雑音性を確保するために、充分小さな面積
(例えば直径50μm以下)を有している。受光素子1
6は増幅器等の電子回路18とともに基板17上に固定
されており、これら受光素子16及び電子回路18はボ
ンディングワイヤ19により相互接続されている。
16 is a light-receiving element such as an APD (avalanche photodiode), and its light-receiving surface 15 has a broadband property (up to several Gb/
s) has a sufficiently small area (for example, 50 μm or less in diameter) to ensure low noise. Light receiving element 1
6 is fixed on a substrate 17 together with an electronic circuit 18 such as an amplifier, and these light receiving elements 16 and electronic circuits 18 are interconnected by bonding wires 19.

このような構成によれば、球形レンズB13から出射し
た光を直径50μmよりも充分小さな直径のスポットサ
イズまで集束させることができるので、当該集束点近傍
に受光素子の受光面15を配置することにより、高い光
結合効率を得ることができる。この場合、球形レンズ部
13から出射した光が受光素子の受光面15に垂直に入
射しないように、受光面15に垂直な方向に対して光軸
を傾斜させておくことにより、光源が比較的近距離にあ
るときの反射帰還光の光源に対する影響を排除すること
ができる。一方、球径レンズ部13から出射した光の集
束点近傍に受光素子の受光面15を配置するという条件
のもとに、光ファイバ11を適当な保持手段を介して基
板17に対して固定した場合、光ファイバ11と基板1
7はほぼ平行となるから、光受信機を容易に小型化する
ことが可能になる。又、本実施例では、基板17上で受
光素子16と電子回路18を充分に接近させることがで
きるので、これらの電気的な相互接続を極めて短距離に
て行うことができ、広帯域性及び低雑音性の確保が容易
である。
According to such a configuration, the light emitted from the spherical lens B13 can be focused to a spot size sufficiently smaller than 50 μm in diameter, so by arranging the light receiving surface 15 of the light receiving element near the focusing point, , high optical coupling efficiency can be obtained. In this case, the light source is relatively It is possible to eliminate the influence of reflected feedback light on the light source when the light source is at a short distance. On the other hand, under the condition that the light receiving surface 15 of the light receiving element is arranged near the convergence point of the light emitted from the spherical lens part 13, the optical fiber 11 is fixed to the substrate 17 via a suitable holding means. In this case, optical fiber 11 and substrate 1
7 are substantially parallel, making it possible to easily downsize the optical receiver. Furthermore, in this embodiment, since the light receiving element 16 and the electronic circuit 18 can be brought sufficiently close to each other on the substrate 17, their electrical interconnection can be performed over an extremely short distance, resulting in broadband performance and low cost. It is easy to ensure noise resistance.

以下、光ファイバの先端部の加工方法について第3図に
より説明する。先ず、同図(a)に示すように、光ファ
イバ11をアーク放電、H202バーナ等のバーナ、そ
の他の加熱手段によって加熱しながら延伸させ、冷却後
に括れ部にて光ファイバ11を切断する。次に、切断面
が下方に位置するように光ファイバ11を鉛直方向に支
持して、下方から例えばバーナにより加熱すると、同図
(b)に示すように、延伸により形成された光ファイバ
のテーパ部12aの先端は部分的に溶融するから、溶融
部分に表面張力が生じて微小な球形部13aが形成され
る。先端部の加熱を続けると、同図(C)に示すように
、球形部は増大しテーパ部は縮小するので、適当なとこ
ろで加熱を中止することによって、所望形状のテーパ部
12及び球形レンズ部13を形成することができる。テ
ーパ部12のテーパ率、即ちファイバ長さ方向の径の変
化率については、光ファイバの延伸量によりコントロー
ルすることができる。そして、同図(d)に示すように
、光ファイバ11を水平に支持し、その端部を低温バー
ナにより加熱して軟化させると、重力の作用により、球
形レンズ部13の中心0を光ファイバ11の光軸○Aに
対して偏らせることができる。球形レンズ部13が小さ
く、重力の作用だけでは変形が困難な場合には、窒素等
の不活性ガスの噴出力、バーナの炎の噴出力により変形
を行っても良いし、白金棒等の固体を当接させて変形を
行っても良い。最後に、同図(e)に示すように、球形
レンズ部130表面に部分的に反射膜14を例えば蒸着
により形成する。
Hereinafter, a method of processing the tip of an optical fiber will be explained with reference to FIG. First, as shown in FIG. 4A, the optical fiber 11 is stretched while being heated by arc discharge, a burner such as an H202 burner, or other heating means, and after cooling, the optical fiber 11 is cut at the constricted portion. Next, when the optical fiber 11 is vertically supported so that the cut surface is located downward and heated from below with a burner, the taper of the optical fiber formed by stretching is shown in FIG. Since the tip of the portion 12a is partially melted, surface tension is generated in the melted portion and a minute spherical portion 13a is formed. If the heating of the tip is continued, the spherical part will increase and the tapered part will shrink, as shown in FIG. 13 can be formed. The taper ratio of the tapered portion 12, that is, the rate of change in the diameter in the longitudinal direction of the fiber, can be controlled by the amount of stretching of the optical fiber. Then, as shown in FIG. 3(d), when the optical fiber 11 is supported horizontally and its end is heated and softened by a low-temperature burner, the center 0 of the spherical lens portion 13 is aligned with the optical fiber due to the action of gravity. It can be biased toward the optical axis ○A of No. 11. If the spherical lens part 13 is small and it is difficult to deform it only by the action of gravity, it may be deformed by the ejection force of an inert gas such as nitrogen or the ejection force of a burner flame, or by using a solid material such as a platinum rod. The deformation may be performed by bringing the two into contact with each other. Finally, as shown in FIG. 4E, a reflective film 14 is partially formed on the surface of the spherical lens portion 130 by, for example, vapor deposition.

本実施例においてテーパ部を形成しているのは以下の理
由による。即ち、テーパ部を形成しない場合に球形レン
ズ部の曲率半径を光ファイバの半径よりも小さくできな
いのと比較して、本実施例のようにテーパ部を形成すれ
ば、球形レンズ部の曲率半径を光ファイバの半径よりも
小さくして大きな集光作用を得ることができるからであ
る。尚、本発明は光ファイバと受光素子の光学的結合構
造に関するものであるが、光の反射及び屈折について光
路の可逆性が成立することに着目すれば、本発明を光フ
ァイバと発光素子の光学的結合構造に利用することは容
易である。
The reason why the tapered portion is formed in this embodiment is as follows. In other words, if a tapered part is not formed, the radius of curvature of the spherical lens part cannot be made smaller than the radius of the optical fiber, but if a tapered part is formed as in this example, the radius of curvature of the spherical lens part cannot be made smaller than the radius of the optical fiber. This is because a large light condensing effect can be obtained by making the radius smaller than the radius of the optical fiber. The present invention relates to an optical coupling structure between an optical fiber and a light-receiving element, but if we focus on the fact that the optical path is reversible with respect to reflection and refraction of light, the present invention can be applied to an optical coupling structure between an optical fiber and a light-emitting element. It is easy to use it for physical bonding structures.

発明の効果 以上詳述したように、本発明によれば、光ファイバと受
光素子を光学的に結合するに際して、高い光結合効率、
広帯域性及び低雑音性を確保することができ、且つ、装
置の小型化が可能になるとういう効果を奏する。
Effects of the Invention As detailed above, according to the present invention, high optical coupling efficiency and high optical coupling efficiency can be achieved when optically coupling an optical fiber and a light receiving element.
This has the effect of ensuring wide band performance and low noise, and making it possible to downsize the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明の実施例を示す光受信機の部分破断側面
図、 第3図は本発明の実施に使用する光ファイバの先端部の
加工方法を説明するための図、第4図は光ファイバと受
光素子の従来の光学的結合構造を示す図、 第5図は光ファイバと受光素子の従来の光学的結合構造
の他の例を示す図、 第6図は第4図に示される従来例における問題点を説明
するための図である。 1.1 2、 1 5.1 6.1 7.1 1・・・光ファイバ、 3・・・球形レンズ部、 4・・・反射膜、 5・・・受光面、 6・・・受光素子。
Fig. 1 is a diagram showing the principle of the present invention, Fig. 2 is a partially cutaway side view of an optical receiver showing an embodiment of the present invention, and Fig. 3 is a method for processing the tip of an optical fiber used in carrying out the present invention. 4 is a diagram showing a conventional optical coupling structure between an optical fiber and a light receiving element; FIG. 5 is a diagram showing another example of a conventional optical coupling structure between an optical fiber and a light receiving element; FIG. 6 is a diagram for explaining problems in the conventional example shown in FIG. 4. 1.1 2, 1 5.1 6.1 7.1 1... Optical fiber, 3... Spherical lens portion, 4... Reflective film, 5... Light receiving surface, 6... Light receiving element .

Claims (2)

【特許請求の範囲】[Claims] (1)光ファイバ(1)の端部に球形レンズ部(2)を
形成し、 この球形レンズ部(2)の中心(3)を上記光ファイバ
(1)の軸(4)に対して偏らせ、 上記球形レンズ部(2)の表面で上記軸(4)と交わる
部分の周辺に反射膜(5)を形成し、 上記光ファイバ(1)を伝搬してきた光を上記反射膜(
5)で反射させて上記球形レンズ部(2)の反射膜(5
)が形成されていない部分から取り出して、上記軸(4
)とほぼ平行な受光面(6)を有する受光素子(7)に
て受光するようにしたことを特徴とする光ファイバと受
光素子の光学的結合構造。
(1) A spherical lens part (2) is formed at the end of the optical fiber (1), and the center (3) of this spherical lens part (2) is biased with respect to the axis (4) of the optical fiber (1). A reflective film (5) is formed around a portion of the surface of the spherical lens portion (2) that intersects with the axis (4), and the light propagating through the optical fiber (1) is reflected by the reflective film (5).
5) to reflect the reflection film (5) of the spherical lens part (2).
) is removed from the part where the shaft (4) is not formed.
1. An optical coupling structure of an optical fiber and a light receiving element, characterized in that light is received by a light receiving element (7) having a light receiving surface (6) substantially parallel to ).
(2)光ファイバの端部に近づくに従って径が減少する
ようなテーパ部を設けたことを特徴とする請求項1記載
の光ファイバと受光素子の光学的結合構造。
(2) The optical fiber and light receiving element optical coupling structure according to claim 1, further comprising a tapered portion whose diameter decreases as it approaches the end of the optical fiber.
JP21525788A 1988-08-31 1988-08-31 Structure for optical coupling of optical fiber and photodetector Pending JPH0264509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21525788A JPH0264509A (en) 1988-08-31 1988-08-31 Structure for optical coupling of optical fiber and photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21525788A JPH0264509A (en) 1988-08-31 1988-08-31 Structure for optical coupling of optical fiber and photodetector

Publications (1)

Publication Number Publication Date
JPH0264509A true JPH0264509A (en) 1990-03-05

Family

ID=16669318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21525788A Pending JPH0264509A (en) 1988-08-31 1988-08-31 Structure for optical coupling of optical fiber and photodetector

Country Status (1)

Country Link
JP (1) JPH0264509A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416878A (en) * 1993-07-29 1995-05-16 Endeavor Surgical Products, Inc. Surgical methods and apparatus using a bent-tip side-firing laser fiber
US6215925B1 (en) 1996-05-31 2001-04-10 Nec Corporation Optical combination of photoreceptor and optical fiber
JP2004272016A (en) * 2003-03-10 2004-09-30 Seiko Epson Corp Optical communication module, optical communication system, method for manufacturing optical communication module, and electronic equipment
US6904197B2 (en) * 2002-03-04 2005-06-07 Corning Incorporated Beam bending apparatus and method of manufacture
WO2017039681A1 (en) * 2015-09-04 2017-03-09 Ccs Technology, Inc. Fiber coupling device for coupling of at last one optical fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416878A (en) * 1993-07-29 1995-05-16 Endeavor Surgical Products, Inc. Surgical methods and apparatus using a bent-tip side-firing laser fiber
US6215925B1 (en) 1996-05-31 2001-04-10 Nec Corporation Optical combination of photoreceptor and optical fiber
US6904197B2 (en) * 2002-03-04 2005-06-07 Corning Incorporated Beam bending apparatus and method of manufacture
JP2011123493A (en) * 2002-03-04 2011-06-23 Corning Inc Beam bending device and method of manufacturing the same
JP2004272016A (en) * 2003-03-10 2004-09-30 Seiko Epson Corp Optical communication module, optical communication system, method for manufacturing optical communication module, and electronic equipment
WO2017039681A1 (en) * 2015-09-04 2017-03-09 Ccs Technology, Inc. Fiber coupling device for coupling of at last one optical fiber
US10048454B2 (en) 2015-09-04 2018-08-14 Corning Optical Communications LLC Fiber coupling device for coupling of at least one optical fiber

Similar Documents

Publication Publication Date Title
US7068890B2 (en) Optical receiver with high dynamic range
US6493475B1 (en) Monolithic integration of signal-monitoring scheme in an optical switch
JPH034571A (en) Optoelectronic semiconductor device and manufacture thereof
JP2003014987A (en) Optical path converting body and its packaging structure and optical module
JPH04308804A (en) Optical module
JP2002196196A (en) Modal field converter for highly efficient coupling in optical module
JP2002169043A (en) Optical module
JPH0264509A (en) Structure for optical coupling of optical fiber and photodetector
JP3568156B2 (en) Semiconductor device
JPH1039162A (en) Optical semiconductor device, semiconductor photodetector, and formation of optical fiber
WO2005036212A2 (en) Photodetector/optical fiber apparatus with enhanced optical coupling efficiency and method for forming the same
JPS62222211A (en) Light emitting module
JPH09113768A (en) Optical coupling structure of optical receiver
JPH07168061A (en) Light transmitting receiving module
US20060215726A1 (en) Integrated optical detector in semiconductor reflector
CN212255789U (en) High return loss photoelectric detector and light receiving device
JP2001021769A (en) Supporting body for attaching photo-electric constitutional member, and manufacture thereof
JPH05273444A (en) Photodetection module
JPH1168243A (en) Optical module and optical axis adjustment method
JP3821576B2 (en) Optical module
JP3333583B2 (en) Focusing lens and focusing lens array
JP2003195123A (en) Optical path conversion body for optical communication, and its mount structure and optical module
JP2755274B2 (en) Waveguide type light receiving module
JP2773501B2 (en) Fixed structure of waveguide and light receiving element
US20030075672A1 (en) Method and apparatus for coupling optical fiber with photodetectors