JPH0264296A - Turbo-type vacuum pump - Google Patents

Turbo-type vacuum pump

Info

Publication number
JPH0264296A
JPH0264296A JP21499888A JP21499888A JPH0264296A JP H0264296 A JPH0264296 A JP H0264296A JP 21499888 A JP21499888 A JP 21499888A JP 21499888 A JP21499888 A JP 21499888A JP H0264296 A JPH0264296 A JP H0264296A
Authority
JP
Japan
Prior art keywords
pump stage
compression pump
circumferential
flow
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21499888A
Other languages
Japanese (ja)
Inventor
Seiji Sakagami
誠二 坂上
Masahiro Mase
正弘 真瀬
Takeshi Okawada
岡和田 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21499888A priority Critical patent/JPH0264296A/en
Publication of JPH0264296A publication Critical patent/JPH0264296A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the pump performance and facilitate assembling by arranging a centrifugal compression pump stage, a circumferential flow compression pump stage and an axial flow vane type circumferential compression pump stage from the suction port 21A side. CONSTITUTION:A centrifugal compression pump stage 24, a circumferential flow compression pump stage 25 and an axial flow vane type circumferential compression pump stage 27 are arranged in sequence in a housing 21 from the suction port 21A side to the discharge port 21B side. The circumferential flow compression pump stage 25 and the axial flow vane type circumferential compression pump stage 27 operated in a viscous flow are used in the proper pressure area. The pump performance can be thereby stabilized. When the same compression ratio as that of only the circumferential flow compression pump stage 25 is obtained in the viscous flow, the number of stages can be decreased, and the cost can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排気口を大気圧とする真空ポンプに係り、特に
清浄な真空を作り出すのに好適なターボ形真空ポンプに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vacuum pump whose exhaust port is at atmospheric pressure, and particularly to a turbo vacuum pump suitable for creating a clean vacuum.

〔従来の技術〕[Conventional technology]

従来のターボ形真空ポンプとして、特開昭61−247
893号公報に記載されたものが知られている。
As a conventional turbo vacuum pump, JP-A-61-247
The one described in Publication No. 893 is known.

この従来のターボ形真空ポンプは、吸気口および排気口
を有するハウジングと、このハウジング内に軸受を介し
て回転自在に支持された回転軸と吸気口側から排気口側
に至る間のハウジング内に順次配設された遠心圧縮ポン
プ段および円周流圧縮ポンプ段とを備えている。回転軸
はこれに連結したモータにより駆動される。
This conventional turbo-type vacuum pump consists of a housing having an intake port and an exhaust port, a rotary shaft rotatably supported within the housing via a bearing, and a shaft extending from the intake port side to the exhaust port side. It includes a centrifugal compression pump stage and a circumferential flow compression pump stage arranged in sequence. The rotating shaft is driven by a motor connected thereto.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術のターボ形真空ポンプにおいて、真空ポン
プが定常運転状態に達したとき、遠心圧縮ポンプ段は主
として分子流、中間流で働き、円周流圧縮ポンプ段は粘
性流中で働くため、排気口圧力を大気圧力に保ち、吸入
口圧力を十分に低い圧力にすることができる。
In the above-mentioned prior art turbo vacuum pump, when the vacuum pump reaches a steady operating state, the centrifugal compression pump stage mainly works in molecular flow and intermediate flow, and the circumferential flow compression pump stage works in viscous flow. The mouth pressure can be maintained at atmospheric pressure and the inlet pressure can be made sufficiently low.

しかし、遠心圧縮ポンプ段が作用するためには。But for the centrifugal compression pump stage to work.

円周流圧縮ポンプ段の圧縮比を大きくとることが必要で
あり1円周流圧縮ポンプを多段にすることが不可避であ
るが、軸系の危険速度を考慮すると軸方向寸法を長くで
きない、すなわち段数をあまり増やすことができない、
そこで1円周流圧縮ポンプ段の段当りの圧縮比を大きく
とるため、羽根形状の改良や羽根車と固定円板の間の隙
間を狭くする等の工夫をしていた。しかし、そのために
羽根車と固定円板の隙間管理が難しく、組立てに時間を
要しコスト高になり、さらに性能が安定し難い等の問題
があった。
It is necessary to increase the compression ratio of the circumferential flow compression pump stage, and it is unavoidable to make one circumferential flow compression pump multistage, but considering the critical speed of the shaft system, the axial dimension cannot be increased, i.e. It is not possible to increase the number of stages very much,
Therefore, in order to increase the compression ratio per stage of one circumferential flow compression pump stage, efforts were made to improve the blade shape and narrow the gap between the impeller and the fixed disk. However, this has led to problems such as difficulty in managing the gap between the impeller and the fixed disk, requiring time to assemble and increasing costs, and making it difficult to stabilize performance.

本発明の目的は、粘性流中で大きな圧縮比がとれ、安定
な性能が得られ1段数を低減し、組立を容易にすること
ができるようにすることにある。
An object of the present invention is to provide a device that can achieve a large compression ratio in a viscous flow, provide stable performance, reduce the number of stages, and facilitate assembly.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、排気口から直接大気に排気することのでき
るターボ形真空ポンプにおいて、排気口側の粘性流中の
高圧側で締切圧縮比の大きい軸流翼形円周流圧縮ポンプ
段を、粘性流中の低圧側に締切圧縮比の最大値を有する
円周流圧縮ポンプ段を配置し、さらに分子流、中間流中
で大きな圧縮比が得られる遠心圧縮ポンプ段を順次配置
したことにより達成される。
The above purpose is to install an axial vane-shaped circumferential flow compression pump stage with a large cut-off compression ratio on the high pressure side of the viscous flow on the exhaust port side in a turbo vacuum pump that can exhaust air directly from the exhaust port to the atmosphere. This is achieved by arranging a circumferential flow compression pump stage with the maximum cut-off compression ratio on the low pressure side of the flow, and sequentially arranging centrifugal compression pump stages that can obtain a large compression ratio in the molecular flow and intermediate flow. Ru.

〔作用〕[Effect]

本発明のターボ形真空ポンプは、徘圧口付近の大気圧か
ら30Torr(らいまでで大きな圧縮比が得られる軸
流翼形同周流圧線ポンプ段とそれ以下の圧力で圧縮比が
大きい円周流圧縮ポンプ段を組合せることにより、従来
より少ない段数で円周流圧縮ポンプ段の入口圧力を数T
orr以下の中間流域にすることができ、遠心圧縮ポン
プ段の作用によりポンプ吸入口の圧力を十分低い圧力に
することができる。
The turbo-type vacuum pump of the present invention has an axial airfoil type same-circumferential pressure line pump stage that can obtain a large compression ratio from atmospheric pressure up to 30 Torr (about 30 Torr) near the floating pressure port, and a circular airfoil type pump stage that has a large compression ratio at lower pressures. By combining circumferential flow compression pump stages, the inlet pressure of the circumferential flow compression pump stage can be reduced to several T with fewer stages than before.
orr or less, and the pressure at the pump inlet can be brought to a sufficiently low pressure by the action of the centrifugal compression pump stage.

(実施例〕 以下、本発明の実施例を図面に基づいて説明する。(Example〕 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明のターボ形真空ポンプの一実施例を示す
もので、この第1図において、この真空ポンプは、吸気
口21Aおよび排気口21Bを有するハウジング21と
、このハウジング内に軸受22を介して回転自在に支持
された回転@23と吸気口21A側から排気口21B側
に至る間のハウジング内21内に順次配設された遠心圧
縮ポンプ段249円周流圧縮ポンプ段25および軸流翼
形円周圧縮ポンプ段27を備えている。回転軸23はこ
れに連結したモータ26により駆動される。前記遠心圧
縮ポンプ段24は、第2図および第3図に示すように、
表面に複数の後退羽根28を有し、かつ回転軸23に取
付けられたオープン形羽根車24Aと、第2図および第
4図に示すようにハウジング21に取付けられ、かつ前
記羽根車24Aの裏面に対向する面に複数の羽根29を
設けた固定円板24Bとを交互に直列に配置して構成さ
れている。円周流圧縮ポンプ段25は、第5図および第
6図に示すように、回転軸23に取付けられ、外周面に
複数個の羽根30を放射状に設けた羽根車25Aとハウ
ジング21に取付けられ。
FIG. 1 shows an embodiment of the turbo vacuum pump of the present invention. In FIG. 1, this vacuum pump includes a housing 21 having an intake port 21A and an exhaust port 21B, and a bearing 22 inside the housing. A centrifugal compression pump stage 249, a circumferential flow compression pump stage 25, and a shaft are sequentially disposed within the housing 21 between the intake port 21A side and the exhaust port 21B side. A vane-shaped circumferential compression pump stage 27 is provided. The rotating shaft 23 is driven by a motor 26 connected thereto. The centrifugal compression pump stage 24, as shown in FIGS. 2 and 3,
An open impeller 24A having a plurality of retreating blades 28 on its surface and attached to the rotating shaft 23, and an open impeller 24A attached to the housing 21 as shown in FIGS. 2 and 4, and a back surface of the impeller 24A. A fixed disk 24B having a plurality of blades 29 provided on the opposite surface thereof are arranged alternately in series. As shown in FIGS. 5 and 6, the circumferential flow compression pump stage 25 is attached to the rotating shaft 23, and is attached to the housing 21 and an impeller 25A having a plurality of blades 30 radially provided on the outer circumferential surface. .

かつ前記羽根車25Aと対向する面にU字状の溝31を
有する固定円板25Bとを交互に配置して構成されると
共に、通風路32を形成している。
Further, fixed disks 25B having U-shaped grooves 31 on the surfaces facing the impeller 25A are arranged alternately to form a ventilation passage 32.

軸流翼形円周流圧縮ポンプ段27は、第7図および第8
図に示すように、回転軸23に取付けられだ円筒形の羽
根車27A外周部に回転方向に対して凹形の円弧状の羽
根32が複数個設けられた羽根車27Aと、その羽根3
2の全周上に近接して。
The axial airfoil circumferential compression pump stage 27 is shown in FIGS.
As shown in the figure, an impeller 27A is attached to a rotating shaft 23 and has a plurality of arc-shaped blades 32 that are concave with respect to the rotation direction on the outer periphery of the cylindrical impeller 27A, and the blades 3
Closely on the entire circumference of 2.

リング状のコア33が取付けられ、かつ前記羽根車27
Aの羽根32を囲むような溝34を有する固定円板27
Bとを交互に配置して構成されている。
A ring-shaped core 33 is attached and the impeller 27
A fixed disk 27 having a groove 34 surrounding the blade 32 of A
B are arranged alternately.

次に上述した本発明の実施例の作用について説明する。Next, the operation of the embodiment of the present invention described above will be explained.

ポンプ運転初期の過渡状態において、ポンプ内部は全体
が大気圧に近い圧力下にあり、気体の流れは粘性流とな
るので、遠心圧縮ポンプ段24は遠心圧縮機として作用
する。すなわち、遠心圧縮ポンプ段24の羽根車24A
は圧縮機羽根車として働き1羽根車24Aと固定円板2
4Bとの羽根29によりはさまれて形成される流路は、
流れを外径側から内径側に案内するリターンチャンネル
として働く、真空ポンプが定常運転状態になると。
In a transient state at the beginning of pump operation, the entire inside of the pump is under pressure close to atmospheric pressure and the gas flow becomes a viscous flow, so that the centrifugal compression pump stage 24 acts as a centrifugal compressor. That is, the impeller 24A of the centrifugal compression pump stage 24
works as a compressor impeller, 1 impeller 24A and fixed disc 2
The flow path formed by being sandwiched between the blades 29 and 4B is
When the vacuum pump is in steady operation, it acts as a return channel that guides the flow from the outer diameter side to the inner diameter side.

気体は遠心圧縮ポンプ段24で十分に圧縮されるため、
遠心圧縮ポンプ段24より下流側の円周流圧縮ポンプ段
25.軸流翼形円周流圧縮ポンプ段27に流入する気体
の体積流量はほとんど零に近く、締切圧縮比が大きい円
周流圧縮ポンプ段に送り込むというマツチングが非常に
うまくいき、遠心圧縮ポンプ段と円周流圧縮ポンプ段の
特性を生かすことができる0円周流圧縮ポンプ段25に
流入した気体は1羽根車25Aにより遠心力を受は調光
から調光に向かって流れ固定円板25BのU字状の溝3
1に流出する。固定円板25BのU字状の溝31に流出
した気体は1周方自速度成分によって通風路32を流れ
溝31に沿ってふたたび羽根車25A内に流入し、同じ
運動を繰り返す。
Since the gas is sufficiently compressed by the centrifugal compression pump stage 24,
A circumferential flow compression pump stage 25 downstream of the centrifugal compression pump stage 24. The volumetric flow rate of the gas flowing into the axial vane-shaped circumferential compression pump stage 27 is almost zero, and the matching of feeding it into the circumferential compression pump stage with a large cut-off compression ratio is very successful. The gas flowing into the circumferential flow compression pump stage 25 receives centrifugal force from the impeller 25A and flows from dimming to dimming to the fixed disc 25B. U-shaped groove 3
1. The gas that has flowed out into the U-shaped groove 31 of the fixed disk 25B flows through the ventilation passage 32 along the groove 31 due to the self-velocity component in one circumference, flows into the impeller 25A again along the groove 31, and repeats the same movement.

羽根車25Aに出たり入ったりを繰り返すことにより、
大きい圧力上昇を得て、軸流翼形円周流圧縮ポンプ段2
7に流入する。軸流翼形円周流圧縮ポンプ段27に流入
した気体は1羽根車27Aからエネルギーを受けとり羽
根車27Aの羽根32から固定円板27Bの溝34にコ
ア33を沿って流れる。固定円板27Bの溝34に流入
した気体分子は、周方向速度成分により固定円板27B
の溝34を周方向に移動しながらコア33を中心に回転
しふたたび羽根車27Aの羽根32にもどり、同じ運動
を繰り返しながら、溝34を流れる間に気体分子は渦流
を描きながら、何回も羽根車27Aの羽根32と固定円
板27Bの溝34を出入し大きい圧力上昇を得て排気口
より排出される0本実施例のポンプによれば、粘性流中
で作用する円周流圧縮ポンプ段と軸流翼形円周流圧縮ポ
ンプ段を、適切な圧力域で使用することができ、ポンプ
性能を安定にすることができる。また、粘性流中で、円
周流圧縮ポンプ段だけのものと同じ圧縮比を得る場合、
段数を低減することができ、コストを下げることができ
る。
By repeatedly going in and out of the impeller 25A,
Obtaining a large pressure rise, the axial airfoil circumferential flow compression pump stage 2
7. The gas flowing into the axial airfoil circumferential compression pump stage 27 receives energy from the single impeller 27A and flows along the core 33 from the blades 32 of the impeller 27A to the groove 34 of the fixed disk 27B. The gas molecules that have flowed into the grooves 34 of the fixed disk 27B are caused to move toward the fixed disk 27B due to the circumferential velocity component.
While moving in the circumferential direction through the grooves 34, the gas molecules rotate around the core 33 and return to the blades 32 of the impeller 27A, repeating the same movement, and while flowing through the grooves 34, the gas molecules draw a whirlpool and move over and over again. The pump of this embodiment is a circumferential flow compression pump that operates in a viscous flow, which moves in and out of the blades 32 of the impeller 27A and the grooves 34 of the fixed disc 27B, obtains a large pressure rise, and is discharged from the exhaust port. Stages and axial airfoil circumferential flow compression pump stages can be used in the appropriate pressure range and the pump performance can be stabilized. Also, in a viscous flow, to obtain the same compression ratio as with only the circumferential flow compression pump stage,
The number of stages can be reduced and costs can be lowered.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、粘性流ポンプ要素の圧力域の最適化に
よって、粘性流ポンプ要素の段当り圧縮比を従来形より
も大きくとることができるので。
According to the present invention, by optimizing the pressure range of the viscous flow pump element, the compression ratio per stage of the viscous flow pump element can be made larger than that of the conventional type.

安定したポンプ性能が得られる。また、同じ圧縮比を得
る場合1段数を低減でき、組立を容易にしコストを下げ
ることができる。
Stable pump performance can be obtained. Furthermore, when obtaining the same compression ratio, the number of stages can be reduced, making assembly easier and reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のターボ形真空ポンプの一実施例の縦断
面図、第2図は本発明を構成する遠心圧縮ポンプ段の一
部を拡大して示す断面図、第3図は第2図に示す遠心圧
縮ポンプ段の羽根車の平面図、第4図はその固定円板の
平面図、第5図は本発明を構成する円周流圧縮ポンプ段
の断面図、第6図は円周流圧縮ポンプ段の羽根車の平面
図、第7図は本発明を構成する軸流翼形円周流圧縮ポン
プ段の断面図、第8図は軸流翼形円周流圧縮ポンプ段の
羽根車の正面図である。 21・・・ハウジング、21A・・・吸気口、21B・
・・排気口、23・・・回転軸、24・・・遠心圧縮ポ
ンプ段、25・・・円周流圧縮ポンプ段、26・・・モ
ータ、27・・・軸流翼形円周流圧縮ポンプ段。 第  1 図 第2図 3図 罫4図 Zl−一一ハクジシフ゛ 23−m−回転軸 ZdA−−一羽猥車 24B−一固定一円販 zg−一獲遅羽寂 Zl−一一羽狭 篤 5 図 嘉 6 図 3θ Z5A−−一羽級車 z5b−−一固史1円極 3θ−−一羽脹 31−溝 32−−一孟JiLJ&
FIG. 1 is a longitudinal sectional view of an embodiment of the turbo vacuum pump of the present invention, FIG. 2 is an enlarged sectional view of a part of the centrifugal compression pump stage constituting the present invention, and FIG. 4 is a plan view of its fixed disk, FIG. 5 is a sectional view of the circumferential flow compression pump stage of the present invention, and FIG. 6 is a circular FIG. 7 is a plan view of the impeller of the circumferential flow compression pump stage, FIG. 7 is a sectional view of the axial airfoil type circumferential flow compression pump stage constituting the present invention, and FIG. 8 is a plan view of the axial airfoil type circumferential flow compression pump stage. It is a front view of an impeller. 21...Housing, 21A...Intake port, 21B.
...Exhaust port, 23... Rotating shaft, 24... Centrifugal compression pump stage, 25... Circumferential flow compression pump stage, 26... Motor, 27... Axial airfoil circumferential flow compression pump stage. Figure 1 Figure 2 Figure 3 Ruler Figure 4 Zl-11 Hakujishifushi 23-m-Rotating axis ZdA--One-winged car 24B-One fixed one-yen saleszg-One-catch late-winged Jaku Zl-11-winged Narrow Atsushi 5 Zujia 6 Figure 3θ Z5A--One feather class car z5b--One solid history 1 circle pole 3θ--One feather bulge 31-Groove 32--One Meng JiLJ&

Claims (1)

【特許請求の範囲】[Claims] 1、吸気口および排気口を有するハウジングと、そのハ
ウジング内に回転自在に支持された回転軸と、ハウジン
グ内壁に取付けられた複数枚の固定体および回転軸に取
付けられた複数枚の回転体とを備え、前記の固定体と回
転体とを交互に組合せてポンプ段を構成し、前記吸気口
から吸込んだ気体を排気口から直接大気に排出すること
ができるターボ形真空ポンプにおいて、前記吸気口側か
ら遠心圧縮ポンプ段、円周流圧縮ポンプ段、軸流翼形円
周流圧縮ポンプ段を配置したことを特徴とするターボ形
真空ポンプ。
1. A housing having an intake port and an exhaust port, a rotating shaft rotatably supported within the housing, a plurality of fixed bodies attached to the inner wall of the housing, and a plurality of rotating bodies attached to the rotating shaft. In a turbo vacuum pump, the pump stage is configured by alternately combining the fixed body and the rotary body, and the gas sucked from the intake port can be discharged directly to the atmosphere from the exhaust port, wherein the intake port A turbo vacuum pump characterized by having a centrifugal compression pump stage, a circumferential flow compression pump stage, and an axial vane-shaped circumferential flow compression pump stage arranged from the side.
JP21499888A 1988-08-31 1988-08-31 Turbo-type vacuum pump Pending JPH0264296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21499888A JPH0264296A (en) 1988-08-31 1988-08-31 Turbo-type vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21499888A JPH0264296A (en) 1988-08-31 1988-08-31 Turbo-type vacuum pump

Publications (1)

Publication Number Publication Date
JPH0264296A true JPH0264296A (en) 1990-03-05

Family

ID=16665009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21499888A Pending JPH0264296A (en) 1988-08-31 1988-08-31 Turbo-type vacuum pump

Country Status (1)

Country Link
JP (1) JPH0264296A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247893A (en) * 1985-04-26 1986-11-05 Hitachi Ltd Vacuum pump
JPS6336096A (en) * 1986-07-30 1988-02-16 Hitachi Ltd Vortex type vacuum pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247893A (en) * 1985-04-26 1986-11-05 Hitachi Ltd Vacuum pump
JPS6336096A (en) * 1986-07-30 1988-02-16 Hitachi Ltd Vortex type vacuum pump

Similar Documents

Publication Publication Date Title
US5490761A (en) High performance turbomolecular vacuum pumps
US5810557A (en) Fan wheel for an inline centrifugal fan
CN101517240A (en) Molecular drag pumping mechanism
JPH037039B2 (en)
CN108350895B (en) Connecting thread groove spacer and vacuum pump
US5143511A (en) Regenerative centrifugal compressor
JP2003525379A (en) Friction vacuum pump
JP4972259B2 (en) Centrifugal pump
JPH07151092A (en) Improved vacuum pump
US20170342997A1 (en) Compressor and turbocharger
EP2466146B1 (en) Supersonic compressor and method of assembling same
JPH0553955B2 (en)
JPH0264296A (en) Turbo-type vacuum pump
JP2757922B2 (en) Centrifugal compressor
JPH02264196A (en) Turbine vacuum pump
JPS61226596A (en) Turbo particle pump
KR100339550B1 (en) Diffuser for turbo compressor
WO2019107488A1 (en) Multi-stage centrifugal compressor, casing, and return vane
CN108474257B (en) Turbocharger compressor and method
CN108431385B (en) Turbocharger compressor and method
JPH11294185A (en) Multistage compressor structure
CN220286035U (en) Improved semi-open centrifugal impeller and automobile air conditioner fan using same
JP6768172B1 (en) Centrifugal compressor
JPH0299795A (en) Eddy current type turbomachinery
JPH0447199A (en) Centrifugal compressor