JPH0264239A - Engine braking device for two cycle direct injection engine - Google Patents

Engine braking device for two cycle direct injection engine

Info

Publication number
JPH0264239A
JPH0264239A JP21609188A JP21609188A JPH0264239A JP H0264239 A JPH0264239 A JP H0264239A JP 21609188 A JP21609188 A JP 21609188A JP 21609188 A JP21609188 A JP 21609188A JP H0264239 A JPH0264239 A JP H0264239A
Authority
JP
Japan
Prior art keywords
engine
fuel
pressure reducing
reducing valve
engine braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21609188A
Other languages
Japanese (ja)
Inventor
Koji Morikawa
弘二 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP21609188A priority Critical patent/JPH0264239A/en
Publication of JPH0264239A publication Critical patent/JPH0264239A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To prevent fuel from being blown-by as well as to enable engine braking efficiency to be suitably controlled by cutting off fuel from an injector at the time of deceleration while the footing stroke of an accelerator pedal is kept less than a specified one, and thereby concurrently controlling a pressure reducing valve. CONSTITUTION:In a two cycle direct injection engine, an engine main body 1 is provided with an injector 10 for injecting fuel into a combustion chamber 8, and with a pressure reducing valve 61 for functioning decompression on the combustion chamber 8 side. The pressure reducing valve 61 is provided with an actuator 64 which opens/closes the pressure reducing valve 61 based on electrical signals from a control unit 45. This situation permits fuel from the injector 10 to be cut off at the time of deceleration while the footing stroke of an accelerator pedal is kept less than a specified one. This concurrently permits engine braking force to be maximum at the time of fully closing the accelerator pedal, and also permits the pressure reducing valve 61 to be controlled in such a way that engine braking force is gradually reduced in changing the valve opening depending on the footing stroke of the accelerator pedal. This constitution therefore prevents fuel from being blown-by, thereby allowing engine braking efficiency to be smoothly lowered as the footing stroke of the accelerator pedal is made greater.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、インジェクタにより筒内へ燃料を直接噴射す
る2サイクル直噴エンジンにおけるエンジンブレーキ装
置に関し、詳しくは、デコンプ作用と燃料カットによる
エンジンブレーキ効果の強化対策に関する。
The present invention relates to an engine braking device for a two-stroke direct injection engine in which fuel is directly injected into a cylinder by an injector, and more particularly to measures to enhance the engine braking effect by decompression and fuel cut.

【従来の技術】[Conventional technology]

一般に2サイクルエンジンでは、クランク軸の1回転で
1サイクルを終了するので、4サイクルエンジンのよう
にクランク軸の2回転で1サイクルを終了し、吸気行程
が設けられているものに比べると、原理的にポンプ仕事
が少なくて、エンジンブレーキの効きが悪い欠点がある
。このため2サイクルエンジン駆動の車両では、アクセ
ル開放時のエンジンブレーキ効果を強化する手段を装備
する必要がある。 そこで従来、上記2サイクルエンジンのエンジンブレー
キ対策に関しては、例えば特開昭61−272425号
公報の先行技術がある。ここで、燃焼室に第1の弁を設
けて、ハンドルグリップをアイドル位置より更にスロッ
トル弁を閉じる方向に回動することにより開弁させる。 また、連通路にエンジン回転数に応じて開口面積を変化
するロークリバルブを設けることが示されている。
Generally, in a 2-cycle engine, one cycle ends with one revolution of the crankshaft, so compared to a 4-stroke engine, which ends one cycle with two revolutions of the crankshaft and has an intake stroke. The drawback is that there is little pump work and the engine brake is not very effective. Therefore, in a vehicle driven by a two-stroke engine, it is necessary to be equipped with means for enhancing the engine braking effect when the accelerator is released. Conventionally, there is a prior art technique, for example, disclosed in Japanese Patent Application Laid-Open No. 61-272425, regarding countermeasures against engine braking for the two-stroke engine. Here, a first valve is provided in the combustion chamber, and the valve is opened by rotating the handle grip further from the idle position in the direction of closing the throttle valve. It is also shown that a low-return valve whose opening area changes depending on the engine speed is provided in the communication passage.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで、上記先行技術のものにあっては、減速直前の
エンジン回転数でデコンプ量が決まった以降は一定制御
であるから、エンジンブレーキの効きを一定化して好ま
しくない。また、デコンプ作用時の燃料供給については
触れていないが、この場合は圧縮圧力の低下で燃焼不能
になり、燃料はそのまま排出されてエミッションを悪化
するため、これを防ぐ必要がある。 本発明は、かかる点に鑑みてなされたもので、その目的
とするところは、デコンプによるエンジンブレーキ強化
方式において燃料の吹き抜けを防+L L、エンジンブ
レーキ効果を最適に制御することが可能な2サイクル直
噴エンジンのエンジンブレーキ装置を提供することにあ
る。
By the way, in the prior art described above, since the decompression amount is determined by the engine speed immediately before deceleration, the control is constant, so the effectiveness of the engine brake is made constant, which is not preferable. Also, there is no mention of fuel supply during decompression, but in this case, the compression pressure drops and combustion becomes impossible, and the fuel is discharged as is, worsening emissions, so it is necessary to prevent this. The present invention has been made in view of the above points, and its purpose is to prevent fuel blow-through in an engine brake strengthening method using decompression, and to provide a two-cycle system that can optimally control the engine brake effect. An object of the present invention is to provide an engine braking device for a direct injection engine.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、本発明のエンジンブレーキ装
置は、2サイクルエンジン本体の燃焼室に燃料噴射する
インジェクタを取付け、上記燃焼室側にデコンプ作用す
る減圧弁を取付ける2サイクル直噴エンジンにおいて、
上記減圧弁には制御ユニットの電気信号により上記減圧
弁を開閉するアクチュエータを設け、車両走行中の減速
時における所定アクセル踏込量以下で上記インジェクタ
からの燃料をカットし、同時に上記減圧弁を、アクセル
全閉時にエンジンブレーキ力を最も大きくし、アクセル
踏込量に応じて上記エンジンブレーキ力を徐々に減じる
ように開度変化すべく制御するものである。
In order to achieve the above object, the engine braking device of the present invention is a two-stroke direct injection engine in which an injector for injecting fuel is attached to the combustion chamber of the two-stroke engine main body, and a pressure reducing valve for decompression is attached to the combustion chamber side.
The pressure reducing valve is provided with an actuator that opens and closes the pressure reducing valve based on an electric signal from a control unit, and cuts the fuel from the injector when the accelerator pedal is depressed below a predetermined amount when decelerating while the vehicle is running, and at the same time opens and closes the pressure reducing valve. The engine braking force is maximized when the accelerator is fully closed, and the opening degree is controlled so as to gradually reduce the engine braking force in accordance with the amount of accelerator depression.

【作   用】[For production]

上記構成に基づき、車両走行中の減速時の所定アクセル
踏込量以下でインジェクタからの燃料がカットされて燃
料の吹き抜けが防止される。このとき、アクセル全閉の
ときは減圧弁によるデコンプ作用が大きく制御されてポ
ンプの仕事量により大きいエンジンブレーキ効果を生じ
、アクセル踏込量が大きくなるに従い減圧弁の開度によ
りデコンプ作用が徐々に減じて、エンジンブレーキ効果
は滑らかに低下して、再びエンジンを自爆復帰させるよ
うになる。
Based on the above configuration, fuel from the injector is cut off when the accelerator pedal is depressed less than a predetermined amount during deceleration while the vehicle is running, thereby preventing fuel from blowing through. At this time, when the accelerator is fully closed, the decompression effect by the pressure reducing valve is greatly controlled, producing a large engine braking effect due to the pump's workload, and as the amount of accelerator depression increases, the decompression effect gradually decreases depending on the opening degree of the pressure reducing valve. Then, the engine braking effect decreases smoothly, and the engine returns to self-destruction again.

【実 施 例】【Example】

以下、本発明の一実施例を図面に基づいて説明する。 第1図において、2サイクルエンジンの全体の構成につ
いて述べると、符号lは2サイクルエンジンの本体であ
り、シリンダ2にピストン3が往1u動可能に挿入され
、クランク室4のクランク軸5に対し偏心したコンロッ
ドBによりピストン3が連結し、クランク軸5にはピス
トン3の往復動慣性力を相殺するようにバランサ7が設
けられる。 燃焼室8の頂部には点火プラグ9と筒内直接噴射式のイ
ンジェクタIOとが取付けられている。 シリンダ2にはピストン3によって所定のタイミングで
開閉される排気ポート11が開口し、この排気ポートi
tと連通ずる排気管12に触媒装置13゜排気チャンバ
14.マフラー15が配設される。また、シリンダ2の
排気ポート11の位置から略90度ずれた位置(または
排気ポート11に対向した位置)には、ピストン3によ
って所定のタイミングで開閉する掃気ボート16が開口
し、この掃気ポート1Bに掃気系が設けられる。 上記インジェクタ10は2流体式であって、所定の燃料
を貯えた後に加圧空気で押圧し、燃料と空気とを混合し
た状態で直接噴射するものである。 そこで、インジェクタ10の燃料通路20がフィルタ2
1、燃料ポンプ22を介して燃料タンク23に連通し、
燃料通路20の途中に調圧弁24が設けられ、常に一定
の低い燃圧(上記加圧空気より若干高い圧力)を生じる
。また、インジェクタ10の空気通路25には調圧弁2
6.アキュムレータ27.コンプレッサ28が連結し、
加圧空気を生じるようになっている。 そして、予め燃料パルスにより所定の燃料をインジェク
タ10に貯え、排気ポート11の閉じた後に空気パルス
で加圧空気を燃料に付与して噴射する。 次いで、掃気ポート1Bの掃気系について述べると、掃
気ポート16と連通する掃気管30に掃気ポート1B開
閉時の掃気圧力波を吸収する掃気チャンバ31、掃気を
冷却するインタークーラ32を介して容積型の掃気ポン
プ33が連設される。また、・掃気ポンプ33の上流の
エアクリーナ34側とインタークーラ32の下流との間
にはバイパス通路35が連通し、このバイパス通路35
に負荷制御用の制御弁36が設けられている。 掃気ポンプ33は伝動手段37によりクランク軸5に連
結し、エンジン出力により常にポンプを駆動して掃気圧
を生じるようになっている。 制御系について述べると、アクセルペダル40が開度変
更手段41を介して制御弁36に、アクセル踏込量に対
し制御弁36の開度を反比例的に開閉するように連結す
る。また、各運転条件を定めるエンジン回転数Nとアク
セル踏込量θのエンジン回転数センサ42.アクセル踏
込量検出センサ43を有する。そしてエンジン回転数セ
ンサ42.アクセル踏込量検出センサ43の信号N、θ
は制御ユニット45に人力して処理され、制御ユニット
45からインジェクタ10に燃料、空気パルスの信号を
、点火プラグ9に点火信号を出力するようになっている
。 一方、エンジンブレーキ強化対策としてシリンダ2の燃
焼室8側から排気ポート11の排気通路11aに減圧通
路60が連設され、この減圧通路60にポペット弁式の
減圧弁61がリターンスプリング62を有して設けられ
、減圧弁61はリンク機構63を介してソレノイド式ア
クチュエータ64に連接しである。 そして制御ユニット45の電気信号により、アクチュエ
ータ64が減圧弁61を開閉してデコンプ作用するよう
になっている。 第2図において制御ユニット45について述べる。 先ず、エンジン回転数センサ42.アクセル踏込量検出
センサ43のエンジン回転数N、アクセル踏込2θが入
力する運転条件検出部46を有し、Qの各運転条件の信
号が筒内空気口算出部47に入力して、掃気時の吹き抜
は空気量、インジェクタIOからの加圧空気口を加味し
て実際の筒内空気口を求める。この筒内空気量の信号は
燃料噴射皿算出部48に入力し、目標空燃比設定部49
の目標空燃比との関係で燃料噴射量を定め、これに応じ
た燃料と空気のパルス信号をパルス出力部50からイン
ジェクタlOへ出力する。 また、各運転条件の信号が入力する減速検出部51を有
し、アクセル踏込量θの変化、車速およびクラッチ接続
、エンジン回転数N等により走行中のアクセル開放に伴
う減速を検出する。この減速信号は燃料カット判定部5
2に人力し、所定のエンジン回転数No以上で燃料カッ
ト信号をパルス出力部50に出力し、パルス信号の出力
を停止する。 また減速信号は減圧開度決定部53に入力し、所定のエ
ンジン回転数No以上でエンジンブレーキ力設定部54
の第3図に示すマツプに基づき減圧開度を定める。即ち
、アクセル全開時は減圧開度を最大のエンジンブレーキ
力に応じて開き、アクセル踏込に伴いエンジンブレーキ
力を徐々に低下するように開度調整するのであり、この
開度信号が駆動部55を介してアクチュエータ64に出
力するように構成される。 次いで、このように構成された2サイクル直噴エンジン
の作用について述べる。 先ず、掃気ポンプ33から吐出してインタークーラ32
により冷却される給気は、常にバイパス通路35により
吸気側に戻るように循環し、制御弁3Gでこの戻りmを
制限した分の掃気ユがシリンダ2側に導入されることに
なる。ここで、アクセル踏込量〇に対し制御弁3Gの開
度は反比例的に設定され、アクセル踏込量θが小さい場
合は制御弁36の開度により多く戻されて掃気nが少な
くなるのであり、こうしてポンプ損失を生じることなく
アクセル踏込量〇に応じた掃気ユに調整される。 そこで、第1図のようにピストン3が下死点付近に位置
して排気ポート11と共に掃気ポート16を開くと、ア
クセル開度に応じた掃気二が掃気ポンプ33により加圧
され、インタークーラ32で冷却されて掃気ポート16
よりシリンダ2の内部に流入する。そして、この掃気に
より排気ポート11から残留ガスを押し出して掃気作用
するのであり、こうして短時間に空気のみの新気がシリ
ンダ2に導入される。そして、ピストン3の上昇時に掃
気ポート16.排気ポー)11が閉じることで、上記掃
気が終了して圧縮行程に移行する。また、排気ポート1
1が閉じた後にあらかじめ燃料パルスによりインジェク
タIOに貯えられた所定の燃料が、空気パルスによる加
圧空気で噴射して混合気を生成する。 そして、上死点直前で点火プラグ9により着火されるこ
とで燃焼するが、この場合に掃気ボード16から流入す
る掃気流に燃焼室8の頂部のインジェクタIOから適切
なタイミングおよび時間で噴射される燃料が乗り、適切
に配置された点火プラグ位置に導かれることで、点火プ
ラグ9の付近が濃い混合気になり、これにより成層燃焼
されるのである。この燃焼による爆発後にピストン3は
下降して膨脂行程に移り、排気ポート11が開いてシリ
ンダ内圧により成る程度の排気が行われ、更に下死点付
近で上述のように掃気作用を伴う吸気行程に戻るのであ
り、こうしてエンジンを運転する。 一方、上記エンジン運転時は、制御ユニット45の運転
条件検出部46.筒内空気量算出部47.燃料噴射量算
出部48.目標空燃比設定部49により、走行中の減速
時を除いて各運転条件に応じた燃料噴射2が算出され、
これに基づきインジェクタIOから燃料噴射される。こ
のため、筒内混合気の空燃比は常に目標値に制御される
。 そしてかかるエンジン運転状態での走行中にアクセル開
放で減速する場合は、それが減速検出部51で検出され
てその信号が燃料カット判定部52と減圧開度決定部5
3とに入力する。そこで所定のアクセル踏込量00以下
の場合は、燃料カット判定部52からのカット信号によ
り第4図(b)のように直ちに燃料噴射量が停止して燃
料カットされ、自爆不能になる。また減圧開度決定部5
3から開度信号がアクチュエータ64に出力し、アクセ
ル全開時はリンク機構63を介して減圧弁Blを第4図
(C)のように大きく開弁するのであり、このため筒内
の圧縮空気は減圧通路60を介してリークし、圧縮圧力
が比較的大きく低下するようにデコンプ作用する。この
圧縮圧力の低下により、ピストン下降時は常時ピストン
内圧がリークするので、ポンプ仕事が増加することにな
り、これにより第4図(a)のように大きいエンジンブ
レーキ力を生じる。 アクセル踏込量に応じて、減圧弁81の開度は徐々に減
少制御されることで、デコンプ作用と共ニエンジンブレ
ーキ力は第4図(a)のように滑らかに低下する。そし
て所定のアクセル踏込量θ0の時点て開度信号が停止す
ることで、減圧弁B
Hereinafter, one embodiment of the present invention will be described based on the drawings. In FIG. 1, to describe the overall structure of the two-stroke engine, reference numeral l is the main body of the two-stroke engine, in which a piston 3 is inserted into the cylinder 2 so as to be able to move back and forth, and is connected to the crankshaft 5 of the crank chamber 4. The piston 3 is connected by an eccentric connecting rod B, and a balancer 7 is provided on the crankshaft 5 so as to offset the reciprocating inertia of the piston 3. A spark plug 9 and an in-cylinder direct injection type injector IO are attached to the top of the combustion chamber 8. An exhaust port 11 is opened in the cylinder 2 and is opened and closed at a predetermined timing by a piston 3.
A catalyst device 13° and an exhaust chamber 14.t are connected to the exhaust pipe 12 communicating with the exhaust pipe 12. A muffler 15 is provided. In addition, a scavenging boat 16 that opens and closes at a predetermined timing by the piston 3 opens at a position approximately 90 degrees away from the position of the exhaust port 11 of the cylinder 2 (or a position facing the exhaust port 11). A scavenging system is installed. The injector 10 is of a two-fluid type, which stores a predetermined amount of fuel and then presses it with pressurized air to directly inject the fuel and air in a mixed state. Therefore, the fuel passage 20 of the injector 10 is connected to the filter 2.
1. communicates with the fuel tank 23 via the fuel pump 22;
A pressure regulating valve 24 is provided in the middle of the fuel passage 20, and always produces a constant low fuel pressure (slightly higher pressure than the pressurized air). In addition, a pressure regulating valve 2 is provided in the air passage 25 of the injector 10.
6. Accumulator 27. The compressor 28 is connected,
It is designed to produce pressurized air. Then, a predetermined amount of fuel is stored in the injector 10 in advance by a fuel pulse, and after the exhaust port 11 is closed, pressurized air is applied to the fuel by an air pulse and the fuel is injected. Next, regarding the scavenging system of the scavenging port 1B, the scavenging pipe 30 communicating with the scavenging port 16 is connected to a displacement type via a scavenging chamber 31 that absorbs the scavenging pressure waves when the scavenging port 1B is opened and closed, and an intercooler 32 that cools the scavenging air. A scavenging pump 33 is installed in series. Further, a bypass passage 35 communicates between the air cleaner 34 side upstream of the scavenging pump 33 and the downstream side of the intercooler 32;
A control valve 36 for load control is provided. The scavenging pump 33 is connected to the crankshaft 5 by a transmission means 37, and the engine output constantly drives the pump to generate scavenging pressure. Regarding the control system, the accelerator pedal 40 is connected to the control valve 36 via an opening degree changing means 41 so that the opening degree of the control valve 36 is opened and closed in inverse proportion to the amount of accelerator depression. Also, an engine rotation speed sensor 42 that measures the engine rotation speed N and accelerator depression amount θ that determines each operating condition. It has an accelerator depression amount detection sensor 43. and engine speed sensor 42. Signals N and θ of accelerator depression amount detection sensor 43
is manually processed by the control unit 45, and the control unit 45 outputs fuel and air pulse signals to the injector 10 and ignition signals to the spark plug 9. On the other hand, as a measure to strengthen the engine brake, a pressure reducing passage 60 is connected from the combustion chamber 8 side of the cylinder 2 to the exhaust passage 11a of the exhaust port 11, and in this pressure reducing passage 60, a poppet valve type pressure reducing valve 61 has a return spring 62. The pressure reducing valve 61 is connected to a solenoid actuator 64 via a link mechanism 63. In response to an electric signal from the control unit 45, an actuator 64 opens and closes the pressure reducing valve 61 to perform decompression. The control unit 45 will be described in FIG. First, the engine rotation speed sensor 42. It has an operating condition detection section 46 which inputs the engine rotation speed N and accelerator depression 2θ of the accelerator depression amount detection sensor 43, and the signals of each operating condition Q are inputted to the cylinder air port calculation section 47 to determine the timing during scavenging. For the blowout, the actual in-cylinder air port is determined by taking into account the amount of air and the pressurized air port from the injector IO. This in-cylinder air amount signal is input to the fuel injection plate calculation unit 48, and the target air-fuel ratio setting unit 49
The fuel injection amount is determined in relation to the target air-fuel ratio, and pulse signals of fuel and air corresponding to this are output from the pulse output section 50 to the injector IO. The vehicle also has a deceleration detecting section 51 to which signals of various driving conditions are input, and detects deceleration accompanying release of the accelerator during driving based on changes in accelerator depression amount θ, vehicle speed, clutch engagement, engine rotational speed N, and the like. This deceleration signal is sent to the fuel cut determination section 5.
2, a fuel cut signal is output to the pulse output section 50 at a predetermined engine speed No. or higher, and output of the pulse signal is stopped. In addition, the deceleration signal is input to the depressurization opening determining section 53, and when the engine speed is equal to or higher than a predetermined engine speed No., the engine braking force setting section 54
Determine the vacuum opening degree based on the map shown in Figure 3. That is, when the accelerator is fully opened, the decompression opening is opened according to the maximum engine braking force, and the opening is adjusted so that the engine braking force gradually decreases as the accelerator is depressed, and this opening signal drives the drive unit 55. The output signal is configured to be outputted to the actuator 64 via the output signal. Next, the operation of the two-stroke direct injection engine configured as described above will be described. First, the scavenging air is discharged from the scavenging pump 33 and sent to the intercooler 32.
The supply air cooled by the exhaust gas is always circulated back to the intake side through the bypass passage 35, and scavenging air is introduced into the cylinder 2 side by limiting this return m by the control valve 3G. Here, the opening degree of the control valve 3G is set in inverse proportion to the accelerator depression amount 〇, and when the accelerator depression amount θ is small, more is returned to the opening degree of the control valve 36, and the scavenging air n decreases. The scavenging air is adjusted according to the amount of accelerator depression without causing pump loss. Therefore, when the piston 3 is located near the bottom dead center and the scavenging port 16 is opened together with the exhaust port 11 as shown in FIG. The scavenging air is cooled by the scavenging port 16.
It flows into the inside of the cylinder 2. This scavenging air pushes out residual gas from the exhaust port 11 to perform a scavenging action, and in this way, fresh air consisting only of air is introduced into the cylinder 2 in a short period of time. Then, when the piston 3 rises, the scavenging port 16. When the exhaust port (exhaust port) 11 is closed, the scavenging air ends and the compression stroke begins. Also, exhaust port 1
1 is closed, a predetermined fuel previously stored in the injector IO by a fuel pulse is injected with pressurized air by an air pulse to generate an air-fuel mixture. Then, it is ignited by the spark plug 9 just before top dead center to cause combustion. In this case, the scavenging air flowing in from the scavenging board 16 is injected from the injector IO at the top of the combustion chamber 8 at appropriate timing and time. When the fuel is introduced and guided to the appropriately placed spark plug position, a rich air-fuel mixture is created near the spark plug 9, resulting in stratified combustion. After the explosion caused by this combustion, the piston 3 descends and enters the fat expansion stroke, the exhaust port 11 opens, and exhaust is performed to the extent that it is caused by the cylinder internal pressure.Furthermore, near the bottom dead center, there is an intake stroke accompanied by the scavenging action as described above. This is how the engine is operated. On the other hand, when the engine is operating, the operating condition detection section 46 of the control unit 45. Cylinder air amount calculation unit 47. Fuel injection amount calculation unit 48. The target air-fuel ratio setting unit 49 calculates the fuel injection 2 according to each driving condition except when decelerating while driving.
Based on this, fuel is injected from the injector IO. Therefore, the air-fuel ratio of the in-cylinder mixture is always controlled to the target value. When the accelerator is released to decelerate while driving in such an engine operating state, this is detected by the deceleration detection section 51 and the signal is sent to the fuel cut determination section 52 and the decompression opening determination section 5.
Enter 3. Therefore, if the accelerator depression amount is less than the predetermined accelerator depression amount of 00, the fuel injection amount is immediately stopped and the fuel is cut off as shown in FIG. 4(b) by a cut signal from the fuel cut determination section 52, and the self-destruction becomes impossible. In addition, the decompression opening determining section 5
3 outputs an opening degree signal to the actuator 64, and when the accelerator is fully opened, the pressure reducing valve B1 is opened wide via the link mechanism 63 as shown in Fig. 4 (C). Therefore, the compressed air in the cylinder is It leaks through the pressure reduction passage 60 and acts as a decompressor so that the compression pressure is relatively greatly reduced. Due to this reduction in compression pressure, the internal pressure of the piston leaks whenever the piston is lowered, resulting in an increase in pump work, which results in a large engine braking force as shown in FIG. 4(a). The opening degree of the pressure reducing valve 81 is controlled to gradually decrease in accordance with the amount of accelerator depression, so that the decompression action and the engine braking force smoothly decrease as shown in FIG. 4(a). Then, when the opening signal stops at a predetermined accelerator depression amount θ0, the pressure reducing valve B

【は全閉する。またカット信号も停
止することで、燃料噴射量算出部48による失火を生じ
ない最少燃料がインジェクタ10から噴射開始して、エ
ンジンは自爆°復帰されるのであり、この場合のエンジ
ントルク変化は第4図(a)のようになる。 なお、エンジンブレーキ力の可変制御は車速。 変速段等のパラメータで更に細かく制御し得る。 【発明の効果】 以上述べてきたように、本発明によれば、2サイクル直
噴エンジンで減速時にデコンプ作用によりエンジンブレ
ーキを強化する方式において、アクセル全開時に大きい
エンジンブレーキが効果的に作用する。そしてアクセル
踏込量に応じエンジンブレーキ力の可変制御により、エ
ンジンブレーキの効き過ぎが防止され、滑らかに復帰し
得る。 さらに、デコンプ作用によるエンジンブレーキ時は燃料
カットするので、燃料の吹き抜けを防止し得る。
[ is fully closed. Furthermore, by stopping the cut signal, the fuel injection amount calculation unit 48 starts injecting the minimum amount of fuel that does not cause a misfire from the injector 10, and the engine returns to self-destruction. In this case, the engine torque change is the fourth The result will be as shown in Figure (a). The engine braking force is variable controlled based on vehicle speed. More fine control can be achieved using parameters such as gears. As described above, according to the present invention, in a system in which engine braking is strengthened by decompression during deceleration in a two-stroke direct injection engine, a large engine brake is effectively applied when the accelerator is fully opened. By variable control of the engine braking force according to the amount of accelerator pedal depression, excessive engine braking is prevented and smooth recovery is possible. Furthermore, since fuel is cut during engine braking due to decompression, it is possible to prevent fuel from blowing out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の2サイクル直噴エンジンのエンジンブ
レーキ装置の実施例を示す構成図、第2図は制御ユニッ
トのブロック図、 第3図はエンジンブレーキ力の特性図、第4図(a)な
いしくC)はアクセル踏込量のエンジンブレーキ作用を
示すタイムチャー1・図である。 1・・・馬ンジン本体、8・・・燃焼室、IO・・・イ
ンジェクタ、45・・・制御ユニット、51・・・減速
検出部、52・・・燃料カット判定部、53・・・減圧
開度決定部、61・・・減圧弁、64・・・アクチュエ
ータ 特許出願人    富士重工業株式会社代理人 弁理士
  小 橋 信 淳 同
Fig. 1 is a configuration diagram showing an embodiment of the engine braking device for a two-stroke direct injection engine of the present invention, Fig. 2 is a block diagram of the control unit, Fig. 3 is a characteristic diagram of engine braking force, and Fig. 4 (a) is a block diagram of the control unit. ) or C) is a time chart 1 showing the engine braking effect of the amount of accelerator depression. DESCRIPTION OF SYMBOLS 1... Engine main body, 8... Combustion chamber, IO... Injector, 45... Control unit, 51... Deceleration detection part, 52... Fuel cut judgment part, 53... Depressurization Opening degree determining section, 61...Pressure reducing valve, 64...Actuator Patent applicant Fuji Heavy Industries Co., Ltd. Agent Patent attorney Nobu Kobashi Jundo

Claims (1)

【特許請求の範囲】 2サイクルエンジン本体の燃焼室に燃料噴射するインジ
ェクタを取付け、上記燃焼室側にデコンプ作用する減圧
弁を取付ける2サイクル直噴エンジンにおいて、 上記減圧弁には制御ユニットの電気信号により上記減圧
弁を開閉するアクチュエータを設け、車両走行中の減速
時における所定アクセル踏込量以下で上記インジェクタ
からの燃料をカットし、同時に上記減圧弁を、アクセル
全閉時にエンジンブレーキ力を最も大きくし、アクセル
踏込量に応じて上記エンジンブレーキ力を徐々に減じる
ように開度変化すべく制御することを特徴とする2サイ
クル直噴エンジンのエンジンブレーキ装置。
[Claims] A two-stroke direct injection engine in which an injector for injecting fuel is installed in the combustion chamber of a two-stroke engine main body, and a pressure reducing valve for decompression is installed on the combustion chamber side, the pressure reducing valve receiving an electrical signal from a control unit. An actuator is provided to open and close the pressure reducing valve, and the fuel is cut from the injector when the accelerator is depressed below a predetermined amount when the vehicle is decelerating while the vehicle is running, and at the same time, the pressure reducing valve is operated to maximize the engine braking force when the accelerator is fully closed. An engine braking device for a two-stroke direct injection engine, characterized in that the engine braking force is controlled to change the opening degree so as to gradually reduce the engine braking force according to the amount of accelerator depression.
JP21609188A 1988-08-30 1988-08-30 Engine braking device for two cycle direct injection engine Pending JPH0264239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21609188A JPH0264239A (en) 1988-08-30 1988-08-30 Engine braking device for two cycle direct injection engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21609188A JPH0264239A (en) 1988-08-30 1988-08-30 Engine braking device for two cycle direct injection engine

Publications (1)

Publication Number Publication Date
JPH0264239A true JPH0264239A (en) 1990-03-05

Family

ID=16683107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21609188A Pending JPH0264239A (en) 1988-08-30 1988-08-30 Engine braking device for two cycle direct injection engine

Country Status (1)

Country Link
JP (1) JPH0264239A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712927A1 (en) * 1993-11-27 1995-06-02 Honda Motor Co Ltd Apparatus for controlling the deceleration of a two-stroke engine, of the spark-ignition type, fitted to a vehicle.
WO1999027244A1 (en) * 1997-11-22 1999-06-03 Robert Bosch Gmbh Natural re-start multimode system (bde)
JP2014516393A (en) * 2011-02-23 2014-07-10 アカーテース パワー,インク. 2-stroke opposed piston engine with engine brake
JP2016075261A (en) * 2014-10-09 2016-05-12 トヨタ自動車株式会社 Control device of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712927A1 (en) * 1993-11-27 1995-06-02 Honda Motor Co Ltd Apparatus for controlling the deceleration of a two-stroke engine, of the spark-ignition type, fitted to a vehicle.
WO1999027244A1 (en) * 1997-11-22 1999-06-03 Robert Bosch Gmbh Natural re-start multimode system (bde)
JP2014516393A (en) * 2011-02-23 2014-07-10 アカーテース パワー,インク. 2-stroke opposed piston engine with engine brake
JP2016075261A (en) * 2014-10-09 2016-05-12 トヨタ自動車株式会社 Control device of internal combustion engine
US10508603B2 (en) 2014-10-09 2019-12-17 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling internal combustion engine

Similar Documents

Publication Publication Date Title
US4995354A (en) Two-cycle engine
US5020504A (en) Fuel injection control system for a two-cycle engine
US5085193A (en) Fuel injection control system for a two-cycle engine
AU668307B2 (en) Combustion controller for a spark ignition type two-cycle engine
US5054444A (en) Fuel injection control system for a two-cycle engine
JPH0233439A (en) Fuel injection control device for two-cycle direct injection engine
US4907549A (en) Scavenging system for a two-stroke-cycle engine
US5035223A (en) Fuel injection control system for an internal combustion engine
US5031594A (en) Idle speed control system for a two-cycle engine
US4957089A (en) Fuel injection control system for a two-cycle engine
JPH0240052A (en) Number of idle revolutions control device for 2-cycle direct injection engine
US5009201A (en) Two-cycle engine having a direct fuel injection system
JPH0264248A (en) Engine braking device for two cycle direct injection engine
JP3069228B2 (en) Deceleration control device for spark ignition type two-cycle engine for vehicle
JPH0264239A (en) Engine braking device for two cycle direct injection engine
US5022367A (en) Engine brake system of a two-cycle engine for a motor vehicle
US4981127A (en) Fuel injection control system for a two-cycle engine
JP3030365B2 (en) Internal combustion engine
JP3006221B2 (en) Idling control system for in-cylinder injection internal combustion engine
JPH0240041A (en) Fuel injection control device for 2-cycle direct injection engine
US20030233999A1 (en) Regenerative internal combustion engine
JPH033934A (en) Fuel injection control device for two-cycle engine
JPH04103855A (en) Fuel injection control device for two cycle engine
JPH01280659A (en) Load control device for 2-cycle engine
JPH033935A (en) Fuel injection control device for two-cycle direct injection engine