JPH0263181A - Laser oscillator device - Google Patents

Laser oscillator device

Info

Publication number
JPH0263181A
JPH0263181A JP21444488A JP21444488A JPH0263181A JP H0263181 A JPH0263181 A JP H0263181A JP 21444488 A JP21444488 A JP 21444488A JP 21444488 A JP21444488 A JP 21444488A JP H0263181 A JPH0263181 A JP H0263181A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
laser
light valve
crystal light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21444488A
Other languages
Japanese (ja)
Inventor
Chiharu Ito
千春 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP21444488A priority Critical patent/JPH0263181A/en
Publication of JPH0263181A publication Critical patent/JPH0263181A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To optically control modulation of laser light by forming at least one mirror of a set of mirrors of an optical recording reflection type liquid crystal light valve. CONSTITUTION:Once a photoconductor layer of a liquid crystal light valve 110 is irradiated with an optical beam 112, impedance of the photoconductive layer is lowered, almost all of an electric field supplied from a power supply 111 is applied to a liquid crystal layer which is then switched on. Once the liquid crystal layer is switched on, light passing through a Brewster window 103 is altered in its polarization plane during the time it reflected and is allowed to return again into a plasma tube 101. Therefore, the light passes through the Brewster window 104 unlike a situation where the liquid crystal light valve is irradiated with the optical beam 102, and is reflected on a mirror 109 to contribute in repetition to induced emission. Thus, conditions of lasing is satisfied and hence laser light 113 is emitted. Hereby, the lasing is controllable by the presence of the optical beam 112 to the liquid crystal light valve.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレーザー発振装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a laser oscillation device.

[従来の技術] 従来のレーザー発振装置は共振器が単純なミラーで構成
されており、ガスレーザー 固体レーザDyeレーザ等
、外部に共振器を持つレーザー発振装置を使用する場合
、レーザー光の変調にはレーザー発振機構の他にQスイ
ッチ、音響光学変調器、電気光学変調器等の電気信号を
入力とする外部変調器を用いていた。
[Conventional technology] In conventional laser oscillation devices, the resonator is composed of a simple mirror, and when using a laser oscillation device with an external resonator, such as a gas laser, solid state laser, or Dye laser, it is difficult to modulate the laser beam. In addition to the laser oscillation mechanism, external modulators such as Q-switches, acousto-optic modulators, and electro-optic modulators that receive electrical signals were used.

[発明が解決しようとする課題] しかしながら前述の従来技術では、レーザー光の変調に
電気的な信号を必要としており、近年、光演算等の研究
で望まれている光による光の制御つまり、光学的にレー
ザー光の変調を制御を実現しようとすると、−度光信号
をフォトダイオード等によって光電変換し、電気信号を
上述の外部変調器に入力しなくてはならず純光学的な制
御が出来ないという課題を有する。
[Problem to be solved by the invention] However, the above-mentioned conventional technology requires an electrical signal to modulate the laser light, and in recent years, light control using light, that is, optical In order to control the modulation of laser light, it is necessary to photoelectrically convert the -degree optical signal using a photodiode, etc., and then input the electrical signal to the external modulator described above, making it impossible to perform pure optical control. The problem is that there is no

そこで本発明はこのような課題を解決するものでありそ
の目的とするところは、光学的にレーザ−光の変調を制
御できるレーザー発振装置を提供することにある。
SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and an object of the present invention is to provide a laser oscillation device that can optically control the modulation of laser light.

[課題を解決するための手段] 本発明のレーザー発振装置は、 レーザー発振媒体と、前記レーザー発振媒体を励起する
ための手段と、一組のミラーによって構成される共振器
を有するレーザー発振装置において、前記一組のミラー
の少なくとも一方が光記録方式の反射型液晶ライトバル
ブであることを特徴とする。
[Means for Solving the Problems] A laser oscillation device of the present invention includes a laser oscillation medium, a means for exciting the laser oscillation medium, and a resonator constituted by a set of mirrors. , at least one of the set of mirrors is an optical recording reflective liquid crystal light valve.

[実施例] 第1図に本発明のレーザー発振装置の一実施例を示す。[Example] FIG. 1 shows an embodiment of the laser oscillation device of the present invention.

101はガラス等で形成したプラズマ管であり内部にレ
ーザー発振媒体であるHe−Neガス102が封入され
ている。プラズマ管101の両端はブリュースター窓1
03及び104が形成されておりプラズマ管101内で
発生する光の偏光を制御する。105.106それぞれ
アノード電極及びカソード電極であり、両者を介して電
源107から供給される電界によりプラズマ管101内
のHe−Neガス102は励起される。また108は励
起スタート用の誘導コイルであり本レーザー発振器のス
タート時のトワガを与える。
Reference numeral 101 is a plasma tube made of glass or the like, and He--Ne gas 102, which is a laser oscillation medium, is sealed inside. Both ends of the plasma tube 101 are Brewster windows 1
03 and 104 are formed to control the polarization of light generated within the plasma tube 101. 105 and 106 are an anode electrode and a cathode electrode, respectively, and the He-Ne gas 102 in the plasma tube 101 is excited by an electric field supplied from a power source 107 through both electrodes. Reference numeral 108 is an induction coil for starting excitation, which provides twirling when starting the laser oscillator.

109.110は本レーザー発振装置の共振器を構成す
るミラー及び光記録方式の反射型液晶ライトバルブ(以
下液晶ライトバルブと略す)である。
109 and 110 are mirrors and optical recording type reflective liquid crystal light valves (hereinafter abbreviated as liquid crystal light valves) that constitute the resonator of this laser oscillation device.

また111は液晶ライトバルブ110を駆動する電源で
あり、112はレーザー光の変調を制御する光ビームで
ある。液晶ライトバルブ110は、第2図に示されたよ
うに透明基板201.上にIT○から成る透明電極20
1を形成し、光導電層203、誘電体多層膜からなる光
分離ミラー204を作製する。その後、対向基板として
IT○205を形成した透明基板206を介して液晶2
07を封入する。208は光導電体層に照射される第1
図に示した光ビーム112.209は後述する第1図の
プラズマ管から放射される放出光を示してる。また、2
10は透明電極202.205を介して液晶ライトバル
ブに電界を印加するための電源であり、第1図の111
に等しい。液晶ライトバルブの詳細な構成を第1表に示
す。本実施例では光導電体層としてアモルファスシリコ
ンのPIN構造を採用したが、アモルファスシリコンの
INのみのものでも良いし、他に、Cd S、  S 
e。
Further, 111 is a power source that drives the liquid crystal light valve 110, and 112 is a light beam that controls modulation of laser light. The liquid crystal light valve 110 includes a transparent substrate 201. as shown in FIG. Transparent electrode 20 made of IT○ on top
1 is formed, and a photoconductive layer 203 and a light separating mirror 204 made of a dielectric multilayer film are manufactured. After that, the liquid crystal 2
Enclose 07. 208 is the first beam irradiated onto the photoconductor layer.
The illustrated light beam 112.209 represents the emitted light emitted from the plasma tube of FIG. 1, which will be described later. Also, 2
10 is a power source for applying an electric field to the liquid crystal light valve via transparent electrodes 202 and 205, and 111 in FIG.
be equivalent to. Table 1 shows the detailed configuration of the liquid crystal light valve. In this example, an amorphous silicon PIN structure was adopted as the photoconductor layer, but it is also possible to use only an amorphous silicon IN structure.
e.

0PC1単結晶シリコン、BSO等も使用できる。0PC1 single crystal silicon, BSO, etc. can also be used.

また液晶に関してもネマチック液晶の他に強誘電性液晶
、コレステリック液晶、ゲストホスト液晶、スメクチッ
クA液晶等も使用できる。
Regarding liquid crystals, in addition to nematic liquid crystals, ferroelectric liquid crystals, cholesteric liquid crystals, guest-host liquid crystals, smectic A liquid crystals, etc. can also be used.

第1表 以下に光ビーム112によって本実施例に示したレーザ
ー発振装置から発せられるレーザー光が変調される原理
を示す。プラズマ管101内のHe−Neガスは107
から供給される電界と、励起のトリガを与える誘導コイ
ルによって通常のHe−Neレーザーと同様に自然放出
を開始する。
Table 1 below shows the principle by which the laser light emitted from the laser oscillation device shown in this embodiment is modulated by the light beam 112. The He-Ne gas in the plasma tube 101 is 107
Spontaneous emission begins in the same way as a normal He-Ne laser, using an electric field supplied by the laser and an induction coil that triggers excitation.

ブリュースター窓103を通過した自然放出光は偏光さ
れ液晶ライトパルプ110に入射する。液晶ライトバル
ブの光導電体層に光ビーム112が照射されていない場
合は液晶ライトパルプ内の光導電体層は非常に高インピ
ーダンス状態にあり電源111から供給される電界のほ
とんどは光導電体層にかかり液晶層はOFF状態にある
。従ってブリュースター窓103を通過し直線偏光とな
った光は液晶ライトパルプ内の誘電体多層ミラーで反射
されるあいだに液晶層のりターゼーションを受は偏光面
が90°変化しプラズマ管101内に戻っていく。しか
しながら液晶ライトバルブで反射された偏光面の変化し
た光はブリュースター窓104のためにミラー109に
は到達せず誘、導放出にはほとんど寄与せず結局レーザ
ー発振の条件は満たされない。一方、液晶ライトバルブ
の光導電体層に光ビーム112が照射されると光導電体
層のインピーダンスは低下し電源111から供給される
電界のほとんどが液晶層にかかるようになり液晶層はO
N状態になる。液晶層がON状態になるとブリニスター
窓103を通過した光は反射される間に偏光面を変えら
れることなく再度プラズマ管101内に戻っていき、液
晶ライトバルブに光ビーム102が照射されていないと
きとは異なりブリュースター窓104を通過し、ミラー
109で反射され繰り返し誘導放射に寄与する。従って
レーザー発振の条件が満たされレーザー光113が発射
される。以上の原理によって液晶ライトバルブへの光ビ
ーム112の有無によってレーザ発振の制御が可能とな
る。本実施例ではブリュースター窓を有するプラズマ管
を用いたが、ブリュースター窓を持たないプラズマ管で
も偏光ビームスプリッタ、もしくは偏光板を液晶ライト
バルブの前面に置くことによって同様に入射ビーム光に
よる変調が可能である。またスメクチックA、コレステ
リック液晶等の散乱型の液晶を用いた液晶ライトバルブ
を用いた場合には液晶層による散乱、非散乱によってレ
ーザーの発振を制御でき、その場合には発振するレーザ
ー光はランダム偏光のものとすることができる。また、
本実施例ではHe−Neを用いたガスレーザーを例にと
り説明したが、He −N eガスの他にHe−Cd、
  Ar。
The spontaneously emitted light passing through the Brewster window 103 is polarized and enters the liquid crystal light pulp 110. When the photoconductor layer of the liquid crystal light valve is not irradiated with the light beam 112, the photoconductor layer in the liquid crystal light pulp is in a very high impedance state, and most of the electric field supplied from the power source 111 is applied to the photoconductor layer. The liquid crystal layer is in an OFF state. Therefore, the light that passes through the Brewster window 103 and becomes linearly polarized light undergoes polarization in the liquid crystal layer while being reflected by the dielectric multilayer mirror in the liquid crystal light pulp, and the plane of polarization changes by 90 degrees and enters the plasma tube 101. I'm going back. However, the light with a changed polarization plane reflected by the liquid crystal light valve does not reach the mirror 109 because of the Brewster window 104 and hardly contributes to guided emission, so that the conditions for laser oscillation are not satisfied. On the other hand, when the photoconductor layer of the liquid crystal light valve is irradiated with the light beam 112, the impedance of the photoconductor layer decreases, and most of the electric field supplied from the power source 111 is applied to the liquid crystal layer, causing the liquid crystal layer to become
It becomes N state. When the liquid crystal layer is turned on, the light that has passed through the Blinister window 103 returns to the plasma tube 101 without changing its polarization plane while being reflected, and when the liquid crystal light valve is not irradiated with the light beam 102. In contrast, the light passes through the Brewster window 104, is reflected by the mirror 109, and repeatedly contributes to stimulated radiation. Therefore, the conditions for laser oscillation are satisfied and laser light 113 is emitted. Based on the above principle, laser oscillation can be controlled depending on the presence or absence of the light beam 112 to the liquid crystal light valve. Although a plasma tube with a Brewster window was used in this example, a plasma tube without a Brewster window can also be modulated by the incident beam light by placing a polarizing beam splitter or a polarizing plate in front of the liquid crystal light valve. It is possible. In addition, when using a liquid crystal light valve that uses a scattering type liquid crystal such as smectic A or cholesteric liquid crystal, laser oscillation can be controlled by scattering and non-scattering by the liquid crystal layer, and in that case, the emitted laser light is randomly polarized. It can be made into Also,
In this example, a gas laser using He-Ne was explained as an example, but in addition to He-Ne gas, He-Cd,
Ar.

CO2等のガスレーザーでも同様な機能を有するレーザ
ー発振装置を形成できるし、YAG、ルビーガラスレー
ザー等の固体レーザー 色素レーザー鋼蒸気レーザー等
の金属蒸気レーザー 自由電子レーザー等でも可能であ
る。以上に示したような原理のレーザー発振装置を製作
したところ、液晶ライトバルブへの入射光に対し敏感に
応答し発振が起きるレーザー装置が作製できた。
A laser oscillation device having a similar function can be formed using a gas laser such as CO2, or a solid laser such as a YAG or ruby glass laser, a metal vapor laser such as a dye laser, a steel vapor laser, or a free electron laser. By fabricating a laser oscillation device based on the principle described above, we were able to fabricate a laser device that responds sensitively to light incident on the liquid crystal light valve and oscillates.

[発明の効果] 以上に示したように本発明によればレーザー光の変調を
直接、光学的に行なうことができるようになり従来技術
のように光によってレーザー発振の変調を制御する場合
に一度フオドダイオード等により光電変換を行ない電気
信号を外部変調器に入力する必要がなくなり純粋に光学
的手段のみで光の制御ができるようになった。また、フ
ォトダイオード等の光検出手段、レーザー光を変調する
外部変調器が不必要になったため複雑な光学系を組む必
要がなくなったとともにスペースの省力化にも貢献した
[Effects of the Invention] As described above, according to the present invention, laser light can be directly modulated optically. It is no longer necessary to perform photoelectric conversion using a photodiode or the like and input an electrical signal to an external modulator, and light can now be controlled purely by optical means. Additionally, since there is no need for a photodetector such as a photodiode or an external modulator for modulating laser light, there is no need to assemble a complex optical system, and this also contributes to space savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のレーザー発振装置の一実施例を示す図
。 第2図は本発明の一実施例に係わる光記録方式の反射型
液晶ライトパルプを示す図。 101  ・ 102 ・ 103. 109 ・ 110  ・ プラズマ管 He−Neガス ブリュースター窓 ミラー 光記録方式の反射型液晶 ライトパルプ 光ビーム レーザー光 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 上柳雅誉 他1名
FIG. 1 is a diagram showing an embodiment of the laser oscillation device of the present invention. FIG. 2 is a diagram showing an optical recording type reflective liquid crystal light pulp according to an embodiment of the present invention. 101 ・ 102 ・ 103. 109 ・ 110 ・ Plasma tube He-Ne gas Brewster window mirror Optical recording type reflective liquid crystal light Pulp light beam Laser light Applicant Seiko Epson Corporation Agent Patent attorney Masayoshi Kamiyanagi and 1 other person

Claims (1)

【特許請求の範囲】[Claims] レーザー発振媒体と、前記レーザー発振媒体を励起する
ための手段と、一組のミラーによって構成される共振器
を有するレーザー発振装置において、前記一組のミラー
の少なくとも一方が光記録方式の反射型液晶ライトバル
ブであることを特徴とするレーザー発振装置。
In a laser oscillation device including a laser oscillation medium, a means for exciting the laser oscillation medium, and a resonator constituted by a set of mirrors, at least one of the set of mirrors is a reflective liquid crystal of an optical recording type. A laser oscillation device characterized by being a light bulb.
JP21444488A 1988-08-29 1988-08-29 Laser oscillator device Pending JPH0263181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21444488A JPH0263181A (en) 1988-08-29 1988-08-29 Laser oscillator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21444488A JPH0263181A (en) 1988-08-29 1988-08-29 Laser oscillator device

Publications (1)

Publication Number Publication Date
JPH0263181A true JPH0263181A (en) 1990-03-02

Family

ID=16655873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21444488A Pending JPH0263181A (en) 1988-08-29 1988-08-29 Laser oscillator device

Country Status (1)

Country Link
JP (1) JPH0263181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240000603A (en) 2021-06-21 2024-01-02 후지필름 가부시키가이샤 Particle measuring device and particle measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240000603A (en) 2021-06-21 2024-01-02 후지필름 가부시키가이샤 Particle measuring device and particle measuring method

Similar Documents

Publication Publication Date Title
JP2660227B2 (en) Mode-locked laser
US5007065A (en) Bilithic unidirectional ring laser
US5606453A (en) Optical parametric amplifiers and oscillators pumped by tunable laser sources
US6304362B1 (en) Apparatus providing variable reflectivity to electromagnetic radiation
US5274650A (en) Solid state laser
US5987041A (en) Laser apparatus and method for emission of laser beam using same
US4233569A (en) High power laser with tuning and line narrowing capability
US3418476A (en) Device for internal modulation of laser radiation
CA1270293A (en) Modulated laser source for optical storage
US4649544A (en) Electro-optic harmonic conversion to switch a laser beam out of a cavity
KR100269028B1 (en) An apparatus of unidirectionally operating laser by using semi-monolithic ring cavity
JPH0263181A (en) Laser oscillator device
Grebe et al. Cholesteric liquid crystal mirrors for pulsed solid-state lasers
Koechner et al. Q-switching
JPH03145777A (en) Harmonic generating laser device
US3694769A (en) Low-loss laser q-switch
JP3171265B2 (en) Solid-state pulse laser device
US3644842A (en) Optical higher harmonic generator with temperature effecting phase matching
JP2606101B2 (en) SHG solid-state laser light source
JP2814813B2 (en) Q switch laser
JPH08194240A (en) Laser beam generator
JP2000261101A (en) Wavelength converting device
JP3199836B2 (en) Wavelength conversion laser device
JPH1184442A (en) Optical parametric oscillator
Dang et al. Diode pumped short pulse active laser sensors