JPH0262563B2 - - Google Patents

Info

Publication number
JPH0262563B2
JPH0262563B2 JP19580282A JP19580282A JPH0262563B2 JP H0262563 B2 JPH0262563 B2 JP H0262563B2 JP 19580282 A JP19580282 A JP 19580282A JP 19580282 A JP19580282 A JP 19580282A JP H0262563 B2 JPH0262563 B2 JP H0262563B2
Authority
JP
Japan
Prior art keywords
samarium
carbon atoms
methacrylic resin
resin composition
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19580282A
Other languages
Japanese (ja)
Other versions
JPS5986611A (en
Inventor
Kozo Ida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP19580282A priority Critical patent/JPS5986611A/en
Priority to DE8383306711T priority patent/DE3375794D1/en
Priority to EP83306711A priority patent/EP0108622B1/en
Priority to US06/548,444 priority patent/US4563494A/en
Priority to IT23617/83A priority patent/IT1170240B/en
Publication of JPS5986611A publication Critical patent/JPS5986611A/en
Publication of JPH0262563B2 publication Critical patent/JPH0262563B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、サマリりムを含有する光孊的および
機械的性質に優れたメタクリル暹脂組成物および
その補造法に関する。 メタクリル暹脂は、透明性、耐候性および機械
的性質等にすぐれおいるため皮々の分野に䜿甚さ
れおいるが、メタクリル暹脂は攟射線遮蔜胜を有
さないために、その甚途ぞの䜿甚が出来なか぀
た。 そこで近幎、メタクリル暹脂に鉛を含有せしめ
た攟射線遮蔜材料が開発されおいる特公昭35−
2360号、特開昭53−9994号、同53−9995号、同53
−9996号、及び同53−63310号等。 しかしながら、䞊蚘の鉛含有の攟射線遮蔜材料
は、攟射線のうち、線、γ線の劂き電磁波およ
びα線、β線の劂き荷電粒子に察しおは有効に遮
蔜するものの、䞭性子線に察しおは䞍十分であ
る。 䞀方、䞭性子線遮蔜の高分子材料ずしお、ポリ
゚チレンたたはメタクリル暹脂に硌玠化合物を添
加するこずも知られおいる特開昭55−144597
号。しかしこの方法も䞭性子線吞収胜は倧きい
ものの、䞭性子吞収反応に䌎ない生成するヘリり
ム、リチりムは䞭性子吞収胜がほずんどないた
め、䞭性子の吞収量の増加に䌎ないその胜力は枛
少しお行く傟向をも぀ず共に、光孊的および機械
的性質に぀いお満足すべきずころたで至぀おいな
い。 䞭性子線を吞収する物質ずしお䞊蚘の硌玠化合
物以倖に、原子番号64の垌土類元玠であるサマリ
りムが熱䞭性子線の吞収胜が硌玠よりもさらに倧
きいこずが知られおいる。しかしサマリりムは金
属固䜓であるため、メタクリル系重合䜓ずの盞溶
性が悪く、いただに光孊的および機械的性質にす
ぐれたメタクリル暹脂は補造されおいない。 本発明者は、このような状況に鑑み皮々怜蚎し
た結果本発明に到達したもので、本発明の芁旚ず
するずころは、メタクリル酞メチルを䞻成分ずす
るメタクリル暹脂䞭に、サマリりム原子の重量濃
床が党組成物に察しお0.01〜10重量ずなるよう
にサマリりム化合物を含有せしめたメタクリル暹
脂組成物にある。 本発明の暹脂組成物は、サマリりム化合物をメ
タクリル酞メチルを䞻成分ずするメタクリル暹脂
䞭に含有せしめるこずにより達成される。 したが぀お本発明の組成物を埗る方法ずしおは
特に限定されず皮々の補造法が適甚できる。䟋え
ばサマリりム化合物ずメタクリル暹脂ずをブレン
ドする方法、サマリりム化合物ずメタクリル酞メ
チルを䞻成分ずする単量䜓もしくはその郚分重合
䜓ず混合し重合する方法あるいはサマリりム化合
物をメタクリル酞メチルを䞻成分ずする単量䜓は
その郚分重合物および溶媒ず混合しお重合する方
法等があげられる。 本発明の暹脂組成物を構成するに䜿甚される暹
脂圢成原料ずしおは、メタクリル酞メチル単量䜓
あるいはメタクリル酞メチルを䞻成分ずする単量
䜓混合物たたはそれらの郚分重合物である。メタ
クリル酞メチルを䞻成分ずする単量䜓混合物はメ
タクリル酞メチルおよびメタクリル酞メチルず共
重合性の他のビニル系単量䜓ずからなるものであ
る。メタクリル酞メチルず共重合性の他のビニル
単量䜓は特に限定されないが䟋えば炭玠数〜
のアルキルアクリレヌト、炭玠数〜のアルキ
ルメタクリレヌト、スチレン、α−メチルスチレ
ン、゚チレングリコヌルゞメタクリレヌト、゚チ
レングリコヌルゞアクリレヌト、ゞ゚チレングリ
コヌルゞメタクリレヌト、ゞ゚チレングリコヌル
ゞアクリレヌト、テトラ゚チレングリコヌルゞメ
タアクリレヌト、テトラ゚チレングリコヌルアク
リレヌト、ペンタ゚リスリトヌルテトラメタクリ
レヌト、ペンタ゚リスリトヌルテトラアクリレヌ
ト、アクリル酞アリル、メタアクリル酞アリル等
があげられる。これらの䜿甚量は、単量䜓混合物
äž­50重量以䞋である。たた䜿甚する暹脂原料の
郚分重合物䞭の重合䜓含有量は、最終的に埗られ
る重合䜓の光孊的性質を損なわぬためできる限り
少ない方が望たしい。 本発明の組成物を構成するのに䜿甚されるサマ
リりムは、サマリりム化合物、䟋えばサマリりム
の酞化物、炭酞サマリりム、氎酞化サマリりム、
あるいはサマリりムの酞化物ず無機酞たたは有機
酞ずを反応するこずにより埗られる硝酞サマリり
ム、メタクリル酞サマリりム、アクリル酞サマリ
りム等の無機たたは有機酞のサマリりム塩、たた
はサマリりムの酞化物ずアセチルアセトン、たた
はベンゟむルアセトン等ずを反応しお埗られるト
リスアセチルアセトナトサマリりム、たたは
トリスベンゟむルアセトナトサマリりム等の
ガドリニりム錯化合物があげられる。これらサマ
リりム化合物の䜿甚量はサマリりム原子の重量濃
床が暹脂組成物党重量に察しお0.01〜10重量、
奜たしくは〜重量が望たしい。0.01重量
未満の堎合には、埗られる暹脂組成物の䞭性子線
遮蔜効果が少なく、たた10重量を超えるず光孊
的性質たたは機械的匷床の䜎䞋をきたす。 これらのサマリりム化合物は、甚途により䞀抂
に決められないが、メタクリル暹脂にブレンドす
るか、暹脂圢成原料ず混合しお重合するか、たた
は暹脂圢成原料および溶媒ず混合しお重合する方
法等によりメタクリル暹脂䞭に含有せしめるこず
ができる。特に埌者の溶媒を䜿甚する方法は散乱
のない透明な暹脂補品を埗るのに適しおいる。 サマリりム化合物ずブレンド、たたは暹脂圢成
原料に添加する堎合には、酞化サマリりム、炭酞
サマリりムおよび氎酞化サマリりム化合物、サマ
リりムの錯化合物から遞ばれたものが奜たしい䟋
ずしおあげられる。たたサマリりム化合物を暹脂
圢成原料および溶媒ずの混合物ず混合しお䜿甚す
る堎合には、サマリりムの酞化物ず無機酞たたは
有機酞ずを反応するこずにより埗られる硝酞サマ
リりム、メタクリル酞サマリりム、アクリル酞サ
マリりム等の無機たたは有機酞のサマリりム塩お
よびそれらの耇塩、たたはサマリりムの酞化物ず
アセチルアセトン、たたはベンゟむルアセトン等
ずを反応しお埗られるトリスアセチルアセトナ
トサマリりム、たたはトリスベンゟむルアセ
トナトサマリりム等のサマリりム錯化合物が奜
たしい䟋ずしおあげられる。 本発明の暹脂組成物を補造する際に䜿甚される
溶媒ずしおは、暹脂圢成原料およびサマリりム化
合物に察しお溶解性を瀺す䞋蚘の䞀般匏 K0018 匏䞭、R1は炭玠数〜20の飜和あるいは䞍
飜和の炭化氎玠残基である K0019 匏䞭、R2は氎玠たたは炭玠数〜の飜和
たたは䞍飜和の炭化氎玠残基、R3は炭玠数〜
の飜和あるいは䞍飜和の炭化氎玠残基である K0020 匏䞭、R4は氎玠たたはメチル基、A1は炭玠
数〜のアルキル基、はあるいは〜10の
敎数である K0021 匏䞭、R5は氎玠たたはメチル基、R6は炭玠
数〜のアルキレン基である R7−OH (5)たたは 匏䞭、R7は炭玠数〜10の飜和あるいは䞍
飜和の炭化氎玠残基である R8−A2−−n (6) 匏䞭、R8は氎酞基たたは炭玠数〜10の飜
和あるいは䞍飜和の炭化氎玠残基、A2は炭玠数
〜のアルキレン基、は〜10の敎数であ
るから遞ばれる化合物である。 前蚘䞀般匏(1)(2)(3)(4)(5)および(6)で瀺さ
れる溶媒は、サマリりム化合物を暹脂圢成原料に
均䞀に溶解させるための共溶媒であ぀お、䟋えば
メタクリル酞、アクリル酞等の䞍飜和カルボン
酞、プロピオン酞、オクチル酞、む゜酪酞、ヘキ
サン酞、オクチル安息銙酞、ステアリン酞、パル
ミチン酞、ナフテン酞等の飜和たたは䞍飜和脂肪
酞、−ヒドロキシ゚チルアクリレヌト、−ヒ
ドロキシ゚チルメタクリレヌト等の䞍飜和アルコ
ヌル、プロピルアルコヌル、シクロヘキシルアル
コヌル等の飜和脂肪族アルコヌル、゚チレングリ
コヌル、ゞ゚チレングリコヌル、プロピレングリ
コヌル等のグリコヌルがあげられる。これらの溶
媒のうち、メタクリル酞、アクリル酞、−ヒド
ロキシ゚チルメタクリレヌト、−ヒドロキシ゚
チルアクリレヌト等のメタクリル酞メチルず共重
合性のある単量䜓が奜たしい。これらの溶媒は単
独でたたは皮以䞊を組み合わせお甚いるこずが
できる。本発明における溶媒の䜿甚量は、䜿甚す
るサマリりム化合物の皮類、量により䞀抂に決め
るこずが出来ないが、40重量以䞋、奜たしくは
10重量以䞋である。䜿甚量が40重量を越える
堎合には埗られる暹脂組成物の機械的、熱的性質
を䜎䞋させるので奜たしくない。 本発明においお䜿甚する重合開始剀ずしおは䟋
えばベンゟむルパヌオキサむド、ラりロむルパヌ
オキサむド等の過酞化物系、2′−アゟビスむ
゜ブチロニトリル、2′−アゟビス−
−ゞメチルバレロニトリル2′−アゟビス
−−ゞメチル−−メトキシ−バレロニ
トリル等のアゟビス系のような公知のラゞカル
開始剀が䜿甚できる。これらの重合開始剀は単独
のみならびに皮以䞊を混合しお䜿甚でき、その
䜿甚量は暹脂原料100重量郚に察しお0.001〜0.1
重量郚である。 本発明の暹脂組成物を埗るに際しおの重合法ず
しおは、特に限定されないが泚型重合が奜たしい
重合法ずしおあげられる。この泚型重合の堎合に
は、前蚘成分(a)(b)および(c)から調補された重合
混合物を、䟋えば無機ガラス板、ステンレス・ス
チヌル板、ニツケルクロム板たたはアルミニりム
板等ず軟質の塩化ビニル補のガスケツトずで構成
された鋳型内に泚入しお重合させる。泚型重合は
45〜95℃で0.3〜15時間、匕続き100〜145℃で10
分〜時間かけお重合を完結させる。 本発明においおは必芁に応じお玫倖線吞収剀、
離型剀、熱安定剀、着色剀、光拡散剀を、たた曎
に他の䞭性子遮蔜甚化合物および鉛化合物等を添
加するこずもできる。 以䞊述べたような構成からなる本発明の光孊的
および機械的性質に優れたサマリりム含有メタク
リル暹脂組成物は、䞀般のアクリル暹脂ず同じ補
造工皋で容易に補造でき、䞭性子線を䞻䜓ずする
攟射線の遮蔜材料ずしお利甚できる。たた本発明
の組成物䞭に鉛化合物を䜵甚するず線、γ線、
䞭性子線のいずれずも遮蔜するこずが可胜ずな
る。本発明のメタクリル暹脂組成物は䞭性子遮蔜
材料にずりわけ有甚であるが、他の甚途、䟋えば
光孊フむルタヌ、光孊レンズ、光倉換材、照明材
などの甚途にも䜿甚できる。 次に実斜䟋によ぀お本発明を曎に詳しく説明す
るが、本発明を限定するものではない。 参考䟋  メタクリル酞サマリりムの合成 メタクリル酞280およびトル゚ン1000の混
合物に重合犁止剀ずしおハむドロキノンモノメチ
ル゚ヌテル0.3を均䞀に溶解し、これを60℃に
加枩した埌、この溶液に酞化サマリりム粉末174
を20分かけお添加しおゆき、時間撹拌を続け
る。 次いで該反応液を日攟眮した埌、過し、
液を陀去しおメタクリル酞サマリりムを埗る。収
量は370であ぀た。 参考䟋  硝酞サマリりムの合成 濃硝酞に少過剰の酞化サマリりムを加熱溶解し
反応させる。時間埌、液を冷华し硝酞サマリ
りムの結晶を析出させた。収率は60であ぀た。 参考䟋  トリスアセチルアセトナトサマリりムの合
成 アセチルアセトン100c.c.ず酞化サマリりム180
を無氎ゞ゚チル゚ヌテル3000c.c.に懞濁させ時間
還流を行ない、匕続きゞ゚チル゚ヌテルを溜出陀
去しおトリスアセチルアセトナトサマリりム
の結晶を埗た。収率は65であ぀た。 実斜䟋  参考䟋で合成した硝酞サマリりムを−
ヒドロキシ゚チルメタクリレヌト17およびプロ
ピレングリコヌルの混合液に溶解させ、この
溶液にメタクリル酞メチル78を添加、撹拌し混
合する。この混合液は透明液であ぀た。 次にこの混合液に重合觊媒ずしお0.04の
2′−アゟビス−−ゞメチルバレロニトリ
ルおよび離型剀ずしお0.005のゞオクチルス
ルホサクシネヌトナトリりム塩を添加しお溶解さ
せた埌、脱気し、予め板厚がmmずなるよう蚭定
された垞法の無機ガラスの鋳型䞭に泚入し、この
鋳型を65℃の枩氎に180分浞挬し、次いで110℃の
空気济に120分滞圚させお重合を完結させた。鋳
型から取り出した暹脂板は透明であ぀た。 実斜䟋  参考䟋で合成した硝酞サマリりム1.5を
−ヒドロキシ゚チルメタクリレヌト8.5に溶解
させ、曎にこれをメタクリル酞メチル90に添加
しお撹拌混合する。この混合液は透明であ぀た。
この混合液に実斜䟋で䜿甚したのず同じ皮類お
よび量の重合觊媒ず離型剀を添加しお実斜䟋ず
同じ条件で泚型重合を行な぀た。埗られた暹脂板
は透明であ぀た。 実斜䟋  参考䟋で合成したトリスアセチルアセトナ
トサマリりム1.5を、メタクリル酞8.5に溶
解させ、この液をメタクリル酞メチル90に添
加、撹拌しお混合する。 この混合液に実斜䟋ず同じ重合觊媒、離型剀
を添加し、実斜䟋ず同じ泚型重合を行な぀た。
重合完結埌、鋳型から剥離した暹脂板は極くわず
か黄色であ぀たが透明であ぀た。 実斜䟋  参考䟋で合成したメタクリル酞サマリりム
ず、−オクチル酞、プロピレングリコヌ
ル、−ヒドロキシ゚チルメタクリレヌト
、スチレンおよびメタクリル酞メチル83
を混合し、実斜䟋ず同じ重合条件で泚型重合を
繰返した。埗られた暹脂板はわずかに黄色であ぀
たが透明であ぀た。 実斜䟋  メタクリル酞メチルの郚分重合䜓重合率18
100重量郚に、重合觊媒ずしおαα′−アゟ
ビス−−ゞメチルバレロニトリル0.04
重量郚、離型剀ずしおゞオクチルスルホサクシネ
ヌト・ナトリりム塩0.005重量郚、平均粒埄が2ÎŒ
である酞化サマリりム2.0重量郚を添加混合し、
脱気した埌予め板厚がmmずなるようにした匷化
ガラスず軟質の塩化ビニヌル補ガスケツトで構成
した鋳型䞭に泚入し、70℃の枩氎で60分間浞挬
し、次いで130℃の空気济䞭で80分間眮いお重合
を完結しお暹脂板を埗た。 実斜䟋  メタクリル暹脂䞉菱レむペン(æ ª)補、商品名ア
クリペツトVH100重量郚に察しお平均粒埄
0.5Όの氎酞化サマリりム2.0重量郚及び平均粒埄
が2Όの炭酞サマリりム1.0重量郚添加しおタンブ
ラヌで十分混合しお均䞀化した埌、垞法により抌
出機より抌出しお板厚mmのシヌトを埗た。 実斜䟋〜で埗られたメタクリル暹脂板の党
光線透過率、曇䟡、曲げ砎壊匷床
Kgcm2および䞭性子遮蔜胜熱䞭性子吞収断
面積の結果を衚に瀺す。 なお、党光線透過率および曇䟡はASTM−
−1003−61、曲げ砎壊匷床はASTM−−790に
準じお枬定した。たた熱䞭性子吞収断面積は実隓
化孊講座(12)攟射化孊䞞善に蚘茉の数倀および
䞋蚘匏により求めた。 W1M1×S1W2M2×S2   WnMn×Sn× 䜆し  組成物100圓りの熱䞭性子吞収断面積
cm2 Mi 皮元玠の原子量 Wi 皮元玠の存圚量 Si 皮元玠の熱䞭性子吞収断面積barns  アボガドロ数   
The present invention relates to a methacrylic resin composition containing samarium and having excellent optical and mechanical properties, and a method for producing the same. Methacrylic resin is used in a variety of fields due to its excellent transparency, weather resistance, and mechanical properties. However, since methacrylic resin does not have radiation shielding ability, it cannot be used for these purposes. Ta. Therefore, in recent years, radiation shielding materials containing lead in methacrylic resin have been developed (Special Publications Publication No.
No. 2360, Japanese Patent Publication No. 53-9994, No. 53-9995, No. 53
-9996, and 53-63310, etc.). However, although the lead-containing radiation shielding materials described above effectively shield radiation from electromagnetic waves such as X-rays and γ-rays and charged particles such as α-rays and β-rays, they do not shield against neutron radiation. Not enough. On the other hand, it is also known to add a boron compound to polyethylene or methacrylic resin as a polymeric material for shielding neutron beams (Japanese Unexamined Patent Publication No. 144597-1987).
issue). However, although this method also has a large neutron beam absorption capacity, the helium and lithium produced in the neutron absorption reaction have almost no neutron absorption capacity, so their capacity tends to decrease as the amount of neutron absorption increases. However, the optical and mechanical properties have not yet reached a satisfactory level. In addition to the boron compounds mentioned above, samarium, a rare earth element with an atomic number of 64, is known as a substance that absorbs neutron beams, and has an even greater ability to absorb thermal neutron beams than boron. However, since samarium is a metallic solid, it has poor compatibility with methacrylic polymers, and methacrylic resins with excellent optical and mechanical properties have not yet been produced. The inventor of the present invention has arrived at the present invention as a result of various studies in view of the above circumstances. A methacrylic resin composition containing a samarium compound in an amount of 0.01 to 10% by weight based on the total composition. The resin composition of the present invention is achieved by incorporating a samarium compound into a methacrylic resin containing methyl methacrylate as a main component. Therefore, the method for obtaining the composition of the present invention is not particularly limited, and various manufacturing methods can be applied. For example, a method of blending a samarium compound and a methacrylic resin, a method of mixing and polymerizing a samarium compound with a monomer whose main component is methyl methacrylate or a partial polymer thereof, or a method of blending a samarium compound with a monomer whose main component is methyl methacrylate or a method of polymerizing a samarium compound with a monomer whose main component is methyl methacrylate. The polymer may be polymerized by mixing it with a partially polymerized product thereof and a solvent. The resin forming raw material used to constitute the resin composition of the present invention is a methyl methacrylate monomer, a monomer mixture containing methyl methacrylate as a main component, or a partial polymer thereof. The monomer mixture containing methyl methacrylate as a main component consists of methyl methacrylate and another vinyl monomer copolymerizable with methyl methacrylate. Other vinyl monomers copolymerizable with methyl methacrylate are not particularly limited, but include those having 1 to 4 carbon atoms.
alkyl acrylate, alkyl methacrylate having 2 to 4 carbon atoms, styrene, α-methylstyrene, ethylene glycol dimethacrylate, ethylene glycol diacrylate, diethylene glycol dimethacrylate, diethylene glycol diacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol acrylate, Examples include pentaerythritol tetramethacrylate, pentaerythritol tetraacrylate, allyl acrylate, allyl methacrylate, and the like. The amount of these used is 50% by weight or less in the monomer mixture. Further, it is desirable that the polymer content in the partially polymerized resin raw material used be as small as possible so as not to impair the optical properties of the finally obtained polymer. The samarium used in making up the compositions of the present invention may include samarium compounds such as samarium oxide, samarium carbonate, samarium hydroxide,
Alternatively, samarium salts of inorganic or organic acids such as samarium nitrate, samarium methacrylate, and samarium acrylate obtained by reacting samarium oxide with an inorganic or organic acid, or samarium oxide and acetylacetone, or benzoylacetone Examples include gadolinium complex compounds such as tris(acetylacetonato)samarium or tris(benzoylacetonato)samarium obtained by reacting with the like. The amount of these samarium compounds used is such that the weight concentration of samarium atoms is 0.01 to 10% by weight based on the total weight of the resin composition.
Preferably 1 to 5% by weight is desirable. 0.01% by weight
If it is less than 10% by weight, the resulting resin composition will have little neutron beam shielding effect, and if it exceeds 10% by weight, the optical properties or mechanical strength will deteriorate. These samarium compounds cannot be determined unconditionally depending on the application, but they can be blended with methacrylic resin, mixed with resin-forming raw materials and polymerized, or mixed with resin-forming raw materials and a solvent and polymerized to form methacrylic resin. It can be contained inside. Particularly, the method using the latter solvent is suitable for obtaining transparent resin products without scattering. When blended with a samarium compound or added to a resin forming raw material, preferred examples include those selected from samarium oxide, samarium carbonate, samarium hydroxide compounds, and samarium complex compounds. In addition, when using a samarium compound in a mixture with a resin-forming raw material and a solvent, samarium nitrate, samarium methacrylate, or samarium acrylate obtained by reacting samarium oxide with an inorganic or organic acid can be used. Tris(acetylacetonato)samarium or tris(benzoylacetonato)samarium obtained by reacting samarium salts of inorganic or organic acids such as samarium salts and their double salts, or samarium oxides with acetylacetone, benzoylacetone, etc. Preferred examples include samarium complex compounds such as . The solvent used when producing the resin composition of the present invention has the following general formula K0018 (where R 1 is a saturated carbon number of 1 to 20 or an unsaturated hydrocarbon residue) K0019 (wherein, R 2 is hydrogen or a saturated or unsaturated hydrocarbon residue having 1 to 9 carbon atoms, and R 3 is a saturated or unsaturated hydrocarbon residue having 1 to 9 carbon atoms)
K0020 (In the formula, R 4 is hydrogen or a methyl group, A 1 is an alkyl group having 2 to 6 carbon atoms, and n is 0 or an integer of 1 to 10. ) K0021 (In the formula, R 5 is hydrogen or a methyl group, R 6 is an alkylene group having 2 to 6 carbon atoms) R 7 −OH (5) or (In the formula, R 7 is a saturated group having 3 to 10 carbon atoms) or an unsaturated hydrocarbon residue) R 8 (-A 2 -O)- n H (6) (wherein, R 8 is a hydroxyl group or a saturated or unsaturated hydrocarbon residue having 1 to 10 carbon atoms) , A2 is an alkylene group having 2 to 4 carbon atoms, m is an integer of 2 to 10). The solvents represented by the general formulas (1), (2), (3), (4), (5) and (6) are co-solvents for uniformly dissolving the samarium compound in the resin forming raw material. , unsaturated carboxylic acids such as methacrylic acid and acrylic acid, saturated or unsaturated fatty acids such as propionic acid, octylic acid, isobutyric acid, hexanoic acid, octylbenzoic acid, stearic acid, palmitic acid, naphthenic acid, 2-hydroxyethyl Examples include unsaturated alcohols such as acrylate and 2-hydroxyethyl methacrylate, saturated aliphatic alcohols such as propyl alcohol and cyclohexyl alcohol, and glycols such as ethylene glycol, diethylene glycol and propylene glycol. Among these solvents, monomers copolymerizable with methyl methacrylate, such as methacrylic acid, acrylic acid, 2-hydroxyethyl methacrylate, and 2-hydroxyethyl acrylate, are preferred. These solvents can be used alone or in combination of two or more. The amount of the solvent used in the present invention cannot be determined unconditionally depending on the type and amount of the samarium compound used, but is preferably 40% by weight or less, and preferably 40% by weight or less.
It is 10% by weight or less. If the amount used exceeds 40% by weight, the mechanical and thermal properties of the resulting resin composition will deteriorate, which is not preferred. Examples of the polymerization initiator used in the present invention include peroxides such as benzoyl peroxide and lauroyl peroxide, 2,2'-azobisisobutyronitrile, 2,2'-azobis-(2,4
Known radical initiators such as azobis-based initiators such as -dimethylvaleronitrile) and 2,2'-azobis-(2,4-dimethyl-4-methoxy-valeronitrile) can be used. These polymerization initiators can be used alone or in combination of two or more, and the amount used is 0.001 to 0.1 per 100 parts by weight of resin raw material.
Parts by weight. The polymerization method used to obtain the resin composition of the present invention is not particularly limited, but cast polymerization is a preferred polymerization method. In the case of this cast polymerization, the polymerization mixture prepared from the above components (a), (b) and (c) is mixed with a soft material such as an inorganic glass plate, stainless steel plate, nickel chrome plate or aluminum plate. The mixture is injected into a mold consisting of a vinyl chloride gasket and allowed to polymerize. Cast polymerization is
0.3-15 hours at 45-95℃, followed by 10 hours at 100-145℃
Polymerization is completed over a period of minutes to 5 hours. In the present invention, if necessary, an ultraviolet absorber,
A mold release agent, a heat stabilizer, a coloring agent, a light diffusing agent, and other neutron shielding compounds, lead compounds, etc. can also be added. The samarium-containing methacrylic resin composition of the present invention, which has the structure described above and has excellent optical and mechanical properties, can be easily produced in the same manufacturing process as general acrylic resins, and is resistant to radiation mainly composed of neutrons. Can be used as a shielding material. Furthermore, when a lead compound is used in combination with the composition of the present invention, X-rays, γ-rays,
It becomes possible to shield from both neutron beams. Although the methacrylic resin composition of the present invention is particularly useful as a neutron shielding material, it can also be used in other applications such as optical filters, optical lenses, light conversion materials, lighting materials, and the like. EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited thereto. Reference Example 1 Synthesis of samarium methacrylate 0.3 g of hydroquinone monomethyl ether as a polymerization inhibitor was uniformly dissolved in a mixture of 280 g of methacrylic acid and 1000 g of toluene, and after heating this to 60°C, 174 g of samarium oxide powder was added to this solution.
g over 20 minutes and continued stirring for 1 hour. The reaction solution was then allowed to stand for one day, and then filtered.
The liquid is removed to obtain samarium methacrylate. The yield was 370g. Reference Example 2 Synthesis of samarium nitrate A slight excess of samarium oxide is heated and dissolved in concentrated nitric acid and reacted. After 1 hour, the liquid was cooled to precipitate samarium nitrate crystals. The yield was 60%. Reference example 3 Synthesis of tris(acetylacetonato)samarium 100 c.c. of acetylacetone and 180 g of samarium oxide
was suspended in 3000 c.c. of anhydrous diethyl ether and refluxed for 2 hours, followed by distillation and removal of diethyl ether to obtain crystals of tris(acetylacetonato)samarium. The yield was 65%. Example 1 3 g of samarium nitrate synthesized in Reference Example 2 was mixed with 2-
It is dissolved in a mixed solution of 17 g of hydroxyethyl methacrylate and 2 g of propylene glycol, and 78 g of methyl methacrylate is added to this solution and mixed by stirring. This liquid mixture was a transparent liquid. Next, add 0.04g of 2 as a polymerization catalyst to this mixed solution.
After adding and dissolving 2'-azobis-(2,4-dimethylvaleronitrile) and 0.005 g of dioctyl sulfosuccinate sodium salt as a mold release agent, it was degassed and the plate thickness was set in advance to 3 mm. The mold was poured into a conventional inorganic glass mold, and the mold was immersed in warm water at 65°C for 180 minutes, and then kept in an air bath at 110°C for 120 minutes to complete polymerization. The resin plate taken out from the mold was transparent. Example 2 1.5 g of samarium nitrate synthesized in Reference Example 2 was
-Dissolve in 8.5 g of hydroxyethyl methacrylate, and then add this to 90 g of methyl methacrylate and mix with stirring. This mixture was transparent.
The same type and amount of polymerization catalyst and mold release agent as used in Example 1 were added to this mixed solution, and cast polymerization was carried out under the same conditions as in Example 1. The obtained resin plate was transparent. Example 3 1.5 g of tris(acetylacetonato)samarium synthesized in Reference Example 3 is dissolved in 8.5 g of methacrylic acid, and this solution is added to 90 g of methyl methacrylate and mixed by stirring. The same polymerization catalyst and mold release agent as in Example 1 were added to this mixed solution, and the same cast polymerization as in Example 1 was performed.
After the polymerization was completed, the resin plate peeled off from the mold was transparent although it had a very slight yellow color. Example 4 Samarium methacrylate 8 synthesized in Reference Example 1
g, n-octylic acid 2g, propylene glycol 1g, 2-hydroxyethyl methacrylate 1
g, 5 g of styrene and 83 g of methyl methacrylate
were mixed, and cast polymerization was repeated under the same polymerization conditions as in Example 1. The resulting resin plate was slightly yellow but transparent. Example 5 Partial polymer of methyl methacrylate (polymerization rate 18
%) 100 parts by weight, α,α′-azobis-(2,4-dimethylvaleronitrile) 0.04 as a polymerization catalyst
Parts by weight, 0.005 parts by weight of dioctyl sulfosuccinate sodium salt as a mold release agent, average particle size 2Ό
Add and mix 2.0 parts by weight of samarium oxide,
After degassing, it was poured into a mold made of tempered glass with a thickness of 3 mm and a soft vinyl chloride gasket, immersed in hot water at 70°C for 60 minutes, and then placed in an air bath at 130°C. The polymerization was completed after being left for 80 minutes to obtain a resin plate. Example 6 Average particle size per 100 parts by weight of methacrylic resin (manufactured by Mitsubishi Rayon Co., Ltd., trade name Acrypet VH)
Add 2.0 parts by weight of samarium hydroxide with a particle size of 0.5Ό and 1.0 parts by weight of samarium carbonate with an average particle size of 2Ό, mix thoroughly in a tumbler to make the mixture homogeneous, and then extrude it from an extruder using a conventional method to obtain a sheet with a thickness of 3 mm. Ta. The results of total light transmittance (%), haze value (%), bending fracture strength (Kg/cm 2 ), and neutron shielding ability (thermal neutron absorption cross section) of the methacrylic resin plates obtained in Examples 1 to 7 are shown below. It is shown in Table 1. In addition, total light transmittance and haze value are ASTM-D
-1003-61, bending fracture strength was measured according to ASTM-D-790. The thermal neutron absorption cross section was determined using the numerical values described in Experimental Chemistry Course (12) Radiochemistry (Maruzen) and the following formula. S = (W 1 /M 1 ×S 1 +W 2 /M 2 ×S 2 +... + Wn / Mn × Sn) × N However, S Thermal neutron absorption cross section per 100g of composition (cm 2 ) Mi i species Atomic weight of element Wi Abundance of i-type element Si Thermal neutron absorption cross section of i-type element (barns) N Avogadro's number (i=1...n)

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  メタクリル酞メチルを䞻成分ずするメタクリ
ル暹脂䞭に、サマリりム原子の重量濃床が党組成
物に察しお0.01〜10重量ずなるようにサマリり
ム化合物を含有せしめたメタクリル暹脂組成物。  (a) メタクリル酞メチル単量䜓あるいはメタ
クリル酞メチルを䞻成分ずする単量䜓混合物、
たたはそれらの郚分重合物から遞ばれた暹脂圢
成原料 (b) サマリりム原子の重量濃床が党組成物に察し
お0.01〜10重量ずなる量のサマリりム化合物
および (c) 重合開始剀 からなる重合混合物を重合するこずを特城ずする
メタクリル暹脂組成物の補造法。  サマリりム化合物が酞化サマリりム、炭酞サ
マリりム、氎酞化サマリりムおよびサマリりムの
錯化合物から遞ばれたものであるこずを特城ずす
る特蚱請求の範囲第項蚘茉のメタクリル暹脂組
成物の補造法。  暹脂圢成原料およびサマリりム化合物に察し
お溶解性を瀺す䞋蚘の䞀般匏 K0014 匏䞭、R1は炭玠数〜20の飜和あるいは䞍
飜和の炭化氎玠残基である K0015 匏䞭、R2は氎玠たたは炭玠数〜の飜和
たたは䞍飜和の炭化氎玠残基、R3は炭玠数〜
の飜和あるいは䞍飜和の炭化氎玠残基である。 K0016 匏䞭、R4は氎玠たたはメチル基、A1は炭玠
数〜のアルキル基、はたたは〜10の敎
数である K0017 匏䞭、R5は氎玠たたはメチル基、R6は炭玠
数〜のアルキレン基である R7−OH (5) 匏䞭、R7は炭玠数〜10の飜和あるいは䞍
飜和の炭化氎玠残基である たたは R8−A2−−n (6) 匏䞭、R8は氎酞基たたは炭玠数〜10の飜
和あるいは䞍飜和の炭化氎玠残基、A2は炭玠数
〜のアルキレン基、は〜10の敎数であ
る から遞ばれる少なくずも皮の溶媒を添加しお重
合するこずを特城ずする特蚱請求の範囲第項蚘
茉のメタクリル暹脂組成物の補造法。  サマリりム化合物が、硝酞サマリりム、有機
酞のサマリりム塩たたはサマリりムの錯化合物か
ら遞ばれたものであるこずを特城ずする特蚱請求
の範囲第項蚘茉のメタクリル暹脂組成物の補造
法。  サマリりム化合物がメタクリル酞サマリり
ム、アクリル酞サマリりムたたはトリスアセチ
ルアセトナトサマリりムから遞ばれたものであ
り、たた溶媒がオクチル酞およびプロピレングリ
コヌルおよびたたは−ヒドロキシ゚チルメタ
クリレヌトたたは−ヒドロキシ゚チルアクリレ
ヌトであるこずを特城ずする特蚱請求の範囲第
項蚘茉のメタクリル暹脂組成物の補造法。
[Scope of Claims] 1. A methacrylic resin composition containing a samarium compound in a methacrylic resin whose main component is methyl methacrylate so that the weight concentration of samarium atoms is 0.01 to 10% by weight based on the total composition. thing. 2 (a) Methyl methacrylate monomer or a monomer mixture containing methyl methacrylate as a main component,
or a resin-forming raw material selected from partial polymers thereof, (b) a samarium compound in an amount such that the weight concentration of samarium atoms is 0.01 to 10% by weight based on the total composition, and (c) a polymerization mixture consisting of a polymerization initiator. 1. A method for producing a methacrylic resin composition, which comprises polymerizing a methacrylic resin composition. 3. The method for producing a methacrylic resin composition according to claim 2, wherein the samarium compound is selected from samarium oxide, samarium carbonate, samarium hydroxide, and a complex compound of samarium. 4 The following general formula showing solubility in resin forming raw materials and samarium compounds K0014 (In the formula, R 1 is a saturated or unsaturated hydrocarbon residue having 1 to 20 carbon atoms) K0015 (In the formula, R 2 is hydrogen or a saturated or unsaturated hydrocarbon residue having 1 to 9 carbon atoms, R 3 is hydrogen or a saturated or unsaturated hydrocarbon residue having 1 to 9 carbon atoms;
4 saturated or unsaturated hydrocarbon residues. ) K0016 (In the formula, R 4 is hydrogen or a methyl group, A 1 is an alkyl group having 2 to 6 carbon atoms, and n is 0 or an integer of 1 to 10) K0017 (In the formula, R 5 is hydrogen or a methyl group , R 6 is an alkylene group having 2 to 6 carbon atoms) R 7 -OH (5) (wherein, R 7 is a saturated or unsaturated hydrocarbon residue having 3 to 10 carbon atoms) or R 8 (-A2 - O) -nH (6) (wherein, R8 is a hydroxyl group or a saturated or unsaturated hydrocarbon residue having 1 to 10 carbon atoms, A2 is an alkylene group having 2 to 4 carbon atoms, The method for producing a methacrylic resin composition according to claim 2, characterized in that the polymerization is carried out by adding at least one solvent selected from the following (m is an integer of 2 to 10). 5. The method for producing a methacrylic resin composition according to claim 4, wherein the samarium compound is selected from samarium nitrate, a samarium salt of an organic acid, or a samarium complex compound. 6 The samarium compound is selected from samarium methacrylate, samarium acrylate or samarium tris(acetylacetonato), and the solvent is octylic acid and propylene glycol and/or 2-hydroxyethyl methacrylate or 2-hydroxyethyl acrylate. The fourth claim characterized in that
A method for producing a methacrylic resin composition as described in Section 1.
JP19580282A 1982-11-08 1982-11-08 Methacrylate resin composition and its production Granted JPS5986611A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19580282A JPS5986611A (en) 1982-11-08 1982-11-08 Methacrylate resin composition and its production
DE8383306711T DE3375794D1 (en) 1982-11-08 1983-11-03 Synthetic resin composition and process for producing the same
EP83306711A EP0108622B1 (en) 1982-11-08 1983-11-03 Synthetic resin composition and process for producing the same
US06/548,444 US4563494A (en) 1982-11-08 1983-11-03 Synthetic resin composition and process for producing the same
IT23617/83A IT1170240B (en) 1982-11-08 1983-11-07 COMPOSITION BASED ON SYNTHETIC RESIN AND PROCESS FOR ITS PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19580282A JPS5986611A (en) 1982-11-08 1982-11-08 Methacrylate resin composition and its production

Publications (2)

Publication Number Publication Date
JPS5986611A JPS5986611A (en) 1984-05-18
JPH0262563B2 true JPH0262563B2 (en) 1990-12-26

Family

ID=16347216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19580282A Granted JPS5986611A (en) 1982-11-08 1982-11-08 Methacrylate resin composition and its production

Country Status (1)

Country Link
JP (1) JPS5986611A (en)

Also Published As

Publication number Publication date
JPS5986611A (en) 1984-05-18

Similar Documents

Publication Publication Date Title
US4563494A (en) Synthetic resin composition and process for producing the same
US4429094A (en) Optically transparent radiation shielding material
US4129524A (en) Radiation shielding material and a process for producing the same
JPS5921883B2 (en) Manufacturing method for transparent plastic molded bodies
DE1694727B1 (en) PROCESS FOR THE PRODUCTION OF SHAPED BODIES FROM METHYLMETHA CRYLATE POLYMERIZED
US4182821A (en) Method for producing a lead containing monomer composition and a radiation shielding polymer
EP0019121B1 (en) Process for producing radiation-shielding plastic materials
JPH0262562B2 (en)
JPH06122803A (en) Rare earth element-containing resin and its production
JPS6099150A (en) Resin composition containing rare earth element and its manufacture
US4022960A (en) Polymers with high transparency and refractive index and process for production thereof
JPH0262563B2 (en)
JPH035402B2 (en)
JPH11315215A (en) Resin composition containing copper compound, resin sheet, and front panel for pdp
JP3780612B2 (en) Near-infrared absorbing resin composition and material
JP3105337B2 (en) Transparent radiation shielding material and method of manufacturing the same
JPS6145199B2 (en)
JPS6114257A (en) Lithium-containing resin composition and production thereof
JPS61215610A (en) Neutron-capturing transparent resin material and its production
SU904528A3 (en) Method of producing radiation-resistant material
JP2769009B2 (en) Heat ray absorbing glazing material
JP2620563B2 (en) Graft copolymer of lead-containing styrene derivative with excellent transparency
JPS6145800B2 (en)
JPS60137965A (en) Holmium compound-containing resin composition and production thereof
CN113563533A (en) Formula and synthesis method of lead-containing acrylic sheet