JPH0262427A - Torque transmitting device - Google Patents

Torque transmitting device

Info

Publication number
JPH0262427A
JPH0262427A JP21364988A JP21364988A JPH0262427A JP H0262427 A JPH0262427 A JP H0262427A JP 21364988 A JP21364988 A JP 21364988A JP 21364988 A JP21364988 A JP 21364988A JP H0262427 A JPH0262427 A JP H0262427A
Authority
JP
Japan
Prior art keywords
magnet
driven
drive
gear
rotational force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21364988A
Other languages
Japanese (ja)
Other versions
JP2557957B2 (en
Inventor
Yoshihiro Naito
内藤 由浩
Atsusuke Sakaida
敦資 坂井田
Masahiko Sakai
酒井 政彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP63213649A priority Critical patent/JP2557957B2/en
Publication of JPH0262427A publication Critical patent/JPH0262427A/en
Application granted granted Critical
Publication of JP2557957B2 publication Critical patent/JP2557957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gear Transmission (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Friction Gearing (AREA)

Abstract

PURPOSE:To permit great torque transmission and smooth turning drive by rotating a drive magnet around the first axial line due to rotation of a prime motor so that a magnet adjacent to a slave gear gives the slave gear a rotational force to rotate a slave motor. CONSTITUTION:When a prime motor 12 is rotated toward an arrow mark R, a drive magnet 14 adjacent to a slave gear 24 is placed somewhat on a front side in a rotational direction to a gear 24. Attracting force F2 due to a magnet 14a is thus directed in a inclined direction to an axial line to produce rotational force F3. That is, the slave gear 24 is subjected to the force F3 to give a slave gear 22 turning drive. At this time when the slave gear 22 is given turning drive, the magnet 14a is displaced gradually to the inner periphery of the slave gear 24 along the inside wall 25a of a groove 25. Therefore, when the magnet 14 is spaced from the slave gear 22, the magnet 14a has not operation of rotational force but only operation of axial force to displace smoothly the magnet 14a to the inner periphery. Also, similarly when a magnet 14b comes near to the gear 24 as the gear 22 is rotated, the magnets 14a, 14b are exchanged smoothly not to cause any irregular rotation of the gear 22.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、2つの軸間において回転力を磁力により伝達
させる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for transmitting rotational force between two shafts using magnetic force.

〔従来の技術〕[Conventional technology]

従来、原動軸の回転力を磁力により従動軸に伝達する装
置として、特開昭58−170964号公報に開示され
たものが知られている。この従来装置は、原動軸に固定
された回転体と、従動軸に固定された回転体とを有し、
これらの回転体は相互に外周面を近接させて配置され、
また各回転体の外周面には等間隔に磁石が設けられる。
2. Description of the Related Art Conventionally, as a device for transmitting the rotational force of a driving shaft to a driven shaft by magnetic force, there has been known a device disclosed in Japanese Patent Application Laid-Open No. 170964/1983. This conventional device has a rotating body fixed to a driving shaft and a rotating body fixed to a driven shaft,
These rotating bodies are arranged with their outer peripheral surfaces close to each other,
Further, magnets are provided at equal intervals on the outer peripheral surface of each rotating body.

したがって、原動軸側回転体が回転すると、原動軸側磁
石が従動軸側磁石に接近離間し、これにより従動軸側回
転体が回転駆動される。
Therefore, when the driving shaft side rotating body rotates, the driving shaft side magnet approaches and moves away from the driven shaft side magnet, thereby rotationally driving the driven shaft side rotating body.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような従来装置において、全磁石のうち、ごく一部
の磁石のみしか相互に近接せず、すなわち、ごく一部の
磁石しか回転力の伝達に寄与しない。したがって、原動
軸および従動軸間において大きな回転力を伝達すること
が困難であり、もし、大きな回転力伝達を行おうとする
と、磁石および回転体を大形化しなければならない、と
いう問題が生じる。また、回転体の回転とともに、回転
力の伝達を行っている磁石間の距離が変化するため、こ
れらの磁石間の吸引力も変動する。この結果、原動軸お
よび従動軸間において伝達される回転力が回転体の回転
角に応じて変化し、従動軸側回転体の回転にむらが生じ
るという問題が発生する。
In such a conventional device, only a small number of all magnets are close to each other, that is, only a small number of magnets contribute to the transmission of rotational force. Therefore, it is difficult to transmit a large rotational force between the driving shaft and the driven shaft, and if a large rotational force is to be transmitted, the problem arises that the magnet and the rotating body must be made larger. Further, as the rotating body rotates, the distance between the magnets transmitting the rotational force changes, so the attractive force between these magnets also changes. As a result, a problem arises in that the rotational force transmitted between the driving shaft and the driven shaft changes depending on the rotation angle of the rotating body, causing uneven rotation of the rotating body on the driven shaft side.

本発明は、原動車と従動車の間において大きな回転力の
伝達が可能であり、かつ従動車を円滑に回転駆動するこ
とができる回転力伝達装置を得ることを目的としてなさ
れたものである。
SUMMARY OF THE INVENTION The present invention has been made with the object of providing a rotational force transmission device that is capable of transmitting a large rotational force between a motive vehicle and a driven vehicle, and that can smoothly rotate and drive the driven vehicle.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る回転力伝達装置は、第1の軸線周りに回転
自在に支持され、この第1の軸線に垂直な駆動平面を有
する原動車と、永久磁石から形成され、上記駆動平面上
に第1の軸線周りに等間隔に配置された駆動磁石と、上
記第1の軸線に平行な第2の軸線周りに回転自在に支持
され、かつこの第2の軸線に垂直であって上記駆動平面
に対向する従動平面を有する従動車と、強磁性体もしく
は永久磁石により形成され、上記従動平面上に第2の軸
線周りに等間隔に設けられた従動歯とを備えることを特
徴としている。
The rotational force transmission device according to the present invention is formed of a driving wheel that is rotatably supported around a first axis and has a driving plane perpendicular to the first axis, and a permanent magnet, and has a driving plane on the driving plane. driving magnets arranged at equal intervals around a first axis; and rotatably supported around a second axis parallel to the first axis, perpendicular to the second axis and in the driving plane. It is characterized by comprising a driven wheel having opposing driven planes, and driven teeth formed of a ferromagnetic material or a permanent magnet and provided on the driven plane at equal intervals around a second axis.

〔作 用〕[For production]

原動車の回転により駆動磁石は第1の軸線周りに回転し
、駆動磁石のうち従動歯に近接するものがこの従動歯に
回転方向の力を与え、これにより従動車は回転駆動され
る。
The drive magnet rotates around the first axis due to the rotation of the prime mover, and one of the drive magnets that is close to the driven tooth applies a rotational force to the driven tooth, thereby rotationally driving the driven wheel.

〔実施例〕〔Example〕

以下図示実施例により本発明を説明する。 The present invention will be explained below with reference to illustrated embodiments.

第1図(a)、  (b)は本発明の第1実施例を示す
。原動軸11は、第1の軸線周りに回転自在に支持され
、図示しない回転駆動源に連結される。
FIGS. 1(a) and 1(b) show a first embodiment of the present invention. The driving shaft 11 is rotatably supported around a first axis and connected to a rotational drive source (not shown).

従動軸21は、第1の軸線に対し若干偏心して平行に延
びる第2の軸線周りに、回転自在に支持される。円板状
の原動車12は、原動軸11に一体的に固定され、第1
の軸線に垂直な駆動平面13を有する。円板状の従動車
22は、従動軸21に一体的に固定され、第2の軸線に
垂直な従動平面23を有する。すなわち原動車12およ
び従動車22の中心は、相互に偏心している。また従動
平面23は、原動車12の駆動平面13に対して平行に
位置し、これらの平面13 、23は所定の間隔で相互
に対向する。
The driven shaft 21 is rotatably supported around a second axis that is slightly eccentric and extends parallel to the first axis. A disk-shaped motive wheel 12 is integrally fixed to the motive shaft 11 and has a first
It has a drive plane 13 perpendicular to the axis of. The disc-shaped driven wheel 22 is integrally fixed to the driven shaft 21 and has a driven plane 23 perpendicular to the second axis. That is, the centers of the prime mover 12 and the driven wheel 22 are eccentric from each other. Further, the driven plane 23 is located parallel to the drive plane 13 of the motive vehicle 12, and these planes 13 and 23 face each other at a predetermined interval.

本実施例において、原動車12および従動車22は強磁
性体の材料から形成される。永久磁石から成り円柱状に
形成された駆動磁石14は、駆動平面13上において第
1の軸線を中心とする円周上に等間隔に配置され、この
駆動平面13に対し接着剤あるいは機械的拘束等の他の
方法により固定される。駆動磁石14の先端面は平面で
あり、従動平面23に対して微少間隔で対向し、各駆動
磁石14の先端面の高さは相互に等しい。従動平面23
は極力平滑に仕上げられており、各駆動磁石14と従動
平面23との間には、それぞれ微量の磁性流体15が保
持される。この磁性流体15は、常に駆動磁石14に吸
着され、この駆動磁石14とともに回転する。従動車2
2の外周部には、第2の軸線を中心とする円周上に等間
隔に溝25が形成され、これらの溝250間に従動歯2
4が形成される。駆動磁石14は16個投げられ、従動
歯24は18個形成される。
In this embodiment, the prime mover 12 and the driven wheel 22 are made of ferromagnetic material. Drive magnets 14 made of permanent magnets and formed in a cylindrical shape are arranged on the drive plane 13 at equal intervals on a circumference centered on the first axis, and are attached to the drive plane 13 by adhesive or mechanical restraint. Fixed by other methods such as The tip surfaces of the driving magnets 14 are flat and face the driven plane 23 at a minute interval, and the heights of the tip surfaces of the driving magnets 14 are equal to each other. Driven plane 23
are finished as smooth as possible, and a small amount of magnetic fluid 15 is held between each drive magnet 14 and the driven plane 23, respectively. The magnetic fluid 15 is always attracted to the drive magnet 14 and rotates together with the drive magnet 14 . Driven vehicle 2
Grooves 25 are formed at equal intervals on the circumference centered on the second axis, and between these grooves 250, the driven teeth 2
4 is formed. Sixteen drive magnets 14 are thrown, and eighteen driven teeth 24 are formed.

後に詳述するように、原動車12が回転すると、駆動磁
石14のいくつかが従動歯24に回転方向の力を付与し
、これにより従動車22が回転駆動される。
As will be described in detail later, when the motive wheel 12 rotates, some of the drive magnets 14 apply a rotational force to the driven teeth 24, thereby rotationally driving the driven wheel 22.

原動車12の中心と従動車22の中心は相互に偏心して
いるため、第1図(a)、  (b)に示されるように
、何個かの駆動磁石14a(図中、上方に位置する)が
従動歯24に近接する時、残りの駆動磁石14b(図中
、下方に位置する)は従動歯24より内周側に位置する
。第1図(b)に示されるように、溝25は従動車22
の径方向に延び、その内側の壁面25aは円弧形状を有
する。この円弧形状は、従動歯24に近接する駆動磁石
14aが回転変位して従動歯24より内周側に移動する
時、また従動歯24より内周側に位置する駆動磁石14
bが回転変位して従動歯24に接近する時における、駆
動磁石14a・14bの移動軌跡に沿うような形状であ
る。
Since the center of the driving wheel 12 and the center of the driven wheel 22 are eccentric from each other, as shown in FIGS. ) approaches the driven tooth 24, the remaining drive magnet 14b (located at the bottom in the figure) is located on the inner circumferential side of the driven tooth 24. As shown in FIG. 1(b), the groove 25 is connected to the driven wheel 22.
The inner wall surface 25a has an arc shape. This circular arc shape is formed when the drive magnet 14a that is close to the driven tooth 24 rotates and moves to the inner circumferential side of the driven tooth 24, and when the drive magnet 14a that is located on the inner circumferential side of the driven tooth 24
The shape is such that it follows the locus of movement of the driving magnets 14a and 14b when the magnet b rotates and approaches the driven tooth 24.

本実施例において、従動歯24の幅Tは駆動磁石14の
直径に等しく、溝25の外周部の幅Gは従動歯24の幅
Tよりも大きい。しかし、従動歯240幅Tと駆動磁石
14の直径とは必ずしも等しい必要はなく、また従動歯
24の幅Tおよび溝25の外周部の幅Gは特定の大きさ
に限定されるものではない。−刃溝25の軸線方向深さ
は、第1図(a)から理解されるように、本実施例にお
いては従動車22の板厚の約半分に定められているが、
この深さは、駆動磁石14の大きさ、強さ、あるいはそ
の他の条件に基づいて定められる。
In this embodiment, the width T of the driven tooth 24 is equal to the diameter of the drive magnet 14, and the width G of the outer circumference of the groove 25 is larger than the width T of the driven tooth 24. However, the width T of the driven tooth 240 and the diameter of the drive magnet 14 are not necessarily equal, and the width T of the driven tooth 24 and the width G of the outer circumference of the groove 25 are not limited to specific sizes. - As can be understood from FIG. 1(a), the depth of the blade groove 25 in the axial direction is set to approximately half the plate thickness of the driven wheel 22 in this embodiment;
This depth is determined based on the size and strength of the drive magnet 14, or other conditions.

なお、この溝25は軸線方向に従動車22を貫通しても
よい。
Note that this groove 25 may pass through the driven wheel 22 in the axial direction.

駆動磁石14の磁極の向きは、第2図(a)。The direction of the magnetic poles of the driving magnet 14 is shown in FIG. 2(a).

(b)、  (C)に示されるように、1つの駆動磁石
14におけるNおよびSの両磁極を貫く線が従動車22
の従動平面23に直交するように定められる。また隣接
する駆動磁石14のNおよびS極の向きは逆であり、す
なわちN極が従動車22側に位置する駆動磁石14に隣
接する駆動磁石14は、S極が従動車22側に位置する
ようになっている。
As shown in (b) and (C), a line passing through both the N and S magnetic poles of one drive magnet 14 is
is determined to be orthogonal to the driven plane 23 of. Further, the directions of the N and S poles of the adjacent drive magnets 14 are opposite, that is, the drive magnet 14 adjacent to the drive magnet 14 whose N pole is located on the driven vehicle 22 side has its S pole located on the driven vehicle 22 side. It looks like this.

駆動磁石14の数は偶数であり、本実施例においては1
6個に定められており、駆動磁石14の両極には、強磁
性体から形成された原動車12と従動車22とが設けら
れるため、閉磁回路が形成される。
The number of driving magnets 14 is an even number, and in this embodiment, 1
The driving magnet 14 is provided with a driving wheel 12 and a driven wheel 22 made of a ferromagnetic material at both poles, so that a closed magnetic circuit is formed.

磁性流体15は、永久磁石から成る駆動磁石14の回転
力を従動車22へより確実に伝達させるために設けられ
る。この磁性流体15の量は、ひとつの駆動磁石14に
吸引された磁性流体が隣接する駆動磁石に吸引された磁
性流体に連結せず、また原動車12および従動車22の
回転時に磁性流体が遠心力により駆動磁石14から解放
されないように定められる。
The magnetic fluid 15 is provided to more reliably transmit the rotational force of the drive magnet 14 made of a permanent magnet to the driven wheel 22. The amount of magnetic fluid 15 is such that the magnetic fluid attracted to one driving magnet 14 does not connect to the magnetic fluid attracted to the adjacent driving magnet, and when the driving wheel 12 and the driven wheel 22 rotate, the magnetic fluid is centrifuged. It is determined not to be released from the drive magnet 14 by force.

次に、第2図(a)、  (b)、  (C)を参照し
て本実施例の作用を説明する。
Next, the operation of this embodiment will be explained with reference to FIGS. 2(a), 2(b), and 2(c).

駆動源により原動軸11および原動車12が回転せしめ
られている時、駆動磁石のうちで従動歯24より内周側
に位置するもの(第1図(b)および第2図(a)にお
いて符号14bで示される)は、第2図(a)に示され
るように、従動歯24に直接対向しない。したがって、
従動車22は駆動磁石14bによって軸線方向の吸引力
F、のみを受け、回転方向の力を受けない。なお、従動
車22は従動軸21に強固に固定されており、この吸引
力F、によって原動車12側に変位することはない。
When the drive shaft 11 and the drive wheel 12 are rotated by the drive source, those of the drive magnets located on the inner circumferential side of the driven teeth 24 (represented by reference numerals in FIG. 1(b) and FIG. 2(a)) 14b) do not directly oppose the driven tooth 24, as shown in FIG. 2(a). therefore,
The driven wheel 22 receives only an attractive force F in the axial direction from the driving magnet 14b, and does not receive any force in the rotational direction. Note that the driven wheel 22 is firmly fixed to the driven shaft 21, and will not be displaced toward the motive wheel 12 by this attraction force F.

駆動磁石のうちで従動歯24に近接するもの(第1図(
b)および第2図(b)、  (C)において符号14
aで示される)は、第2図(b)に示されるように、原
動車12が回転していない時従動歯24の正面に位置す
る。したがって、従動歯24は駆動磁石14aによって
軸線方向の吸引力F。
Among the drive magnets, those close to the driven teeth 24 (see Fig. 1)
b) and 14 in FIGS. 2(b) and (C).
a) is located in front of the driven tooth 24 when the prime mover 12 is not rotating, as shown in FIG. 2(b). Therefore, the driven tooth 24 receives an attractive force F in the axial direction due to the drive magnet 14a.

のみを受け、回転方向の力を受けない。しかし原動車1
2が矢印Rに沿って回転している時、従動歯24に近接
する駆動磁石14aは、第2図(C)に示されるように
従動歯24に対して回転方向の少し前方側に位置する。
It receives only force in the direction of rotation, and does not receive force in the direction of rotation. However, the prime mover 1
2 is rotating along the arrow R, the drive magnet 14a close to the driven tooth 24 is located slightly forward of the driven tooth 24 in the rotational direction, as shown in FIG. 2(C). .

したがって、駆動磁石14aによる吸引力F2は軸線に
対して斜め方向を向くようになり、この結果回転方向の
力F、が発生する。すなわち従動歯24はこの回転刃、
向の力F3を受け、従動車22は回転駆動される。
Therefore, the attractive force F2 by the drive magnet 14a is oriented obliquely to the axis, and as a result, a force F in the rotational direction is generated. That is, the driven tooth 24 is this rotating blade,
The driven wheel 22 is rotationally driven by the force F3 in the direction.

従動車22が回転駆動される時、従動歯24に近接する
駆動磁石14aは、溝25の内側壁面25Hに沿って徐
々に従動歯24の内周側に変位する。
When the driven wheel 22 is rotationally driven, the driving magnet 14a close to the driven tooth 24 is gradually displaced toward the inner peripheral side of the driven tooth 24 along the inner wall surface 25H of the groove 25.

したがって、この駆動磁石14aが従動歯22から離間
しつつある時、駆動磁石14aには回転方向の力は作用
せず、軸線方向の力のみが作用することとなり、駆動磁
石14aの内周側への変位は円滑に行われる。また、従
動歯24の内周側に位置する駆動磁石14bが従動車2
2の回転に伴って従動歯24に近接する時も同様である
。しかして、従動車22の回転に寄与する駆動磁石14
aとこの回転に寄与しない駆動磁石14bとの入れ代わ
りは、円滑に行われ、これにより原動車12および従動
車22間の回転力の伝達は安定して行われ、従動車22
の回転にむらが生じることはない。また従動車22の回
転数、すなわち減速比は、駆動磁石14の数と従動歯2
4の数との比によって定まる。
Therefore, when the drive magnet 14a is moving away from the driven tooth 22, no force in the rotational direction acts on the drive magnet 14a, and only a force in the axial direction acts on the drive magnet 14a. displacement is performed smoothly. Further, the drive magnet 14b located on the inner peripheral side of the driven tooth 24 is connected to the driven wheel 2.
The same is true when approaching the driven tooth 24 as the tooth 2 rotates. Therefore, the drive magnet 14 that contributes to the rotation of the driven wheel 22
The replacement of the driving magnet 14b that does not contribute to this rotation is smoothly performed, and as a result, the rotational force is stably transmitted between the prime mover 12 and the driven wheel 22.
There will be no uneven rotation. The number of rotations of the driven wheel 22, that is, the reduction ratio, is determined by the number of drive magnets 14 and the number of driven teeth 2.
It is determined by the ratio to the number 4.

以上のように本実施例によれば、駆動磁石14のうち約
半数が従動歯24に近接して回転力の伝達に寄与し、ま
た駆動磁石24と従動平面23の間に磁性流体15が保
持される。したがって、多くの磁石が回転力の伝達に寄
与することとなり、また駆動磁石24と従動平面23と
の間の磁力作用空間を磁性流体15で埋め、作用距離は
無く、かつ駆動磁石24と従動平面23の間における磁
束の漏れがなくなるので、原動車12から従動車22へ
の回転力の伝達効率は高く、大きな回転力を減速して伝
達させることが可能である。本実施例において、原動車
12に16個の駆動磁石14が設けられ、従動車22に
18個の従動歯24が設けられているため、原動車12
の回転数は16/18に減速されるが、駆動磁石14と
従動歯24の数を適当に設定することにより、任意の減
速比を得ることができる。また逆に、駆動磁石14の数
を従動歯24の数よりも多くすることにより、原動車1
2の回転を増速させることもできる。
As described above, according to this embodiment, about half of the drive magnets 14 are close to the driven teeth 24 and contribute to the transmission of rotational force, and the magnetic fluid 15 is held between the drive magnets 24 and the driven plane 23. be done. Therefore, many magnets contribute to the transmission of rotational force, and the magnetic force acting space between the driving magnet 24 and the driven plane 23 is filled with the magnetic fluid 15, and there is no working distance, and the driving magnet 24 and the driven plane Since there is no leakage of magnetic flux between the driving wheels 12 and 23, the transmission efficiency of the rotational force from the prime mover 12 to the driven wheel 22 is high, and it is possible to transmit large rotational force while decelerating it. In this embodiment, the motive wheel 12 is provided with 16 driving magnets 14 and the driven wheel 22 is provided with 18 driven teeth 24.
The rotational speed is reduced to 16/18, but by appropriately setting the number of drive magnets 14 and driven teeth 24, any reduction ratio can be obtained. Conversely, by making the number of drive magnets 14 greater than the number of driven teeth 24, the drive wheel 1
It is also possible to speed up the rotation of No. 2.

本実施例において、溝25の内周側壁面25aが、駆動
磁石14が従動歯24の内周側へ移動する時の軌跡に沿
うような形状を有するため、原動車12の回転力は円滑
に従動車22へ伝達され、従動車22はむらのない定常
回転を行うことができる。さらに、本実施例は磁力を用
いて回転力の伝達を行っているため、機械的摩擦損失が
なく、したがって回転力の伝達効率が高く、また機械的
接触がないため、回転伝達時、振動、騒音、発塵、およ
び摩耗が少ない。また、設定値以上の回転力が作用する
と滑りを生じて回転力を伝達しなくなるので、本実施例
装置は、トルクリミット装置として用いることができる
In this embodiment, since the inner peripheral side wall surface 25a of the groove 25 has a shape that follows the locus when the driving magnet 14 moves toward the inner peripheral side of the driven tooth 24, the rotational force of the prime mover 12 is smoothly applied. This is transmitted to the driven wheel 22, and the driven wheel 22 can perform steady rotation without unevenness. Furthermore, since this embodiment uses magnetic force to transmit the rotational force, there is no mechanical friction loss, so the transmission efficiency of the rotational force is high, and since there is no mechanical contact, vibrations and Less noise, dust, and wear. Furthermore, if a rotational force greater than a set value is applied, slippage occurs and the rotational force is no longer transmitted, so the device of this embodiment can be used as a torque limiter.

第3図は、本発明の第2実施例を示す。FIG. 3 shows a second embodiment of the invention.

上記第1実施例と異なる部分のみ説明すると、この第2
実施例においては、原動車12と従動車22との間に非
磁性体材料から形成された薄板31が設けられ、磁性流
体15は駆動磁石14と薄板31との間に保持される。
To explain only the parts that are different from the first embodiment, this second embodiment
In the embodiment, a thin plate 31 made of a non-magnetic material is provided between the motive wheel 12 and the driven wheel 22, and the magnetic fluid 15 is held between the drive magnet 14 and the thin plate 31.

薄板31と従動車22の従動平面23との間には微少間
隙32が形成され、また溝25は従動車22を軸線方向
に貫通している。その他の構成は第1実施例と同様であ
る。
A minute gap 32 is formed between the thin plate 31 and the driven plane 23 of the driven wheel 22, and the groove 25 passes through the driven wheel 22 in the axial direction. The other configurations are the same as in the first embodiment.

この実施例において、従動車22は真空室内に設けられ
、磁性流体15は大気中である原動車12側のみに設け
られるが、原動車12と従動車22が共に大気中に配設
される場合には、磁性流体15を薄板31の両面に設け
てもよい。
In this embodiment, the driven wheel 22 is provided in a vacuum chamber, and the magnetic fluid 15 is provided only on the side of the prime mover 12 which is in the atmosphere, but if both the prime mover 12 and the driven wheel 22 are placed in the atmosphere In this case, the magnetic fluid 15 may be provided on both sides of the thin plate 31.

この第2実施例は、従動車22を薄板31の外から回転
駆動するよう構成されているので、例えば真空室内等の
ように外部から遮断された特殊な環境の室内に配置され
た従動車22を、外部に配置された原動車12によって
回転駆動するのに、特に適している。第2実施例のその
他の作用は第1実施例と同様である。
In this second embodiment, the driven wheel 22 is configured to be rotationally driven from outside the thin plate 31, so the driven wheel 22 can be placed in a room in a special environment that is isolated from the outside, such as a vacuum room. is particularly suitable for being driven in rotation by an externally arranged prime mover 12. Other functions of the second embodiment are similar to those of the first embodiment.

なお、第1および第2実施例において駆動磁石14の磁
極の向きは、N極およびS極を貫く線が従動平面23に
直交するように定められ、また隣接する駆動磁石14の
NおよびS極の向きが逆になるように定められていたが
、従動車22が強磁性体から形成される場合、回転力の
伝達は駆動磁石14の向きに関係なく行われる。
In addition, in the first and second embodiments, the direction of the magnetic poles of the drive magnet 14 is determined such that a line passing through the N and S poles is orthogonal to the driven plane 23, and the N and S poles of the adjacent drive magnets 14 are However, when the driven wheel 22 is made of a ferromagnetic material, the rotational force is transmitted regardless of the orientation of the drive magnet 14.

第4図(a)、  (b)は、本発明の第3実施例を示
す。
FIGS. 4(a) and 4(b) show a third embodiment of the present invention.

この実施例において、従動車22は永久磁石から形成さ
れ、その中心部側がN極に、また外周側がS極にそれぞ
れ着磁されている。駆動磁石14は、全て、従動車22
側がN極、原動車12側がS極に配置され、すなわち磁
極の向きは一方向に統一されている。また溝25は、第
2実施例と同様に、従動車22を軸線方向に貫通してい
る。その他の構成は第1実施例と同様である。なお、従
動車22の中心部側がS極、外周側がN極に着磁されて
おり、かつ駆動磁石14の従動車22側がS極、原動車
12側がN極となるように配置されてもよい。
In this embodiment, the driven wheel 22 is formed of a permanent magnet, and its center side is magnetized to the north pole, and the outer circumference side is magnetized to the south pole. All driving magnets 14 are driven by driven wheels 22.
The magnetic poles are arranged in the north pole on the side and the south pole on the motive vehicle 12 side, that is, the direction of the magnetic poles is unified in one direction. Further, the groove 25 passes through the driven wheel 22 in the axial direction, similarly to the second embodiment. The other configurations are the same as in the first embodiment. Note that the center side of the driven wheel 22 may be magnetized to the S pole and the outer circumferential side thereof to the N pole, and the driving magnet 14 may be arranged so that the driven wheel 22 side is the S pole and the driving wheel 12 side is the N pole. .

この第3実施例の作用は、基本的に第1および第2実施
例と同じであり、原動車12の回転力が効率的かつ円滑
に伝達される。また第3実施例によれば、従動車22が
永久磁石により形成されるので、吸引力が強く、第1お
よび第2実施例よりも大きな回転力を伝達することが可
能となる。
The operation of the third embodiment is basically the same as that of the first and second embodiments, and the rotational force of the motive vehicle 12 is efficiently and smoothly transmitted. Furthermore, according to the third embodiment, since the driven wheel 22 is formed of a permanent magnet, the attractive force is strong and it is possible to transmit a larger rotational force than in the first and second embodiments.

第5図は、本発明の第4実施例を示す。FIG. 5 shows a fourth embodiment of the invention.

第4実施例において、従動車22は永久磁石から形成さ
れ、原動車12側がS極に、またその反対側がN極に着
磁されている。駆動磁石14は、全て、従動車22側が
N極、原動車12側がS極に配置され、すなわち磁極の
向きは一方向に統一されている。また溝25は、第3実
施例と同様に、従動車22を軸線方向に貫通している。
In the fourth embodiment, the driven wheel 22 is made of a permanent magnet, and the side of the driving wheel 12 is magnetized to the south pole, and the opposite side is magnetized to the north pole. All of the drive magnets 14 are arranged such that the driven wheel 22 side is the north pole and the motive wheel 12 side is the south pole, that is, the direction of the magnetic poles is unified in one direction. Further, the groove 25 passes through the driven wheel 22 in the axial direction, as in the third embodiment.

その他の構成は第1実施例と同様である。なお、従動車
22の原動車12側がN極、その反対側がS極に着磁さ
れており、かつ駆動磁石14の従動車22側がS極、原
動車12側がN極となるように配置されてもよい。
The other configurations are the same as in the first embodiment. Note that the driven wheel 22 is magnetized so that the drive wheel 12 side is N pole and the opposite side is magnetized S pole, and the drive magnet 14 is arranged so that the driven wheel 22 side is S pole and the drive wheel 12 side is N pole. Good too.

この第4実施例の作用は、上記各実施例と基本的に同じ
であり、原動車12の回転力が効率的かつ円滑に伝達さ
れる。また第4実施例によれば、従動車22が永久磁石
により形成されるので、吸引力が強く、第1および第2
実施例よりも大きな回転力を伝達することが可能となる
The operation of this fourth embodiment is basically the same as each of the above embodiments, and the rotational force of the motive vehicle 12 is efficiently and smoothly transmitted. Further, according to the fourth embodiment, since the driven wheel 22 is formed of a permanent magnet, the attractive force is strong and the first and second
It becomes possible to transmit a larger rotational force than in the embodiment.

なお、第3および第4実施例において、駆動磁石14と
従動車22における磁極の向きは、異極同士が近接する
ように定められ、吸引力によって回転力を伝達するよう
構成されているが、これに代え、同極同士が近接して斥
力によって回転力を伝達するようにしてもよい。
In the third and fourth embodiments, the directions of the magnetic poles of the drive magnet 14 and the driven wheel 22 are determined so that the different poles are close to each other, and the rotational force is transmitted by the attractive force. Alternatively, the same polarities may be brought close to each other and the rotational force may be transmitted by repulsion.

上記第1〜第4の各実施例において、原動車12は強磁
性体の材料から形成されていたが、非磁性体材料から形
成されても回転力の伝達は行われ、またその材質は問わ
ない。一方従動車22は、全体が強磁性体あるいは永久
磁石から形成される必要はなく、従動歯24の部分およ
び駆動磁石14が作用する部分のみを強磁性体あるいは
永久磁石により形成してもよく、他の部分は非磁性体で
あってもよい。
In each of the first to fourth embodiments, the motive wheel 12 is made of a ferromagnetic material, but rotational force can still be transmitted even if it is made of a non-magnetic material, and the material may be used. do not have. On the other hand, the driven wheel 22 does not need to be entirely made of a ferromagnetic material or a permanent magnet, and only the portion of the driven teeth 24 and the portion on which the drive magnet 14 acts may be made of a ferromagnetic material or a permanent magnet. Other parts may be made of non-magnetic material.

また各実施例において、磁性流体15が設けられている
が、これを省略しても回転力の伝達を行うことができる
。さらに駆動磁石14は円柱状である必要はなく、角柱
状であってもよく、その数は偶数個でなくてもよい。ま
た溝25の内周側の壁面25aの形状は円弧でなくても
よく、必ずしも駆動磁石14の移動軌跡に沿ったもので
なくてもよい。
Furthermore, although the magnetic fluid 15 is provided in each embodiment, rotational force can still be transmitted even if this is omitted. Further, the driving magnets 14 do not have to be cylindrical, but may be prismatic, and the number thereof does not have to be an even number. Further, the shape of the wall surface 25a on the inner peripheral side of the groove 25 does not have to be an arc, and does not necessarily have to follow the movement locus of the drive magnet 14.

〔効 果〕〔effect〕

以上のように本発明によれば、原動車と従動車の間にお
いて大きな回転力の伝達が可能であり、かつ従動車を円
滑に回転駆動することができる回転力伝達装置が得られ
る。
As described above, according to the present invention, it is possible to obtain a rotational force transmission device that is capable of transmitting a large rotational force between a motive vehicle and a driven vehicle, and is capable of smoothly rotationally driving the driven vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は第1実施例を示す断面図、第1図(b)
は第1図(a)のB−B線に沿う矢視図、 第2図(a)は駆動磁石が従動歯より内周側に位置する
状態を示す断面図、 第2図(b)は駆動磁石が従動歯に近接し、原動車が回
転していない状態を示す断面図、第2図(C)は駆動磁
石が従動歯に近接し、原動車が回転している状態を示す
断面図、第3図は第2実施例を示す断面図、 第4図(a)は第3実施例を示す断面図、第4図(b)
は第4図(a)のB−B線に沿う矢視図、 第5図は第4実施例を示す断面図である。 12・・・原動車、    13・・・駆動平面、14
・・・駆動磁石、  22・・・従動車、23・・・従
動平面、  24・・・従動歯。 (Oノ 第 図 第3図 (b) 弔 図 第4図 第 図
Fig. 1(a) is a sectional view showing the first embodiment, Fig. 1(b)
is a sectional view taken along line B-B in Fig. 1(a), Fig. 2(a) is a sectional view showing a state in which the drive magnet is located on the inner peripheral side of the driven tooth, and Fig. 2(b) is a A cross-sectional view showing a state in which the drive magnet is close to the driven tooth and the prime mover is not rotating. FIG. 2 (C) is a cross-sectional view showing a state in which the drive magnet is close to the driven tooth and the prime mover is rotating. , Fig. 3 is a sectional view showing the second embodiment, Fig. 4(a) is a sectional view showing the third embodiment, Fig. 4(b)
is a sectional view taken along line BB in FIG. 4(a), and FIG. 5 is a sectional view showing the fourth embodiment. 12...Motive vehicle, 13...Driving plane, 14
... Drive magnet, 22... Driven wheel, 23... Driven plane, 24... Driven tooth. (O No. Figure 3 (b) Funeral diagram Figure 4 Figure 4)

Claims (2)

【特許請求の範囲】[Claims] 1. 第1の軸線周りに回転自在に支持され、該第1の
軸線に垂直な駆動平面を有する原動車と、永久磁石から
形成され、上記駆動平面上に第1の軸線周りに等間隔に
配置された駆動磁石と、上記第1の軸線に平行な第2の
軸線周りに回転自在に支持され、かつ該第2の軸線に垂
直であって上記駆動平面に対向する従動平面を有する従
動車と、強磁性体もしくは永久磁石により形成され、上
記従動平面上に第2の軸線周りに等間隔に設けられた従
動歯とを備えることを特徴とする回転力伝達装置。
1. A motive wheel is rotatably supported around a first axis and has a drive plane perpendicular to the first axis, and a permanent magnet is arranged on the drive plane at equal intervals around the first axis. a driven wheel rotatably supported around a second axis parallel to the first axis, and having a driven plane perpendicular to the second axis and opposite to the drive plane; A rotational force transmission device comprising driven teeth formed of a ferromagnetic material or a permanent magnet and provided on the driven plane at equal intervals around the second axis.
2. 上記駆動磁石と従動平面との間に、磁性流体が保
持されることを特徴とする特許請求の範囲第1項に記載
の回転力伝達装置。
2. The rotational force transmission device according to claim 1, wherein a magnetic fluid is held between the driving magnet and the driven plane.
JP63213649A 1988-08-30 1988-08-30 Torque transmission device Expired - Lifetime JP2557957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63213649A JP2557957B2 (en) 1988-08-30 1988-08-30 Torque transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63213649A JP2557957B2 (en) 1988-08-30 1988-08-30 Torque transmission device

Publications (2)

Publication Number Publication Date
JPH0262427A true JPH0262427A (en) 1990-03-02
JP2557957B2 JP2557957B2 (en) 1996-11-27

Family

ID=16642657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63213649A Expired - Lifetime JP2557957B2 (en) 1988-08-30 1988-08-30 Torque transmission device

Country Status (1)

Country Link
JP (1) JP2557957B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270832A (en) * 1986-05-16 1987-11-25 Ntn Toyo Bearing Co Ltd Power transmission device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270832A (en) * 1986-05-16 1987-11-25 Ntn Toyo Bearing Co Ltd Power transmission device

Also Published As

Publication number Publication date
JP2557957B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
JPS62171458A (en) Magnetic force rotating apparatus
KR101894672B1 (en) Power generation system
JP3632212B2 (en) Flywheel
JPH0262427A (en) Torque transmitting device
JPH08336274A (en) Magnetic screw transmission
JPS61192441A (en) Rotary power transmission apparatus
CN208084395U (en) Hair clipper transmission mechanism
JPH1155932A (en) Noncontact type power transmission mechanism
JPH03285556A (en) Magnetic gear unit
JPS62270832A (en) Power transmission device
JP2001251844A (en) Rotation transmitting device
JP3234309U (en) Drive device consisting of a motor and a cycloid reducer
JP2005233326A (en) Transmission mechanism
JP3234308U (en) Rotation drive
JPH1198814A (en) Magnetic coupling
JP2003139213A (en) Magnetic screw transmission device
JPH0614524A (en) Non-contact gear device
JP2022547925A (en) System and method for gyromagnetic coupling
JPS6166560A (en) Rotary driving gear with permanent magnet
KR0143528B1 (en) Power transmission device of motor
JPS5999168A (en) Electromagnetic clutch
JPH0538129A (en) Prime mover
JPS61191279A (en) Unbalanced magnetism moving device
JP4759489B2 (en) Non-contact power transmission device
JPS631824A (en) Electromagnetic coupling device for vehicle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term