JPH0262211A - Method for forming orientated formed item - Google Patents

Method for forming orientated formed item

Info

Publication number
JPH0262211A
JPH0262211A JP21360788A JP21360788A JPH0262211A JP H0262211 A JPH0262211 A JP H0262211A JP 21360788 A JP21360788 A JP 21360788A JP 21360788 A JP21360788 A JP 21360788A JP H0262211 A JPH0262211 A JP H0262211A
Authority
JP
Japan
Prior art keywords
ptfe
stock
die
stocks
frictional force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21360788A
Other languages
Japanese (ja)
Inventor
Hiroshi Kataoka
片岡 紘
Masayuki Sukigara
正幸 鋤柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP21360788A priority Critical patent/JPH0262211A/en
Publication of JPH0262211A publication Critical patent/JPH0262211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To orientate stock by a method wherein the stock is plug-flowed by compressive force in a die or between rolls at the temperature higher than the glass transition temperature of the stock under the condition that resin sheets, the frictional force of which against the stock is larger than that between the stocks each other, are respectively pinched between the stocks made of polytetrafluoroethylene (PTFE) or of its copolymer. CONSTITUTION:PTFE stock is preheated up to 150 deg.C or higher and preferably to 200 - 327 deg.C. The temperature of a die or of rolls is selected within the range from the temperature at the surface layer part of the stock minus 100 deg.C to 400 deg.C. In order to plug-flow the stock by compressive force or the like, lubricant such as silicone oil or the like is applied onto the inner surface of the die or onto the surface of the stock. As the resin sheet, which develops large frictional force, a sheet made of PTFE blended with 5wt% or more, especially 10wt% or more of glass fibers or the like is preferable. If forming is done under the condition that three plies of the stock 5 are laminated to each other, slippage occurs between respective stocks and the stocks 6 in forming process shift each other positionally. When the stocks 5 are compressed so as to be orientated and formed under the condition that the resin sheets 7, which develop large frictional force, are placed between the stocks 5, no positional shifting of the stocks 8 occurs during forming process. The resin sheet 7 must be stretched together with the stock 8 as shown by one represented by the numeral 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ポリテトラフルオロエチレンはその卓越した特性により
、現在、重要な工業材料の1つとなっている。特にガス
ケット、パツキン等のシール材やライニング材等の分野
ではPTFEはその耐化学薬品性、耐熱性、耐寒性、低
摩擦性、非汚染性、非粘着性、電気絶縁性等の優れた特
性を利用して様々な形状の成形品として広く利用されて
いる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] Due to its outstanding properties, polytetrafluoroethylene is currently one of the important industrial materials. Particularly in the field of sealing materials and lining materials such as gaskets and packing materials, PTFE has excellent properties such as chemical resistance, heat resistance, cold resistance, low friction, non-contamination, non-adhesiveness, and electrical insulation. It is widely used as molded products of various shapes.

本発明は、シール材やライニング材等の耐食材、橋梁、
屋外タンク、工業の架構などの重量物の支承板やスライ
ディングパッド等に良好に使用できる緻密なPTFE延
伸シートの良好な成形法に係る。
The present invention is applicable to corrosion-resistant materials such as sealing materials and lining materials, bridges,
The present invention relates to a good method for forming a dense PTFE stretched sheet that can be used well for supporting plates, sliding pads, etc. of heavy objects such as outdoor tanks and industrial frames.

〔従来の技術〕[Conventional technology]

通常の熱可塑性樹脂の成形温度における溶融粘度は10
3〜10’ボイズであるが、ポリテトラフルオロエチレ
ンは融点(327°C)以上の380°Cにおいても粘
度がlo■ボイズと高く、溶融押出や射出成形といった
成形方法では成形し難い。
The melt viscosity of normal thermoplastic resin at molding temperature is 10
Polytetrafluoroethylene has a high viscosity of 3 to 10' voids even at 380° C., which is higher than its melting point (327° C.), and is difficult to mold using molding methods such as melt extrusion or injection molding.

そのためその成形品は、−C的にはその粉末を圧縮等に
より予備成形した後これを融点以上に加熱焼結する方法
(圧縮成形法、ラム押出法、ペースト押出法等)か、も
しくは該工程で成形された素地をさらに切削加工及び切
削加工品からの切り出し、打抜き加工、延伸(ロール圧
延法、引張り延伸法)等によって製造されている。
Therefore, in terms of -C, the molded product can be produced by a method (compression molding method, ram extrusion method, paste extrusion method, etc.) in which the powder is preformed by compression etc. and then heated to a temperature above the melting point, or by the process It is manufactured by further cutting the molded base material, cutting out the cut product, punching, stretching (roll rolling method, tension stretching method), etc.

また、ガスケット材の分野では、ガラス繊維やグラファ
イト、炭素繊維、酸化ジルコニウム等の充填材を配合し
たものも製造されている。
Furthermore, in the field of gasket materials, gaskets containing fillers such as glass fiber, graphite, carbon fiber, and zirconium oxide are also manufactured.

ポリテトラフルオロエチレンの耐熱温度は一般に260
°Cとされているが、ガスケット等のシール材として利
用する場合には、外力に抗する耐圧縮性や機械的強度が
要求され、構造、形状、用途によって使用可能な限界温
度は260°Cよりかなり低温である。これはポリテト
ラフルオロエチレンが荷重下でクリープしやすいという
本質的な特性に起因しており、もちろん、高温になる程
クリープしやすくなる。
The heat resistance temperature of polytetrafluoroethylene is generally 260
°C, but when used as a sealing material such as a gasket, compression resistance and mechanical strength to withstand external forces are required, and the maximum usable temperature is 260 °C depending on the structure, shape, and purpose. It is much colder than that. This is due to the inherent property of polytetrafluoroethylene that it tends to creep under load, and of course, the higher the temperature, the more likely it is to creep.

耐食ガスケット材の分野では耐圧縮クリープ性向上のた
めに、充填材を加えたり、クリープ性の少ない材料とポ
リテトラフルオロエチレンまたは充填材入りポリテトラ
フルオロエチレンを構造的に組合せる等改良がなされて
いるが、何れも高温での耐圧縮クリープ性が不十分であ
ったり、耐化学薬品性が低い等問題がある。また、ガス
ケット以外のシール材、例えば、バルブ用のシール(ボ
ールバルブシート、ゲートバルブシート等)や、その他
の運動用シール材(グランドパツキン、Uパツキン、■
パツキン等)でも耐食性が要求される場合にポリテトラ
フルオロエチレンが使用されるが、同様に耐圧縮クリー
プ性の改良が望まれている。
In the field of corrosion-resistant gasket materials, improvements have been made to improve compression creep resistance, such as adding fillers or structurally combining low-creep materials with polytetrafluoroethylene or filled polytetrafluoroethylene. However, all of them have problems such as insufficient compression creep resistance at high temperatures and low chemical resistance. In addition, sealing materials other than gaskets, such as valve seals (ball valve seats, gate valve seats, etc.) and other dynamic sealing materials (grand packing, U packing,
Polytetrafluoroethylene is also used in cases where corrosion resistance is required (packing, etc.), but it is also desired to improve compression creep resistance.

一方ポリテトラフルオロエチレンは、耐食ライニング材
としても重要であるが、ブリスター現象が発生しやすく
、耐食ライニングとしての信頼性に問題を生じる事があ
る。ブリスター現象は気相流体の配管で見られる現象で
あり、耐ブリスター性の改良が望まれている。
On the other hand, polytetrafluoroethylene is important as a corrosion-resistant lining material, but it tends to cause blistering, which may cause problems in its reliability as a corrosion-resistant lining. Blistering is a phenomenon observed in gas-phase fluid piping, and there is a desire to improve the blister resistance.

我々はこれらの問題点を改良したものとして、2軸配向
ポリテトラフルオロエチレンシートが優れていることを
、特願昭62−61302号、特願昭62−71370
号で提案した。本発明はこれ等2軸配向シート、特に薄
肉の2軸配向シートを良好に成形できる成形法である。
We have proposed the superiority of biaxially oriented polytetrafluoroethylene sheets as improvements to these problems in Japanese Patent Applications No. 62-61302 and No. 62-71370.
I proposed it in the issue. The present invention is a molding method that can favorably mold these biaxially oriented sheets, especially thin biaxially oriented sheets.

〔本発明が解決しようとする課題〕[Problems to be solved by the present invention]

前記2軸配向シートの成形法についても前記出願の明細
書に詳細に記したが、薄肉配向シートの成形法として、
素地を積層した後に延伸し、延伸後、配向成形品を互に
酌1離する方法が好ましい。
The method for forming the biaxially oriented sheet was also described in detail in the specification of the application, but as the method for forming the thin oriented sheet,
A preferred method is to stretch the substrates after laminating them, and to separate the oriented molded products one inch apart from each other after stretching.

しかし、この方法の問題点としてポリテトラフルオロエ
チレンは摩擦力が小さいため互に滑り易く、配向成形中
に積層状態がくずれ、その結果収率が著しく低くなる欠
点があった。
However, the problem with this method is that polytetrafluoroethylene has a small frictional force, so it easily slips on each other, and the laminated state collapses during orientation molding, resulting in a significantly low yield.

〔課題を解決するための手段及び作用〕本発明は薄肉の
2軸配向シートを良好に成形できる成形法である。すな
わち、本発明はポリテトラフルオロエチレンまたはテト
ラフルオロエチレンを主体とする共重合体(PTFEと
略称〕素地をダイ内、あるいはロール間で加圧下に延伸
するに際して (1)  ダイ内あるいはロール間に2個以上のPTF
E素地を重ねて置き、 (2)該PTFE素地同士間の摩擦力よりも該素地に対
して、より大きな摩擦力をもたらす樹脂シートを、該素
地と素地の間に置き、 (3)ダイ内表面、あるいはロール表面と該素地との界
面を潤滑状態にし、 (4)該PTFE素地のガラス転移温度以上で圧縮力あ
るいは押出力等により該素地を配向させ((5)配向後
、ダイ内より取り出し、各素地より成形された配向成形
品を互に剥離して得)ることを特徴とするPTFEの配
向成形品の成形法を提供する。
[Means and effects for solving the problems] The present invention is a molding method that can satisfactorily mold a thin biaxially oriented sheet. That is, the present invention is applicable to stretching polytetrafluoroethylene or a copolymer mainly composed of tetrafluoroethylene (abbreviated as PTFE) under pressure within a die or between rolls. or more PTFs
Place the E substrates one on top of the other, (2) Place a resin sheet between the substrates that provides a greater frictional force against the substrates than the frictional force between the PTFE substrates, (3) Inside the die. The surface or the interface between the roll surface and the base material is lubricated, (4) the base material is oriented by compressive force or extrusion force at a temperature higher than the glass transition temperature of the PTFE base material ((5) after orientation, from inside the die Provided is a method for molding an oriented molded product of PTFE, characterized in that the oriented molded product formed from each substrate is peeled off from each other.

本発明に述べる成形品とは、フィルム、シーI・、円盤
状物等の比較的に単純形状の成形品である。
The molded products mentioned in the present invention are molded products of relatively simple shapes such as films, sea I., disc-shaped products, and the like.

これら成形品の肉厚は目的に応じて任意に決定されるも
のであるが、好ましくは2mm厚以下、さらに好ましく
は0.05mm厚以上1 mmff以下が好ましい。
The wall thickness of these molded products is arbitrarily determined depending on the purpose, but is preferably 2 mm or less, more preferably 0.05 mm or more and 1 mmff or less.

本発明にいうPTFEとは、テトラフルオロエチレン(
以後TFEと略称)のホモポリマー、または、TFEを
主体とする共重合体、すなわち、TFEを50モル%以
上、好ましくは70モル%以上さらに好ましくは90モ
ル%以上含有した共重合体、または、それらからなるブ
レンドポリマーであり、好ましくは数平均分子量が10
6〜10”の超高分子量体である。特にTFEのホモポ
リマーの超高分子量体が好ましい。
PTFE referred to in the present invention refers to tetrafluoroethylene (
A homopolymer of TFE (hereinafter abbreviated as TFE), or a copolymer mainly composed of TFE, that is, a copolymer containing 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more of TFE, or A blend polymer consisting of these, preferably having a number average molecular weight of 10
It is an ultra-high molecular weight material of 6 to 10''. Particularly preferred is an ultra-high molecular weight material of TFE homopolymer.

TFEと共重合させるモノマー成分としては、パーフル
オロアルキルビニルエーテル、ヘキサフルオロプロピレ
ン、エチレン、クロロトリフルオロエチレン等が好まし
い。
As the monomer component to be copolymerized with TFE, perfluoroalkyl vinyl ether, hexafluoropropylene, ethylene, chlorotrifluoroethylene, etc. are preferable.

また上記のPTFEを主たるマトリックス樹脂成分とし
て用い、補強材として炭素繊維、グラファイト、カーボ
ン、二硫化モリブデン、ブロンズ、酸化ジルコニウム、
硅酸ジルコニウム等の無機系充填材及び芳香族ポリアミ
ド繊維や芳香族ポリエステル繊維等の有機系充填材の少
なくとも1種を60重量%以下に配合した充填材入りP
TFE組成物、さらに必要に応じて上記PTFE (T
FEのホモポリマーまたは共重合体)100重量部に対
し10重量部以下の範囲で、他の熱可塑性樹脂や、各配
合剤を加えた組成物も本発明の技術的範囲に含むものと
する。
In addition, the above PTFE is used as the main matrix resin component, and the reinforcing materials are carbon fiber, graphite, carbon, molybdenum disulfide, bronze, zirconium oxide,
Filled P containing 60% by weight or less of at least one of inorganic fillers such as zirconium silicate and organic fillers such as aromatic polyamide fibers and aromatic polyester fibers.
TFE composition, and if necessary, the above-mentioned PTFE (T
The technical scope of the present invention also includes compositions in which other thermoplastic resins and various compounding agents are added in an amount of 10 parts by weight or less per 100 parts by weight of FE homopolymer or copolymer.

本発明の成形法にはPTFE超高分子量体はとくに良好
に使用できる。このものは一般に粉末であり、これを常
温で圧縮成形により高圧下で押し固めた後、高温(一般
にPTFHの溶融点温度以上、ポリテトラフルオロエチ
レンの場合は好ましくは340〜400°Cの範囲)で
焼結し、比重が好ましくは1.8以上、さらに好ましく
は2以上の成形品とし、これをPTFE素地として用い
て、少なくとも二軸に配向する。
Ultrahigh molecular weight PTFE can be used particularly well in the molding method of the present invention. This material is generally a powder, which is compacted under high pressure by compression molding at room temperature and then heated to a high temperature (generally above the melting point temperature of PTFH, preferably in the range of 340 to 400°C in the case of polytetrafluoroethylene). A molded product having a specific gravity of preferably 1.8 or more, more preferably 2 or more is obtained by sintering the product, and the molded product is used as a PTFE base and oriented in at least two axes.

本発明のPTFE配向成形品は、少なくとも一軸に配向
されている。以下にシート状の成形品を例にして本発明
を説明する。
The oriented PTFE molded product of the present invention is oriented in at least one axis. The present invention will be explained below using a sheet-like molded product as an example.

シートの延伸には一軸延伸、二軸延伸及び多軸延伸の3
種類の態様があるが、本発明のPTFE配向シートのう
ち、特に好ましい配向は二軸延伸または多軸延伸されて
いる。
There are three types of sheet stretching: uniaxial stretching, biaxial stretching, and multiaxial stretching.
Although there are various embodiments, a particularly preferred orientation among the oriented PTFE sheets of the present invention is biaxial stretching or multiaxial stretching.

本発明成形法ではPTFE配向成形品の面積比延伸倍率
が2倍以上のシートの成形に適している。
The molding method of the present invention is suitable for molding a sheet having an area ratio stretching ratio of 2 times or more of the oriented PTFE molded product.

超高分子1PTFEを二軸延伸あるいは多軸延伸すると
耐圧縮クリープ性が良くなる。延伸倍率と耐圧縮クリー
プ性の関係について詳細に検討した結果、延伸倍率で2
倍以上の成形品が耐圧縮クリープ性に著しく優れている
Biaxial stretching or multiaxial stretching of ultra-high polymer 1PTFE improves compression creep resistance. As a result of a detailed study on the relationship between stretch ratio and compression creep resistance, we found that at a stretch ratio of 2.
Molded products that are more than double the size have significantly superior compression creep resistance.

ダイ内で加圧下に延伸するとは、圧縮成形あるいは押出
成形において圧縮ダイあるいは押出ダイ内で、圧縮力あ
るいは押出力によりPTFE素地をプラグフローさせて
延伸する事である。ここでいうプラグフローとは、それ
に近い状態も含むものである。また、プラグフローさせ
るために、少なくともダイ内表面にまたはPTFE素地
表面に潤滑剤を存在させる事が必要である。
Stretching under pressure in a die means stretching the PTFE base material in a compression die or an extrusion die in compression molding or extrusion molding by causing a plug flow due to compression force or extrusion force. The term "plug flow" here includes states similar to that. Further, in order to cause plug flow, it is necessary to have a lubricant present at least on the inner surface of the die or on the surface of the PTFE substrate.

PTFE素地とは、PTFEの超高分子量体の場合、成
形用粉末を予備圧縮成形→焼成→冷却という一般的な工
程を経て作られた成形品を指す。
In the case of ultra-high molecular weight PTFE, the PTFE base refers to a molded product made through a general process of pre-compression molding → firing → cooling of molding powder.

本発明法ではダイ内、あるいはロール間に2個以上のP
TFE素地を重ねて置き、該PTFE素地同素地同席間
力よりも該素地に対してより大きな摩擦力をもたらす樹
脂シートを、該素地と素地の間に置く。ここに述べる摩
擦力とは、延伸成形時の摩擦力であり、加熱加圧状態で
の摩擦力である。又、静摩擦力と動摩擦力との大きい方
の値をここでは用いることとする。大きな摩擦力をもた
らす樹脂シートとしては、種々のシートが使用できるが
、特に好ましいシートはPTFEに各種充填材を配合し
て摩擦力を太き(したシートである。
In the method of the present invention, there are two or more P inside the die or between the rolls.
The TFE substrates are placed one on top of the other, and a resin sheet that provides a greater frictional force against the substrate than the PTFE substrate-to-substrate force is placed between the substrates. The frictional force mentioned here is the frictional force during stretch molding, and is the frictional force in a heated and pressurized state. Further, the larger value of the static frictional force and the dynamic frictional force is used here. Various sheets can be used as the resin sheet that provides a large frictional force, but a particularly preferred sheet is a sheet made of PTFE mixed with various fillers to increase the frictional force.

特にガラス繊維、アスベスト、ロックウール等を5重量
%以上、好ましくは10重量%以上配合したPTFEは
、加熱加圧状態では充填材がひっかかり摩擦力が大きく
なる。PTFE以外の樹脂シートを用いることもできる
が、該樹脂シートの溶融点以下の温度で使用することが
必要である。本発明ではPTFE素地間の摩擦力より、
2倍以上の11!擦力をもたらす樹脂シートを用いるこ
とが好ましい。
In particular, when PTFE contains 5% by weight or more, preferably 10% by weight or more of glass fiber, asbestos, rock wool, etc., the filler gets caught in the heated and pressurized state, resulting in a large frictional force. Although a resin sheet other than PTFE can be used, it is necessary to use it at a temperature below the melting point of the resin sheet. In the present invention, due to the frictional force between the PTFE substrate,
More than double 11! It is preferable to use a resin sheet that provides frictional force.

PTFE素地が配向されるときに、該素地の延伸と併行
して、樹脂シートも一緒に延伸されることが必要であり
、このことから、成形時の樹脂シートの粘度とPTFE
素地の粘度は似ていることが好ましい。このことからも
、PTFEに多量の充填材を配合して摩擦力を大きくし
たシートが、本発明の樹脂シートとして好ましい。当然
のことながら、樹脂シートは、成形後配向成形品から剥
離できることが必要である。
When the PTFE base material is oriented, it is necessary to stretch the resin sheet together with the stretching of the base material, and for this reason, the viscosity of the resin sheet during molding and the PTFE
Preferably, the viscosity of the substrates is similar. For this reason as well, a sheet in which a large amount of filler is blended with PTFE to increase the frictional force is preferable as the resin sheet of the present invention. Naturally, the resin sheet needs to be able to be peeled off from the oriented molded product after molding.

PTFE素地は延伸に先立ち、150°C以上に予備加
熱される。好ましい予備加熱温度は170〜340’C
,さらに好ましくは200〜327°Cである。
Prior to stretching, the PTFE substrate is preheated to 150°C or higher. Preferable preheating temperature is 170-340'C
, more preferably 200 to 327°C.

温度は、全体に均一であっても良いが、表層側の方が高
温で中心側の方が低温である等、分布させる事もできる
The temperature may be uniform throughout, but it can also be distributed such that the surface layer is higher in temperature and the center is lower in temperature.

ダイの温度、あるいはロール表面温度は少なくともダイ
内表面の温度が(PTFE素地の表層部温度−100)
 ’C以上、好ましくはPTFE素地の表層部温度以上
400°C以下の範囲で延伸成形性及び生産性を考慮し
て任意に選択できる。
The die temperature or roll surface temperature is at least the temperature of the inner surface of the die (temperature of the surface layer of the PTFE base - 100).
It can be arbitrarily selected in consideration of stretch formability and productivity, preferably in the range of 400°C or higher, above the temperature of the surface layer of the PTFE base.

加圧下に延伸する際には、10Kg/cmz以上の圧力
、好ましくは50Kg7cm2以上、さらに好ましくは
80 Kg/am”以上の高圧力をPTFE素地に作用
させて延伸する。
When stretching under pressure, a high pressure of 10 Kg/cmz or more, preferably 50 Kg/cm2 or more, more preferably 80 Kg/am'' or more is applied to the PTFE substrate.

ダイ内表面に潤滑剤を存在させるには、圧縮成形の場合
には成形前に塗布するのが一般的であり、押出成形の場
合には外部から押出ダイ内へ圧入するか成形前に塗布す
るのが一般的である。
In order to have a lubricant on the inner surface of the die, in the case of compression molding, it is generally applied before molding, and in the case of extrusion molding, it is either press-fitted into the extrusion die from the outside or applied before molding. is common.

潤滑剤としては、耐熱性に優れたシリコンオイルが好適
である。
As the lubricant, silicone oil with excellent heat resistance is suitable.

本発明に述べるダイ内、あるいはロール間で加圧下に延
伸するとは、圧縮ダイの中での圧縮加圧延伸、押出ダイ
の中での押出加圧延伸、ロール間での圧縮加圧延伸等で
あり、これについては次に図を用いて説明する。
Stretching under pressure within a die or between rolls as described in the present invention refers to compression and stretching in a compression die, extrusion and stretching in an extrusion die, compression and stretching between rolls, etc. This will be explained next using the diagram.

第1図〜第3図は圧縮成形により延伸成形を行う場合、 第4図〜第5図は押出成形により延伸成形を行う場合、 第6図はロール圧延により延伸成形を行う場合である。Figures 1 to 3 show the case where stretch molding is performed by compression molding. Figures 4 and 5 show the case where stretch molding is performed by extrusion molding. FIG. 6 shows the case where stretch forming is performed by roll rolling.

第1図において圧縮ダイ1の少なくとも内表面2は、あ
らかじめ一定の温度に加熱する。一定の温度に調節され
たPTFE素地を加熱された圧縮ダイIの間に置< (
1−1)。この時、圧縮ダイ内表面2に潤滑剤を存在さ
せておく。圧縮してPTFE素地3をプラグフローさせ
て延伸しく1−2)、圧縮力をそのままかけて一定温度
以下に冷却させた後、ダイ1を開き、延伸されたPTF
E4をとり出す。
In FIG. 1, at least the inner surface 2 of the compression die 1 is heated in advance to a constant temperature. A PTFE substrate adjusted to a constant temperature is placed between the heated compression die I.
1-1). At this time, a lubricant is made to exist on the inner surface 2 of the compression die. The PTFE base material 3 is compressed and stretched by plug flow (1-2). After applying compression force and cooling to a certain temperature or lower, the die 1 is opened and the stretched PTF
Take out E4.

第2図は、第1図に示した方法で、PTFE素地5を3
偏積層して成形した場合のPTFEの動きを示しており
、PTFE素地だけを積層して圧縮延伸成形すると、P
TFEは摩擦係数が小さいため各素地の界面で滑りが生
じ、成形過程のPTFE素地6は互に位置がづれる(2
−1)。各素地の界面での滑りを防ぐことを目的とした
ことが本発明であり(2−2)に示した。すなわち、本
発明はPTFE素地5を重ねておき、該p T F E
素地5間の摩擦力より大きな摩擦力をもたらす樹脂シー
ト7を、該素地と素地の間に置いて圧縮延伸成形すると
、樹脂シート7の摩擦力増大効果により、成形過程のP
TFE素地8は互に位置がづれない(2−2)。摩擦力
を増大させる樹脂シート9はPTFE素地8の延伸と併
行して一緒に延伸されることが必要である。
FIG. 2 shows the method shown in FIG.
It shows the movement of PTFE when unevenly laminated and molded, and when only the PTFE base is laminated and compression-stretched,
Since TFE has a small coefficient of friction, slippage occurs at the interface of each substrate, and the positions of the PTFE substrates 6 shift from each other during the forming process (2
-1). The purpose of the present invention is to prevent slippage at the interface of each substrate, as shown in (2-2). That is, in the present invention, the PTFE substrates 5 are overlapped, and the p T F E
When a resin sheet 7 that produces a frictional force greater than the frictional force between the substrates 5 is placed between the substrates and compression-stretch molded, the frictional force increasing effect of the resin sheet 7 reduces P during the forming process.
The positions of the TFE substrates 8 do not shift with respect to each other (2-2). The resin sheet 9 that increases the frictional force needs to be stretched in parallel with the stretching of the PTFE base 8.

第3図は本発明の方法を用いて、圧縮成形により2軸配
向シートを成形する経過を示したものである。第3図に
於て、圧縮ダイlの内表面2に潤滑剤を塗布し、PTF
E素地5を積層し、該素地5の各界面に、大きな摩擦力
をもたらす樹脂シート7を置< (3−1)。一定の温
度に加熱した後、圧縮して、PTFE素地5と樹脂シー
ト7の積層体全体をプラグフローさせて配向させ(3〜
2)、そのまま冷却してからダイより取り出しく3−3
)、2軸配向PTFEシート10を成形し、次いで2軸
配向されたPTFEシート10と樹脂シー目1を剥離し
て目的とする2軸配向PTFEシートを得る(3−4)
FIG. 3 shows the process of forming a biaxially oriented sheet by compression molding using the method of the present invention. In Fig. 3, lubricant is applied to the inner surface 2 of the compression die l, and PTF
E substrates 5 are laminated, and resin sheets 7 that provide a large frictional force are placed on each interface of the substrates 5 (3-1). After heating to a certain temperature, it is compressed and the entire laminate of the PTFE substrate 5 and resin sheet 7 is caused to plug flow and become oriented (3 to 3).
2), Cool it and take it out from the die 3-3
), mold the biaxially oriented PTFE sheet 10, and then peel off the biaxially oriented PTFE sheet 10 and the resin seam 1 to obtain the desired biaxially oriented PTFE sheet (3-4)
.

本発明法は、加熱、加圧下でも摩擦力が非常に小さく、
滑りやすいPTFE成形固有の現象を解決したものであ
り、メタクリル樹脂等の素地を積層して成形する場合に
は全く不要の現象である。
The method of the present invention has very low frictional force even under heat and pressure.
This solves the slippery phenomenon inherent in PTFE molding, and is completely unnecessary when laminating and molding materials such as methacrylic resin.

すなわち、本発明はPTFEの積層成形を行ってはじめ
て発見し得るものである。
That is, the present invention can only be discovered by carrying out lamination molding of PTFE.

第4図は本発明の方法が使用できる押出成形する装置を
示す。第4図に於て、内部が四角断面を有する角柱の加
熱シリンダー12と、四角形ラム13から成るラム押出
成形機14に、本発明に示す積層されたPTFE素地を
入れ、ラム13で加熱しつつダイ15へ押出される。ダ
イ15のA部分の途中に、PTFE素地の表面とダイ表
面の界面に潤滑剤を塗布するため、潤滑剤を浸み出す一
連の装置を存する。高圧力の潤滑剤は潤滑剤導入路16
より複数の浸出口17へ導かれ、PTFE素地表面へ浸
み出し、成形体表面とダイ表面の界面に潤滑剤を塗布す
る。潤滑剤の浸出口17は小さなスリント状、あるいは
焼結金属等の微細な連通孔を存する物質でできており、
その微細孔より潤滑剤が浸み出る。あるいは成形前にス
プレー等で潤滑剤をダイ内表面に塗布する事も可能であ
る。
FIG. 4 shows an extrusion apparatus in which the method of the invention can be used. In FIG. 4, the laminated PTFE substrate according to the present invention is put into a ram extrusion molding machine 14 consisting of a prismatic heating cylinder 12 with a square cross section and a square ram 13, and is heated by the ram 13. It is extruded into the die 15. In the middle of part A of the die 15, there is a series of lubricant seeping devices in order to apply the lubricant to the interface between the surface of the PTFE substrate and the die surface. The high pressure lubricant is in the lubricant introduction path 16.
The lubricant is further guided to a plurality of infiltration ports 17, oozes out onto the surface of the PTFE base material, and applies a lubricant to the interface between the surface of the molded body and the surface of the die. The lubricant seepage port 17 is made of a material with fine communication holes, such as a small slint or sintered metal.
The lubricant seeps out from the micropores. Alternatively, it is also possible to apply a lubricant to the inner surface of the die by spraying or the like before molding.

表面に潤滑剤が均一に塗布されたPTFE素地は、ダイ
15内でPTFE素地全体がほぼ同速度で流動する、い
わゆるプラグフローになる。次にダイ15のB部分で、
プラグフローのPTFEi地を延伸する。ダイ15のB
部分はPTFE素地の厚さが小さくなる構造を存する。
The PTFE base material whose surface is uniformly coated with lubricant exhibits a so-called plug flow in which the entire PTFE base material flows at approximately the same speed within the die 15. Next, in the B part of die 15,
Stretch the PTFEi material of Plug Flow. B of die 15
The portion has a structure in which the thickness of the PTFE substrate is reduced.

二軸延伸する場合のB部分のPTFEの流動変化を第5
図に示した。PTFE素地はプラグフローのまま流動方
向、及びその直角方向に同時に二軸方向に押出され多軸
延伸される。PTFE素地を延伸する力はラム押出機1
4より押出す力により行われる。2軸延伸されたPTF
E素地はダイのC部分で冷却され、ダイ15を出る。
The flow change of PTFE in part B during biaxial stretching is shown in the fifth figure.
Shown in the figure. The PTFE base material is simultaneously extruded biaxially in the flow direction and in the direction perpendicular to the flow direction while maintaining the plug flow, and is multiaxially stretched. The force for stretching the PTFE substrate is ram extruder 1.
This is done by pushing out force from 4. Biaxially stretched PTF
The E substrate is cooled in the C section of the die and exits the die 15.

二軸延伸されたPTFEはロール18により引取られる
。PTFE素地として積層PTFE素地を用いた場合に
は、ダイ15より押出された積層PTFE延伸シートを
剥離することにより成形品が得られる。
The biaxially stretched PTFE is taken off by rolls 18. When a laminated PTFE base is used as the PTFE base, a molded article is obtained by peeling off the laminated PTFE stretched sheet extruded from the die 15.

第6図は本発明の方法が使用できるロール圧延法を示す
。第6図に於て、2個の加熱された圧縮ロール19の表
面に潤滑剤20を塗布し、加熱された本発明に示す積層
構成のシート(表面シート21、PTFE素地22、よ
り大きな摩擦力をもたらす樹脂シート23からなる積層
体)を押し込み圧縮圧延し、引取りロール24で引取り
、次いで各層を7、(1則する。
FIG. 6 shows a roll rolling method in which the method of the invention can be used. In FIG. 6, a lubricant 20 is applied to the surfaces of two heated compression rolls 19, and heated sheets having a laminated structure shown in the present invention (top sheet 21, PTFE base material 22, larger friction force A laminate consisting of resin sheets 23 that yields the following properties is indented and compression rolled, taken off by a take-up roll 24, and then each layer is divided into 7 layers.

第3図等に示す成形法は、これまで樹脂素地を積層して
成形した時に、樹脂素地が互に接着してしまい成形後剥
離できなくなることを防止するため、樹脂素地の間に剥
離フィルムを置くことが行われてきた。樹脂素地にPT
FEを使用した場合には全〈従来の考え方は成立せず、
PTFEは自己非粘着性であり、剥離フィルムは不要で
あるばかりか、互に剥離し易く、積層が成形中にくずれ
てしまう問題が発生し、本発明に示す樹脂フィルムを置
くことが非常に存効であることがわかった。
In the molding method shown in Figure 3, a release film is placed between the resin bases in order to prevent the resin bases from adhering to each other and being unable to be peeled off after molding when the resin bases are laminated and molded. It has been done to put PT on resin base
When using FE, all the conventional ideas do not hold,
PTFE is self-non-adhesive, and not only does it not require a release film, but it also easily peels off from each other, causing the problem that the laminated layer collapses during molding, making it extremely difficult to place a resin film as shown in the present invention. It was found to be effective.

〔発明の効果] 本発明はPTFE延伸シート、特に薄肉のPTFE延伸
シートを良好に、経済的に成形する方法である。特に経
済的に非常に有用であるPTFE2軸延伸シートを成形
するに適した方法である。
[Effects of the Invention] The present invention is a method for effectively and economically forming a stretched PTFE sheet, particularly a thin stretched PTFE sheet. In particular, this method is suitable for forming biaxially oriented PTFE sheets, which are very economically useful.

PTFE2軸延伸シートはPTFE本来の性質、すなわ
ち、耐化学薬品性、耐食性、低摩擦性、非粘着性、耐熱
性が要求され、かつ、使用時に外力が作用しその外力に
抗する耐圧縮性や機械的強度及び寸法安定性が要求され
る様な状況で使用するのに特に好適である。例えば、ガ
スケット・パツキン類のシール材や、軸受・ピストンリ
ング等の摺動部材として好適である。
PTFE biaxially stretched sheets are required to have the original properties of PTFE, that is, chemical resistance, corrosion resistance, low friction, non-adhesion, and heat resistance, as well as compression resistance and resistance to external forces that are applied during use. It is particularly suitable for use in situations where mechanical strength and dimensional stability are required. For example, it is suitable as a sealing material for gaskets and packings, and for sliding members such as bearings and piston rings.

実施例 「ふっ素樹脂」 (日刊工業新聞社、昭和51年4月発
行、P、58〜65)等に示されているフリーヘーキン
グ法によって製造されたTFEのホモポリマーからなる
ポリテトラフルオロエチレンシート(数平均分子量約1
xlo’)をPTFE素地として用いた。
A polytetrafluoroethylene sheet made of a homopolymer of TFE produced by the free-haking method shown in Example "Fluororesin" (Nikkan Kogyo Shimbun, published in April 1976, pp. 58-65). (Number average molecular weight approximately 1
xlo') was used as the PTFE matrix.

PTFE素地間の摩擦力より大きな摩擦力をもたらす樹
脂シート、及び表皮シートとして、ガラス繊維20重量
%配合ポリテトラフルオロエチレンシートを上記PTF
E素地と同様にして製造し使用した。これ等を用い、第
3図に示した圧縮成形法により配向PTFEシートを得
た。
A polytetrafluoroethylene sheet containing 20% by weight of glass fiber was used as a resin sheet and a skin sheet that produced a friction force greater than the friction force between the PTFE substrates.
It was manufactured and used in the same manner as base E. Using these materials, an oriented PTFE sheet was obtained by the compression molding method shown in FIG.

圧縮する積層PTFE素地は次の構成とした。The laminated PTFE base material to be compressed had the following configuration.

表皮シート     0.3 mm厚 PTFEシート   4  〃〃 樹脂シート     QJ  // //PTFEシー
ト   4  〃〃 樹脂シート     0.3//// PTFEシート   4  〃〃 表皮シート     0.3〃〃 延伸成形に際し、潤滑剤として信越シリコーン(KF 
 965.10000cs)を用い圧縮ダイエの内表面
2に塗布した。
Skin sheet 0.3 mm thick PTFE sheet 4 〃〃 Resin sheet QJ // //PTFE sheet 4 〃〃 Resin sheet 0.3 //// PTFE sheet 4 〃〃 Skin sheet 0.3〃〃 Lubricating during stretch molding Shin-Etsu Silicone (KF) is used as an agent.
965.10000 cs) was applied to the inner surface 2 of the compressed die.

圧縮ダイの温度を240 ’Cに設定した。積層PTF
E素地は別に設けた予熱プレスで300″Cに予熱した
。300℃に予熱された積層素地は240°Cの圧縮ダ
イで圧縮してプラグフローさせて延伸し、そのまま加圧
下に10分放直した後、取り出した。積層体は均一に2
軸延伸され、積層体がくずれることはなかった。積層体
は面積比で4倍に2軸延伸されており、それを互に剥離
することにより、3枚の1mm厚PTFE延伸シートと
、4枚の0.075 mm厚の延伸シートを得た。圧縮
延伸時に積層体がくずれないため、延伸シートの収率は
良く、良好に成形できた。
The compression die temperature was set at 240'C. Laminated PTF
The E substrate was preheated to 300''C using a preheating press provided separately.The laminated substrate preheated to 300℃ was compressed using a compression die at 240℃, plug-flowed, stretched, and left to stand under pressure for 10 minutes. After that, it was taken out.The laminate was evenly coated with 2
The laminate did not collapse during axial stretching. The laminate was biaxially stretched to four times the area ratio, and by peeling it off from each other, three PTFE stretched sheets with a thickness of 1 mm and four stretched sheets with a thickness of 0.075 mm were obtained. Since the laminate did not collapse during compression and stretching, the yield of the stretched sheet was good and it could be molded well.

比較例 圧縮する積層PTFE素地として、3枚の4mmmm厚
テトラフルオロエチレンシートだけを積層したものを用
い、他は実施例と全く同様に成形した。圧縮延伸時に積
層体がくずれ、均一なプラグフローができなかった。
Comparative Example The laminated PTFE base material to be compressed was formed by laminating only three 4 mm thick tetrafluoroethylene sheets, and the rest was molded in exactly the same manner as in the example. The laminate collapsed during compression and stretching, and uniform plug flow was not possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の方法が良好に使用できる、圧縮成形、押
出成形、ロール圧延の各方法を示した。 第1図〜第3図は圧縮成形による延伸成形、第4図〜第
5図は押出成形による延伸成形、第6図はロール圧延に
よる延伸成形を示す。 特許出願人  旭化成工業株式会社 第 図 (+−2) 第 図 第 図
The drawings show compression molding, extrusion molding, and roll rolling methods in which the method of the present invention can be successfully used. 1 to 3 show stretch forming by compression molding, FIGS. 4 to 5 show stretch forming by extrusion molding, and FIG. 6 shows stretch forming by roll rolling. Patent applicant: Asahi Kasei Kogyo Co., Ltd. (+-2)

Claims (1)

【特許請求の範囲】 ポリテトラフルオロエチレンまたはテトラフルオロエチ
レンを主体とする共重合体(PTFEと略称する)素地
をダイ内、あるいはロール間で加圧下に延伸するに際し
て (1)ダイ内あるいはロール間に2個以上のPTFE素
地を重ねて置き、 (2)該PTFE素地同士間の摩擦力よりも該素地に対
して大きな摩擦力をもたらす樹脂シートを、該素地と素
地の間に置き、 (3)ダイ内表面、あるいはロール表面と該素地との界
面を潤滑状態にし、 (4)該素地のガラス転移温度以上で圧縮力あるいは押
出力により該素地を配向させる ことを特徴とするPTFEの配向成形品の成形法
[Claims] When stretching polytetrafluoroethylene or a copolymer mainly composed of tetrafluoroethylene (abbreviated as PTFE) under pressure within a die or between rolls, (1) within the die or between the rolls; (2) place a resin sheet between the two substrates, which produces a greater frictional force against the substrate than the frictional force between the PTFE substrates; (3) ) PTFE oriented molding characterized in that the interface between the inner surface of the die or the roll surface and the base material is lubricated, and (4) the base material is oriented by compressive force or extrusion force at a temperature higher than the glass transition temperature of the base material. Product molding method
JP21360788A 1988-08-30 1988-08-30 Method for forming orientated formed item Pending JPH0262211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21360788A JPH0262211A (en) 1988-08-30 1988-08-30 Method for forming orientated formed item

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21360788A JPH0262211A (en) 1988-08-30 1988-08-30 Method for forming orientated formed item

Publications (1)

Publication Number Publication Date
JPH0262211A true JPH0262211A (en) 1990-03-02

Family

ID=16641982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21360788A Pending JPH0262211A (en) 1988-08-30 1988-08-30 Method for forming orientated formed item

Country Status (1)

Country Link
JP (1) JPH0262211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241890A (en) * 2009-04-02 2010-10-28 Nippon Valqua Ind Ltd Fluororesin sheet, method for producing the same and gasket

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241890A (en) * 2009-04-02 2010-10-28 Nippon Valqua Ind Ltd Fluororesin sheet, method for producing the same and gasket

Similar Documents

Publication Publication Date Title
CA2157283C (en) Wrapped composite gasket material
EP0284165B1 (en) A shaped article of a tetrafluoroethylene polymer
US4820787A (en) Shaped article of an oriented tetrafluoroethylene polymer
EP0817724B1 (en) Creep resistant shaped article of densified expanded polytetrafluoroethylene
JPH07504479A (en) Chemical resistant diaphragm
JPH0553625B2 (en)
JP2016534911A (en) Laminate with fluoropolymer fabric
JP2008030471A (en) Layered type elastic tube
US7851555B2 (en) Gasket material
JPH0262211A (en) Method for forming orientated formed item
JPS63239019A (en) Tetrafluoroethylene polymer molded item
US20070190307A1 (en) Foamed fluoroelastic gasket material
JPH01232013A (en) Polytetrafluoroethylene polymer molding
JPH02128813A (en) Method of molding polytetrafluoroethylene polymer stretched molded product
CN209346712U (en) It is a kind of not glue substrate, cooker and baking mold
KR101663766B1 (en) Rubber composite sheet having oriented chopped fiber, method for preparing the same, multilayer rubber composite article having cross-oriented chopped fiber, and method for preparing the same
JP5253273B2 (en) Fluororesin sheet, method for producing the same, and gasket
WO2008001870A1 (en) Elastic laminated tube
JPH0458839B2 (en)
CN117901462A (en) Manufacturing method of all-composite pressure equipment
JPS59152855A (en) Solid multilayer acryl sheet-shaped shape
JPH1163238A (en) Polymeric compound sliding member and double-belted press device using the same
JP3865432B2 (en) Backup ring
JPS61141529A (en) Forming of fluorine resin
CN110053333A (en) A kind of flexible high-resistance interlayer stack and preparation method thereof