JPH026208B2 - - Google Patents

Info

Publication number
JPH026208B2
JPH026208B2 JP59017375A JP1737584A JPH026208B2 JP H026208 B2 JPH026208 B2 JP H026208B2 JP 59017375 A JP59017375 A JP 59017375A JP 1737584 A JP1737584 A JP 1737584A JP H026208 B2 JPH026208 B2 JP H026208B2
Authority
JP
Japan
Prior art keywords
double layer
electric double
stainless steel
polarizable electrode
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59017375A
Other languages
Japanese (ja)
Other versions
JPS60161611A (en
Inventor
Yoshikatsu Kimura
Zensaku Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP59017375A priority Critical patent/JPS60161611A/en
Publication of JPS60161611A publication Critical patent/JPS60161611A/en
Publication of JPH026208B2 publication Critical patent/JPH026208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、分極性電極と電解液界面とで形成さ
れる電気二重層を利用した電気二重層キヤパシタ
に関するものである。 従来、電気二重層キヤパシタの分極性電極とし
ては単位体積あたりの表面積が大きい活性炭が殆
どであつた。しかし、活性炭を分極性電極として
用いた場合は、活性炭を担持しておくためにバイ
ンダーを用いるので電極内部の導電性が非常に悪
く、その分エネルギーの損失を招いていた。また
導電性改良のために活性炭と共に導電性カーボン
ブラツクなどの導電剤を加えたり、加圧・焼焼結
する方法も採用されているが、何れも完全なもの
ではなく分極性電極内部に抵抗分が存在し、エネ
ルギーの損失があつた。 一方、上述の事情から分極性電極の導電性を改
善するために、活性炭を用いない良導電性の大表
面積をもつた電極材料が求められている。 しかるに、本発明は分極性電極としてステンレ
ス鋼の繊維を用いた電気二重層キヤパシタを提供
するものである。特に、本発明においては20μm
以下の径のステンレス鋼の繊維を原料として加
圧・真空焼結したものを分極性電極として用いる
ことにより、キヤパシタ素子として構成した場合
の電極内部の抵抗分が殆ど無視できる程度のもの
を提供でき、かつ製品の小型化をはかることがで
きるものである。 先ず、本発明に係る電気二重層キヤパシタの分
極性電極とその製造方法について説明する。例え
ば、12μm径のステンレス鋼繊維(SUS316L;18
%Cr・12%Ni・2.5%Mo、極低炭素型鋼)のフ
エルトを真空焼結炉において、真空度10-5Torr、
温度1000℃、圧力1g/cm2の条件で真空焼結させ
る。この真空焼結の条件はステンレス鋼繊維の径
によつて変化し、さらに真空度、温度、圧力も相
対的に変化する。例えば、温度を高めにとれば圧
力は低めでよい。ここで、ステンレス鋼の融点は
1350℃程度であるので、温度の範囲は融点以下で
なくてはならず真空度はステンレス鋼の変質を防
止するために10-4Torr以上の真空度でなくては
ならない。また、真空焼結の際には圧力を加えず
に真空焼結後に適当な固さおよび体積になるよう
に加圧して分極性電極を得るようにしても良い。 次に、このようにして得た分極性電極を利用し
た本発明に係る電気二重層キヤパシタの実施例を
第1図と共に説明する。12μm径のステンレス鋼
繊維を真空焼結させて得た一方の分極性電極1と
他方の分極性電極1との間に合成繊維によるイオ
ン透過性セパレータ2を介在させ、これに高電導
度の有機電解液を含浸させることによりキヤパシ
タ素子3単子を得る。この素子3を素子間は電解
液を透過しないような導電体4、例えばステンレ
ス板を配し、耐電圧を高くるために何層か積層
し、最後に外気との遮断のために封口体5にて封
口し、高耐電圧の電気二重層キヤパシタ6を得
た。図中、7はリードである。このキヤパシタ6
の直流電流の充電時間より求めた容量は、φ8×
8mmの外形寸法において10000μFであつた。 第1表に、本発明実施例と従来例の諸特性比較
を示すが、その比較に先立つて従来の電気二重層
キヤパシタを第2図と共に説明する。325メツシ
ユパスの活性炭5mgと導電剤としてのカーボンブ
ラツク2mgとを有機バインダーを用い、集電体1
1であるステンレスエキスパンドメタルネツトに
担持させて分極性電極12を得る。上記本発明実
施例と同様に2個の分極性電極12,12間にセ
パレータ13を介在し、電解液を含浸させ、キヤ
パシタ素子14を得る。この素子14を導電体1
5を介在させて何層か積層し、封口体16にて封
口し、容量が10000μFの電気二重層キヤパシタ1
7を得た。図中、18はリードである。
The present invention relates to an electric double layer capacitor that utilizes an electric double layer formed by a polarizable electrode and an electrolyte interface. Conventionally, activated carbon, which has a large surface area per unit volume, has been used as the polarizable electrode for electric double layer capacitors. However, when activated carbon is used as a polarizable electrode, since a binder is used to support the activated carbon, the conductivity inside the electrode is very poor, resulting in energy loss. In addition, methods of adding conductive agents such as conductive carbon black along with activated carbon, or applying pressure and sintering have been adopted to improve conductivity, but none of these methods are perfect and resistive elements build up inside the polarizable electrode. exists, and there is a loss of energy. On the other hand, in order to improve the conductivity of polarizable electrodes due to the above-mentioned circumstances, there is a demand for electrode materials that do not use activated carbon and have good conductivity and a large surface area. However, the present invention provides an electric double layer capacitor using stainless steel fibers as polarizable electrodes. In particular, in the present invention, 20μm
By using pressurized and vacuum sintered stainless steel fibers with the following diameters as raw materials as polarizable electrodes, we can provide an electrode with almost negligible internal resistance when configured as a capacitor element. , and it is possible to reduce the size of the product. First, a polarizable electrode of an electric double layer capacitor according to the present invention and a method of manufacturing the same will be explained. For example, 12 μm diameter stainless steel fiber (SUS316L; 18
%Cr, 12%Ni, 2.5%Mo, ultra-low carbon type steel) felt in a vacuum sintering furnace at a vacuum degree of 10 -5 Torr,
Vacuum sintering is performed at a temperature of 1000°C and a pressure of 1 g/cm 2 . The conditions for this vacuum sintering vary depending on the diameter of the stainless steel fiber, and the degree of vacuum, temperature, and pressure also vary relative to each other. For example, if the temperature is high, the pressure may be low. Here, the melting point of stainless steel is
Since the temperature is approximately 1350°C, the temperature range must be below the melting point, and the degree of vacuum must be 10 -4 Torr or higher to prevent deterioration of the stainless steel. Further, during vacuum sintering, the polarizable electrode may be obtained by applying pressure to obtain an appropriate hardness and volume after vacuum sintering without applying pressure. Next, an example of an electric double layer capacitor according to the present invention using the polarizable electrode thus obtained will be described with reference to FIG. An ion permeable separator 2 made of synthetic fiber is interposed between one polarizable electrode 1 and the other polarizable electrode 1 obtained by vacuum sintering stainless steel fibers with a diameter of 12 μm. By impregnating it with an electrolytic solution, three single capacitor elements are obtained. A conductor 4, such as a stainless steel plate, which does not allow the electrolyte to pass through the element 3 is placed between the elements, and several layers are laminated to increase the withstand voltage.Finally, a sealing member 5 is placed to isolate the element 3 from the outside air. The capacitor was sealed to obtain a high withstand voltage electric double layer capacitor 6. In the figure, 7 is a lead. This capacitor 6
The capacity calculated from the DC current charging time is φ8×
It was 10,000 μF with an external dimension of 8 mm. Table 1 shows a comparison of various characteristics between the embodiment of the present invention and the conventional example. Prior to the comparison, the conventional electric double layer capacitor will be explained with reference to FIG. 2. 325 mesh pass activated carbon and 2 mg of carbon black as a conductive agent were combined into a current collector 1 using an organic binder.
A polarizable electrode 12 is obtained by supporting it on a stainless steel expanded metal net (No. 1). As in the above embodiment of the present invention, a separator 13 is interposed between the two polarizable electrodes 12, 12 and impregnated with an electrolytic solution to obtain a capacitor element 14. This element 14 is connected to the conductor 1
An electric double layer capacitor 1 having a capacitance of 10000 μF is made by laminating several layers with 5 interposed and sealed with a sealing body 16.
I got a 7. In the figure, 18 is a lead.

【表】 第1表から判るように、本発明実施例によると
従来例に比し、内部抵抗および漏れ電流を低減を
はかることができ、かつ小型の電気二重層キヤパ
シタを提供できるものである。
[Table] As can be seen from Table 1, the embodiments of the present invention can reduce the internal resistance and leakage current as compared to the conventional example, and can provide a compact electric double layer capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例を示す断面図、第2図は
従来例を示す断面図である。 図中、1,12……分極性電極、2,13……
セパレータ、3,14……キヤパシタ素子、4,
15……導電体、5,16……封口体、6,17
……電気二重層キヤパシタ、7,18……リー
ド、11……集電体。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional example. In the figure, 1, 12... polarizable electrode, 2, 13...
Separator, 3, 14... Capacitor element, 4,
15... Conductor, 5, 16... Sealing body, 6, 17
... Electric double layer capacitor, 7, 18 ... Lead, 11 ... Current collector.

Claims (1)

【特許請求の範囲】 1 分極性電極と電解液界面とで形成される電気
二重層を利用した電気二重層キヤパシタにおい
て、分極性電極としてステンレス鋼の繊維を用い
たことを特徴とする電気二重層キヤパシタ。 2 特許請求の範囲1において、ステンレス鋼の
繊維はその径が20μm以下のものであることを特
徴とする電気二重層キヤパシタ。 3 特許請求の範囲1において、分極性電極とし
てステンレス鋼の繊維を加圧・真空焼結したもの
を用いることを特徴とした電気二重層キヤパシ
タ。
[Claims] 1. An electric double layer capacitor using an electric double layer formed by a polarizable electrode and an electrolyte interface, characterized in that stainless steel fibers are used as the polarizable electrode. Capacita. 2. The electric double layer capacitor according to claim 1, wherein the stainless steel fiber has a diameter of 20 μm or less. 3. The electric double layer capacitor according to claim 1, characterized in that the polarizable electrode is made of pressurized and vacuum sintered stainless steel fibers.
JP59017375A 1984-02-01 1984-02-01 Electric double layer capacitor Granted JPS60161611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59017375A JPS60161611A (en) 1984-02-01 1984-02-01 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59017375A JPS60161611A (en) 1984-02-01 1984-02-01 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPS60161611A JPS60161611A (en) 1985-08-23
JPH026208B2 true JPH026208B2 (en) 1990-02-08

Family

ID=11942261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59017375A Granted JPS60161611A (en) 1984-02-01 1984-02-01 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPS60161611A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013299A1 (en) * 2003-07-07 2005-02-10 Eamex Corporation Capacitor and method for manufacturing same
WO2005057597A1 (en) * 2003-12-10 2005-06-23 Eamex Corporation Electricity storage device and process for producing the same
JP2010050471A (en) * 2009-10-19 2010-03-04 Eamex Co Electric storage element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013299A1 (en) * 2003-07-07 2005-02-10 Eamex Corporation Capacitor and method for manufacturing same
WO2005057597A1 (en) * 2003-12-10 2005-06-23 Eamex Corporation Electricity storage device and process for producing the same
JP2010050471A (en) * 2009-10-19 2010-03-04 Eamex Co Electric storage element

Also Published As

Publication number Publication date
JPS60161611A (en) 1985-08-23

Similar Documents

Publication Publication Date Title
US4683516A (en) Extended life capacitor and method
EP2207189A1 (en) Electrode for electric double layer capacitor and method for producing the same
KR20000048961A (en) Multi-electrode double layer capacitor
JPH0399415A (en) Electric double layer capacitor
JP2005525700A (en) Capacitor with high energy density
JPH026208B2 (en)
JPS60235419A (en) Electric double layer capacitor
JP2548222B2 (en) Electric double layer capacitor
JPH02177525A (en) Electric double layer capacitor
JPH0770448B2 (en) Method of manufacturing polarizable electrodes
JPS5948917A (en) Electric double layer capacitor
JPS63261817A (en) Electric double-layer capacitor
JP3309436B2 (en) Electric double layer capacitor
JPH0338815A (en) Electric double layer capacitor
JPH026207B2 (en)
JP3005992B2 (en) Electric double layer capacitor
JP2900429B2 (en) Electric double layer capacitor
JP3252437B2 (en) Electric double layer capacitor
JPS63268222A (en) Electric double-layer capacitor
JPH03116708A (en) Electric double-layer capacitor
JPS61203625A (en) Electric double-layer capacitor
JPH06176970A (en) Electric double layer capacitor
KR960019356A (en) Electric double layer capacitor and manufacturing method thereof
JPH035649B2 (en)
JPH0278213A (en) Electric double layer capacitor