JPH0261904B2 - - Google Patents

Info

Publication number
JPH0261904B2
JPH0261904B2 JP60017915A JP1791585A JPH0261904B2 JP H0261904 B2 JPH0261904 B2 JP H0261904B2 JP 60017915 A JP60017915 A JP 60017915A JP 1791585 A JP1791585 A JP 1791585A JP H0261904 B2 JPH0261904 B2 JP H0261904B2
Authority
JP
Japan
Prior art keywords
ceramic
resin
voids
molded body
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60017915A
Other languages
Japanese (ja)
Other versions
JPS61175037A (en
Inventor
Yoshihiro Nakagawa
Takashi Hashimoto
Hiroaki Katayama
Takeru Morikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1791585A priority Critical patent/JPS61175037A/en
Publication of JPS61175037A publication Critical patent/JPS61175037A/en
Publication of JPH0261904B2 publication Critical patent/JPH0261904B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミツクスが複合化されたエンジニ
アリング樹脂成型体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an engineering resin molded body composited with ceramics.

(従来の技術と問題点) 一般にエンジニアリング樹脂と呼ばれるフエノ
ール樹脂、硬質塩化ビニル樹脂、エポキシ樹脂、
フツ素樹脂、シリコン樹脂等は、軽量性、コスト
性、成型性、耐食性等が優れていることから、従
来の金属材料に代つて、電気機器、自動車部品、
光学機器、情報機器等に単体として多く用いられ
ている。
(Conventional technology and problems) Phenol resin, hard vinyl chloride resin, epoxy resin, which is generally called engineering resin,
Fluorine resins, silicone resins, etc. are lightweight, cost effective, moldable, and have excellent corrosion resistance, so they are used in electrical equipment, automobile parts, etc. instead of conventional metal materials.
It is often used as a single unit in optical equipment, information equipment, etc.

しかし、耐摩耗性の点で金属材料に劣るためこ
の種の性能が要求される分野に対し適用に限界が
ある。一方、金属材料に対して強度が劣るため、
炭素繊維と複合化したもの(FRP)もあるが、
斯かる手段は強度向上に寄与しても、耐摩耗性の
向上には効果が少ない。
However, since it is inferior to metal materials in terms of wear resistance, there are limits to its application to fields where this type of performance is required. On the other hand, since the strength is inferior to metal materials,
There are also composites with carbon fiber (FRP),
Although such measures contribute to improving strength, they have little effect on improving wear resistance.

本発明は、斯かる問題点に鑑みなされたもので
あつて、エンジニアリング樹脂の有する軽量性、
耐食性、成型性等を維持しつつ、耐摩耗性をも兼
備した樹脂成型体を提供せんとするものである。
The present invention was made in view of the above problems, and aims to improve the lightweight nature of engineering resins,
It is an object of the present invention to provide a resin molded body that has wear resistance while maintaining corrosion resistance, moldability, etc.

(問題点を解決するための手段) 叙上の目的を達成するために、本発明に係る樹
脂成型体は三次元網状に集積付着したセラミツク
ス粒子の焼成により形成され、空〓が相互に連通
しかつセラミツクス部分が三次元網状骨格とされ
た空〓率70〜90%のセラミツクス多孔体の前記空
〓にエンジニアリング樹脂が含浸されてなるセラ
ミツクス複合層によつてエンジニアリング樹脂成
形体の全部又は表層部が形成されていることを発
明の構成とするものである。
(Means for Solving the Problems) In order to achieve the above object, the resin molded body according to the present invention is formed by firing ceramic particles accumulated and adhered in a three-dimensional network, so that the voids are interconnected. In addition, the entire or surface layer of the engineering resin molded body is covered by a ceramic composite layer in which engineering resin is impregnated into the pores of a ceramic porous body with a 70 to 90% void ratio in which the ceramic portion has a three-dimensional network skeleton. This is a configuration of the invention.

(実施例) 第1図は、本発明の第1実施例の円筒状セラミ
ツクス複合樹脂成型体1であり、第2図に示した
如く円筒状のセラミツクス多孔体2′の空隙にエ
ンジニアリング樹脂が含浸されたセラミツクス複
合層2と、該複合層2の内面に前記含浸された樹
脂と同材質の樹脂で一体的に形成された内層3と
で構成されている。
(Example) Fig. 1 shows a cylindrical ceramic composite resin molded body 1 according to a first embodiment of the present invention, in which engineering resin is impregnated into the voids of a cylindrical ceramic porous body 2' as shown in Fig. 2. The inner layer 3 is formed integrally with a resin of the same material as the resin impregnated on the inner surface of the composite layer 2.

前記セラミツクス多孔体2′は、空〓が相互に
連通しかつセラミツクス部分が三次元骨格とされ
ている。
In the ceramic porous body 2', the cavities communicate with each other and the ceramic portion forms a three-dimensional skeleton.

斯かるセラミツクス多孔体は、発泡ポリウレタ
ンとセラミツクスのスラリーとを用いて製作され
る。すなわち、発泡ポリウレタンで網目状骨格の
いわゆるポリウレタンフオームを形成し、これに
セラミツクスのスラリーを含浸させて、余分のス
ラリーを除去し、骨格にセラミツクスを均一に集
積付着させたものを得る。次いで乾燥後、焼成す
ると空隙が完全に外部と連通したセラミツクス多
孔体が得られる。また、斯かる手段によれば、空
隙率が70〜90%の高空隙率を有する多孔体が得ら
れる。
Such a ceramic porous body is manufactured using foamed polyurethane and ceramic slurry. That is, a so-called polyurethane foam having a mesh-like skeleton is formed from polyurethane foam, and this is impregnated with a ceramic slurry, and the excess slurry is removed to obtain a structure in which ceramics are uniformly accumulated and adhered to the skeleton. Then, after drying and firing, a porous ceramic body in which the voids are completely communicated with the outside can be obtained. Moreover, according to such means, a porous body having a high porosity of 70 to 90% can be obtained.

使用するセラミツクスは、使用用途に要求され
る特性により、Al2O3、SiO2等の酸化物、窒化
物、ホウ化物等から適宜選択して用いる。
The ceramics to be used are appropriately selected from oxides such as Al 2 O 3 and SiO 2 , nitrides, borides, etc., depending on the characteristics required for the intended use.

尚、セラミツクス多孔体を得る手段としては、
セラミツクス粒子に結合剤を混ぜて、所望の形に
成形した後、セラミツクス粒子を焼結すると共に
前記結合剤を消失せしめる手段があるが、高空隙
率の多孔体を得がたく、また多孔体中に独立空隙
が存し、本発明には適用し難い。
In addition, as a means to obtain a ceramic porous body,
There is a method of mixing a binder with ceramic particles, molding it into a desired shape, and then sintering the ceramic particles and causing the binder to disappear, but it is difficult to obtain a porous body with a high porosity, and There are independent voids in the pores, making it difficult to apply to the present invention.

前記セラミツクス多孔体2′の空隙率は70〜90
%とするのがよい。樹脂を多孔体の空隙に含浸さ
せる場合、樹脂は粘性が大きいので、70%未満で
は含浸が不十分となる可能性があり、また70%未
満では独立空孔が生じ易くなるからである。一
方、90%を越えると、含浸前のセラミツクス多孔
体の強度が不足し、取り扱いが極めて困難とな
る。
The porosity of the ceramic porous body 2' is 70 to 90.
It is better to set it as %. When impregnating the voids of a porous body with a resin, since the resin has a high viscosity, if it is less than 70%, the impregnation may be insufficient, and if it is less than 70%, independent pores are likely to occur. On the other hand, if it exceeds 90%, the strength of the porous ceramic material before impregnation becomes insufficient, making handling extremely difficult.

セラミツクス多孔体2′の空隙にエポキシ樹脂
等の用途に応じたエンジニアリング樹脂を含浸さ
せるには、高圧射出成型法等の樹脂成型分野で通
常用いられる手段によればよい。
In order to impregnate the voids of the ceramic porous body 2' with an engineering resin such as an epoxy resin depending on the application, a method commonly used in the field of resin molding such as high-pressure injection molding may be used.

ここで、セラミツクス多孔体2′に樹脂を含浸
させたセラミツクス複合層2の拡大模式図を第3
図に示す。セラミツクス部分2aは樹脂母材2b
中に均一に分散された状態となつており、しかも
樹脂母材2bはセラミツクス複合層2中で連続し
た状態であり、三次元網状骨格のセラミツクス部
分2aを樹脂母材3bが強固に保持した状態とな
つており、樹脂の強動もあまり低下しない。従つ
て、セラミツクス複合層2は両者の特性を保持
し、樹脂の特性にセラミツクスによる耐摩耗性が
効果的に付与されるている。
Here, an enlarged schematic diagram of the ceramic composite layer 2 in which the ceramic porous body 2' is impregnated with resin is shown in the third figure.
As shown in the figure. Ceramics part 2a is resin base material 2b
Moreover, the resin base material 2b is in a continuous state in the ceramic composite layer 2, and the resin base material 3b firmly holds the ceramic portion 2a of the three-dimensional network skeleton. Therefore, the strong motion of the resin does not decrease much. Therefore, the ceramic composite layer 2 retains both properties, and the abrasion resistance of the ceramics is effectively imparted to the properties of the resin.

第4図は、本発明の第2実施例であり、セラミ
ツクス複合層2が円筒状のセラミツクス複合樹脂
成型体1′の内層として形成されたものであり、
外層4は樹脂で形成されている。而して、該セラ
ミツクス複合樹脂成型体1′は、内層に耐摩耗性
があり、外層は樹脂の特性をもつた複合パイプと
して機能する。
FIG. 4 shows a second embodiment of the present invention, in which a ceramic composite layer 2 is formed as an inner layer of a cylindrical ceramic composite resin molded body 1'.
The outer layer 4 is made of resin. Thus, the ceramic composite resin molded body 1' has wear resistance in its inner layer and functions as a composite pipe having resin properties in its outer layer.

第5図は、本発明の第3実施例であり、ブロツ
ク状のセラミツクス複合樹脂成型体11を示す。
該セラミツクス複合樹脂成型体11の下面に板状
のセラミツクス多孔体に樹脂が含浸されたセラミ
ツクス複合層12が配されており、該複合層12
の上部13は樹脂層となつている。前記複合層1
2は本図では下面に配されているが、これに限ら
ず耐摩耗性が要求される部分に任意に形成すれば
よい。
FIG. 5 shows a third embodiment of the present invention, and shows a block-shaped ceramic composite resin molded body 11.
A ceramic composite layer 12 in which a plate-shaped ceramic porous body is impregnated with resin is disposed on the lower surface of the ceramic composite resin molded body 11.
The upper part 13 is a resin layer. The composite layer 1
2 is arranged on the lower surface in this figure, but it is not limited to this, and may be formed arbitrarily in a portion where wear resistance is required.

次に具体的実施例について説明する。 Next, specific examples will be described.

(1) 第2図の如き外径70mm、内径50mm、長さ200
mmの円筒形のAl2O3からなる三次元網状骨格か
らなるセラミツクス多孔体(空隙率80%)を準
備した。
(1) Outer diameter 70mm, inner diameter 50mm, length 200mm as shown in Figure 2
A ceramic porous body (porosity: 80%) consisting of a three-dimensional network skeleton made of Al 2 O 3 with a cylindrical shape of 1 mm in diameter was prepared.

(2) 第6図の如く、内径100mmの有底円筒金型2
1の内底面にφ48mmの芯金型2が立設された樹
脂成型用金型20を用いて前記芯金型22に、
前記セラミツクス多孔体2′を外嵌セツトし、
樹脂成型用金型20にフエノール樹脂を加圧注
入した。
(2) As shown in Figure 6, bottomed cylindrical mold 2 with an inner diameter of 100 mm
Using a resin molding mold 20 in which a core mold 2 of 48 mm in diameter was set upright on the inner bottom surface of the core mold 22,
The ceramic porous body 2' is fitted and set,
Phenol resin was injected into the resin molding mold 20 under pressure.

(3) その結果、第4図の如き外層がフエノール樹
脂で内層がAl2O3セラミツクス多孔体の空隙に
樹脂が含浸された円筒状のセラミツクス複合樹
脂成型体が得られた。該複合樹脂成型体は、軽
量でかつ内面が耐摩耗性に優れている。
(3) As a result, a cylindrical ceramic composite resin molded body was obtained, as shown in FIG. 4, in which the outer layer was a phenolic resin and the inner layer was a porous Al 2 O 3 ceramic body in which the voids were impregnated with resin. The composite resin molded body is lightweight and has an inner surface with excellent wear resistance.

(発明の効果) 以上説明した通り、本発明のセラミツクス複合
樹脂成型体は、セラミツクス複合層が、空〓が相
互に連通しかつセラミツクス部分が三次元網状骨
格とされた空〓率70〜90%のセラミツクス多孔体
の前記空〓にエンジニアリング樹脂が含浸された
ものであるので、樹脂の未含浸部は皆無であり、
セラミツクス部分はその回りの樹脂により強固に
保持され、セラミツクスとエンジニアリング樹脂
の両特性を複合層の全体に亘り均等に兼備させる
ことができる。
(Effects of the Invention) As explained above, the ceramic composite resin molded article of the present invention has a ceramic composite layer with a void ratio of 70 to 90%, in which the voids are interconnected and the ceramic portion has a three-dimensional network skeleton. Since the voids of the ceramic porous body are impregnated with engineering resin, there is no part that is not impregnated with resin.
The ceramic portion is firmly held by the surrounding resin, and the properties of both ceramics and engineering resin can be evenly combined throughout the composite layer.

また、前記セラミツクス多孔体は、三次元網状
に集積付着したセラミツクス粒子の焼成により形
成されたものであるため、セラミツクスの種類を
広範囲に選択することができ、焼成条件も粒子同
士を焼結するだけでよく、高空〓率のものを容易
に形成することができる。
Furthermore, since the ceramic porous body is formed by firing ceramic particles that are accumulated and adhered in a three-dimensional network, a wide range of ceramic types can be selected, and the firing conditions are as simple as sintering the particles together. It is possible to easily form one with a high void ratio.

更に、エンジニアリング樹脂成型体の全部又は
表層部を前記セラミツクス複合層によつて形成し
たので、成型体の全部のみならず、例えば成型パ
イプの内面又は外面等の耐摩耗性の必要な表層部
にセラミツクスのもつ耐摩耗性を付与することが
できる。
Furthermore, since the entire or surface layer of the engineering resin molded body is formed of the ceramic composite layer, ceramics can be applied not only to the entire molded body but also to the surface layer that requires wear resistance, such as the inner or outer surface of a molded pipe. It can provide the same wear resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の断面図、第2図は本
発明に係るセラミツクス多孔体の断面図、第3図
はセラミツクス多孔体に樹脂が含浸された状態を
示す模式図、第4図は本発明の他の実施例を示す
断面図、第5図は他の実施例を示す斜視図、第6
図はセラミツクス複合樹脂成型体の製造例を示す
概略断面図である。 1,1′,11……セラミツクス複合樹脂成型
体、2,12……セラミツクス複合層、2′……
セラミツクス多孔体。
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a sectional view of a porous ceramic body according to the present invention, FIG. 3 is a schematic diagram showing a porous ceramic body impregnated with resin, and FIG. 4 5 is a sectional view showing another embodiment of the present invention, FIG. 5 is a perspective view showing another embodiment, and FIG. 6 is a sectional view showing another embodiment of the present invention.
The figure is a schematic sectional view showing an example of manufacturing a ceramic composite resin molded body. 1, 1', 11... Ceramics composite resin molded body, 2, 12... Ceramics composite layer, 2'...
Porous ceramic material.

Claims (1)

【特許請求の範囲】[Claims] 1 三次元網状に集積付着したセラミツクス粒子
の焼成により形成され、空〓が相互に連通しかつ
セラミツクス部分が三次元網状骨格とされた空〓
率70〜90%のセラミツクス多孔体の前記空〓にエ
ンジニアリング樹脂が含浸されてなるセラミツク
ス複合層によつてエンジニアリング樹脂成形体の
全部又は表層部が形成されていることを特徴とす
るセラミツクス複合樹脂成型体。
1 A void formed by firing ceramic particles accumulated and attached in a three-dimensional network, where the voids communicate with each other and the ceramic portion forms a three-dimensional network skeleton.
A ceramic composite resin molding characterized in that the entire or surface layer portion of the engineering resin molded body is formed by a ceramic composite layer formed by impregnating the voids of a porous ceramic body with an engineering resin of 70 to 90%. body.
JP1791585A 1985-01-31 1985-01-31 Ceramics composite resin molded shape Granted JPS61175037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1791585A JPS61175037A (en) 1985-01-31 1985-01-31 Ceramics composite resin molded shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1791585A JPS61175037A (en) 1985-01-31 1985-01-31 Ceramics composite resin molded shape

Publications (2)

Publication Number Publication Date
JPS61175037A JPS61175037A (en) 1986-08-06
JPH0261904B2 true JPH0261904B2 (en) 1990-12-21

Family

ID=11957050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1791585A Granted JPS61175037A (en) 1985-01-31 1985-01-31 Ceramics composite resin molded shape

Country Status (1)

Country Link
JP (1) JPS61175037A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134580A (en) * 1986-11-26 1988-06-07 株式会社ナべヤ Fluid-permeable plastic product and manufacture
JPS63199920A (en) * 1987-02-14 1988-08-18 Nabeya:Kk Static pressure gas bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016882A (en) * 1983-07-01 1985-01-28 株式会社イナックス Reinforced plate
JPS61132575A (en) * 1984-11-30 1986-06-20 イビデン株式会社 Silicon carbide composite body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016882A (en) * 1983-07-01 1985-01-28 株式会社イナックス Reinforced plate
JPS61132575A (en) * 1984-11-30 1986-06-20 イビデン株式会社 Silicon carbide composite body

Also Published As

Publication number Publication date
JPS61175037A (en) 1986-08-06

Similar Documents

Publication Publication Date Title
EP0417676B1 (en) Ceramic composite valve for internal combustion engines and the like
US5173332A (en) Method of forming a mandrel
US4250136A (en) Method of forming a composite structure
US6547967B1 (en) Ceramic network, method for the production and utilization thereof
US8309013B2 (en) Method for the production of components made of ceramic-matrix composite material
CA2071350A1 (en) A method of making parts out of an alumina matrix composite material
JP2000238141A (en) Method and apparatus for molding composite resin product
EP0997231A3 (en) Vitrified abrasive solid mass reinforced by impregnation with synthetic resin, and method of manufacturing the same
US5073589A (en) Composite backing structure for spray metal tooling
WO2006076556A1 (en) Selectively reinforced carbon foam bodies
JPH0261904B2 (en)
GB2252315A (en) Fiber-reinforced ceramics
US4945694A (en) Building module
JP2603139B2 (en) Method for manufacturing porous ceramic structure
JP5774289B2 (en) Manufacturing method of ceramic products
JPS6313821B2 (en)
JPS6022607B2 (en) FRP molding method
JPS6211614U (en)
JPS6124433A (en) Method of molding cylindrical body having double layer structure and roller by said manufacture
JPH0261905B2 (en)
JPH0310024Y2 (en)
JPS63115577A (en) Board and its production
JPS61232285A (en) High strength lightweight ceramic material
JPS57128725A (en) Preparation of organopolysiloxane foam
JPH06216225A (en) Carbon member for heat treatment and manufacture thereof