JPH0261807B2 - - Google Patents

Info

Publication number
JPH0261807B2
JPH0261807B2 JP4245282A JP4245282A JPH0261807B2 JP H0261807 B2 JPH0261807 B2 JP H0261807B2 JP 4245282 A JP4245282 A JP 4245282A JP 4245282 A JP4245282 A JP 4245282A JP H0261807 B2 JPH0261807 B2 JP H0261807B2
Authority
JP
Japan
Prior art keywords
order
cutoff frequency
selectivity
frequency
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4245282A
Other languages
Japanese (ja)
Other versions
JPS58161409A (en
Inventor
Kui Te Ree
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENU EFU KAIRO SETSUKEI BUROTSUKU KK
Original Assignee
ENU EFU KAIRO SETSUKEI BUROTSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENU EFU KAIRO SETSUKEI BUROTSUKU KK filed Critical ENU EFU KAIRO SETSUKEI BUROTSUKU KK
Priority to JP4245282A priority Critical patent/JPS58161409A/en
Publication of JPS58161409A publication Critical patent/JPS58161409A/en
Publication of JPH0261807B2 publication Critical patent/JPH0261807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/126Frequency selective two-port networks using amplifiers with feedback using a single operational amplifier

Landscapes

  • Networks Using Active Elements (AREA)

Description

【発明の詳細な説明】 この発明はカスケード接続によつて構成される
フイルタの設計方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of designing a filter configured by cascade connection.

フイルタにおけるベツセル関数はフイルタの通
過域内でその遅延特性が最大平坦になるように考
えられている。
The Betzel function in a filter is designed so that its delay characteristics are maximally flat within the passband of the filter.

これにより波形伝送の場合、伝送する信号波形
の夫々の周波数成分の受ける位相推移が周波数に
比例するようになり、方形波のように立上りの速
い部分を有する信号入力に対しては波形歪がかな
り低減され、波形を問題にするようなときには特
に威力を発揮する。
As a result, in the case of waveform transmission, the phase shift experienced by each frequency component of the transmitted signal waveform becomes proportional to the frequency, and waveform distortion is considerable for signal inputs that have fast rising parts such as square waves. It is especially effective when the waveform is a problem.

ところで、高次ベツセル特性を1次および2次
伝達関数を有するフイルタのカスケード接続によ
つて実現する場合因数分解された各1次および2
次伝達関数を定めるパラメータとして各段のカツ
トオフ周波数のパラメータfciとその選択度Qiがあ
る。ところが、各段のパラメータfciは夫々異な
り、しかも総合特性のカツトオフ周波数fcと同一
でないため実用上次の欠点を有している。
By the way, when high-order Betzel characteristics are realized by cascading filters having first-order and second-order transfer functions, each factorized first-order and second-order transfer function is
Parameters that determine the next-order transfer function include the cutoff frequency parameter f ci of each stage and its selectivity Qi. However, since the parameter fci of each stage is different and is not the same as the cutoff frequency fc of the overall characteristic, it has the following practical disadvantages.

(a) カツトオフ周波数可変形のフイルタにおいて
振幅最大平坦(バターワース特性)と位相直線
(遅延平坦特性)の両機能を有するものの場合、
各段のカツトオフ周波数fciが振幅最大平坦時
と位相直線時とで異なるためその都度各段のfci
を決定すべくCR積を切換えなければならない。
このためかかる切換え機構が複雑になるばかり
か使用部品点数もかなり増え機器のコスト高に
つながる。
(a) In the case of a variable cut-off frequency filter that has both maximum amplitude flatness (Butterworth characteristic) and phase linearity (delay flatness characteristic),
Since the cutoff frequency fci of each stage differs between when the amplitude is maximum flat and when the phase is straight, the fci of each stage is different each time.
The CR product must be switched to determine .
This not only makes the switching mechanism complicated, but also considerably increases the number of parts used, leading to an increase in the cost of the device.

(b) 上述の不都合を避けるため各段のfciを切換え
ないで選択度Qiのみをベツセル特性のQiに合
せることが考えられるが、これでは位相直線つ
まり第3図の破線cに示す遅延特性が同図の実
線aに示す理想ベツセル遅延特性とかなりかけ
離れたものになつてしまい波形伝送上オーバシ
ユートなどの問題を生じる。
(b) In order to avoid the above-mentioned inconvenience, it is conceivable to adjust only the selectivity Qi to the Betzel characteristic Qi without changing the f ci of each stage, but this would result in the phase straight line, that is, the delay characteristic shown by the broken line c in Figure 3. becomes quite different from the ideal Betssel delay characteristic shown by the solid line a in the figure, causing problems such as overshoot in waveform transmission.

この発明は上記欠点を除去するためになされた
もので高次フイルタを構成する各段のフイルタの
カツトオフ周波数fciを総合のカツトオフ周波数
fcと一致させることを前提に位相直線特性を同一
次数の理想ベツセル特性に近ずけるべく各段の選
択度Qiを決定することにより位相直線と振幅最
大平坦との間の切換えをCR積を可変することな
く選択度Qiのみにより簡単にでき、これにより
部品点数を減らすことができ低コスト化を図り得
る可変フイルタの設計方法を提供することを目的
とする。
This invention was made to eliminate the above-mentioned drawbacks, and the cut-off frequency fci of each stage of filters constituting a high-order filter is set to the overall cut-off frequency.
By determining the selectivity Qi of each stage to bring the phase linear characteristic closer to the ideal Betsu cell characteristic of the same order on the premise of matching fc, the CR product can be changed to switch between the phase linear characteristic and the maximum amplitude flatness. It is an object of the present invention to provide a method for designing a variable filter that can be easily performed using only the selectivity Qi without having to do so, thereby reducing the number of parts and reducing costs.

ところで、まず、この発明の考え方を説明す
る。
By the way, first, the idea of this invention will be explained.

カスケード接続法による高次フイルタは1次お
よび2次フイルタを基本要素とし、これを縦続接
続によつて構成される。ところが、いままでの高
次ベツセル関数の合成法は最大遅延平坦性を満足
するような高次伝達関数から出発し、これを1次
あるいは2次伝達関数に因数分解している。この
ため各基本要素のカツトオフ周波数fciが夫々異
なるものになつてしまう。
A high-order filter based on the cascade connection method has primary and secondary filters as basic elements, and is constructed by cascading these filters. However, conventional high-order Betzel function synthesis methods start from a high-order transfer function that satisfies maximum delay flatness and factorize it into first-order or second-order transfer functions. Therefore, the cutoff frequency fci of each basic element becomes different.

そこでこの発明では上述の不都合を避けるため
各基本要素のカツトオフ周波数fciを最初から総
合特性のカツトオフ周波数fcと一致させることを
前提に各基本要素の群遅延から発出して高次フイ
ルタの群遅延を算出し、そして得られた高次群遅
延関数を遅延特性が直流で最大平坦になるために
マツクローリン級数に展開するとともに自由選択
度パラメータと同じ個数だけ周波数に対する微分
の個数を零に等置して非線形連立方程式を得、こ
れを解くことによつて各基本要素の選択度Qiを
求めるようにしている。
Therefore, in this invention, in order to avoid the above-mentioned inconvenience, the group delay of the higher-order filter is determined by starting from the group delay of each basic element, on the premise that the cutoff frequency fci of each basic element is made to match the cutoff frequency fc of the overall characteristic from the beginning. Then, the obtained high-order group delay function is expanded into a Pine Chlorin series so that the delay characteristic is maximally flat at direct current, and the number of differentials with respect to frequency is set to zero by the same number as the free selectivity parameter to create a nonlinear By obtaining simultaneous equations and solving them, the selectivity Qi of each basic element is determined.

すなわちn次ローパス伝達関数は1次あるいは
2次伝達関数で表わすと次のようになる。
That is, the n-th order low-pass transfer function is expressed as a first-order or second-order transfer function as follows.

(a) nが偶数の場合 T(s)=o/2i=1 H/s2+ais+bi …(1) (b) nが奇数の場合 T(s)=H/s+bo(o-1)/2i=1 1/s2+ais+bi …(2) 但し、bi aiはi段目のカツトオフ周波数、選
択度を決めるパラメータ、Hは全体の利得を決め
る定数である。
(a) When n is an even number T(s)= o/2i=1 H/s 2 +ais+bi …(1) (b) When n is an odd number T(s)=H/s+bo (o-1) /2i=1 1/s 2 +ais+bi (2) where bi ai is the cutoff frequency of the i-th stage, a parameter that determines the selectivity, and H is a constant that determines the overall gain.

ここで、この発明では上述したように各段のカ
ツトオフ周波数fciを総合特性のカツトオフ周波
数fcに一致させるので全てのbiが1になる。
Here, in this invention, as described above, the cutoff frequency fci of each stage is made to match the cutoff frequency fc of the overall characteristic, so all bi's become 1.

これにより群遅延τ(ω)は(1)(2)式より次のよう
に表わせる。
As a result, the group delay τ(ω) can be expressed as follows from equations (1) and (2).

(a) nが偶数の場合 τ(ω)=o/2i=1 ai(1+Ω)/(1−Ω)2+ai2Ω …(3) (b) nが寄数の場合 τ(w)=1/1+Ω+(o-1)/2i=1 ai(1+Ω)/(1−Ω)2+a2Ω …(4) 但しΩ=ω2である。(a) When n is an even number τ(ω)= o/2i=1 ai(1+Ω)/(1−Ω) 2 +ai 2 Ω …(3) (b) When n is a parsimonious number τ(w )=1/1+Ω+ (o-1)/2i=1 ai(1+Ω)/(1-Ω) 2 +a 2 Ω …(4) However, Ω=ω 2 .

次に、(3)(4)式を整理すると次のようになる。 Next, rearranging equations (3) and (4) results in the following.

τ(Ω)=A0(1+A1Ω+A2Ω2+A3Ω3+A4Ω4…+Am
Ωm)/1+B1Ω+B2Ω2+B3Ω3+B4Ω4+…+BmΩm…(
5) 但し、Ai Biはaiのみによつて定まる。
τ(Ω)=A 0 (1+A 1 Ω+A 2 Ω 2 +A 3 Ω 3 +A 4 Ω 4 …+Am
Ω m )/1+B 1 Ω+B 2 Ω 2 +B 3 Ω 3 +B 4 Ω 4 +…+BmΩ m …(
5) However, Ai Bi is determined only by ai.

また、(5)式をマツクローリン展開すると次式が
得られる。
Furthermore, when formula (5) is expanded to pine chlorin, the following formula is obtained.

τ(Ω)=A0{1+(A1−B1)Ω +〔(A2−B2)−B1(A1−B1)〕Ω2…}…(6) ここでτ(Ω)がω=0の点で最大平坦になるに
はm個の自由パラメータaiとの同じ数だけΩに対
する最初のm個の微分を零と置けばよく、故に A1=B1、A2=B2、A3=B3、… …(7) が得られ、同式を解くことによりm個のaiが求め
られ、これによつて各段の選択度Qiが求められ
ることになる。
τ(Ω)=A 0 {1+(A 1 −B 1 )Ω + [(A 2 −B 2 )−B 1 (A 1 −B 1 )}Ω 2 …}…(6) Here, τ(Ω ) becomes maximally flat at the point ω=0 by setting the first m derivatives with respect to Ω to be zero by the same number of m free parameters ai, so A 1 = B 1 , A 2 = B 2 , A 3 =B 3 , (7) is obtained, and by solving the same equation, m pieces of ai are obtained, and thereby the selectivity Qi of each stage is obtained.

次にこのような考えにもとずいたこの発明の一
実施例を図面に従い説明する。
Next, an embodiment of the present invention based on this idea will be described with reference to the drawings.

この場合この発明を最大振幅特性と位相直線を
切換えできる4次可変ローパスフイルタに適用し
た例を示している。
In this case, an example is shown in which the present invention is applied to a fourth-order variable low-pass filter that can switch between the maximum amplitude characteristic and the phase straight line.

第1図において1は入力波形が印加される入力
端子で、この入力端子1に最大振幅特性と位相直
線に対応して選択度Qiの切換を可能にした2次
基本要素2,3を縦続接続し、また基本要素3に
出力端子4を接続している。ここで、2次基本要
素2,3としては種々の回路形式のものが考えら
れ、例えば第2図aに示すように増巾器A11に正
帰還を施した回路、あるいは第2図bに示すよう
に2個の逆相積分器A21,A22と1個の差動増巾
器A23によつて構成され、ハイパス、バンドパス
およびローパスが同時に得られるステートバリア
ブル回路などがある。これら第2図a又はbに示
す回路は公知のものなのでここでの説明は省略す
る。
In Fig. 1, 1 is an input terminal to which an input waveform is applied, and to this input terminal 1, secondary basic elements 2 and 3 are connected in cascade, making it possible to switch the selectivity Qi in accordance with the maximum amplitude characteristic and the phase line. Furthermore, an output terminal 4 is connected to the basic element 3. Here, various circuit types can be considered as the secondary basic elements 2 and 3. For example, as shown in Fig. 2a, a circuit in which positive feedback is applied to the amplifier A11 , or as shown in Fig. 2b, As shown, there is a state variable circuit that is constructed of two anti-phase integrators A 21 and A 22 and one differential amplifier A 23 and can obtain high-pass, band-pass, and low-pass simultaneously. Since the circuits shown in FIG. 2a or b are well known, their explanation will be omitted here.

ここでは第2図aに示す正帰還回路を用いて各
2次基本要素2,3を構成するものとすると、各
基本要素2,3では入力信号eiを抵抗辺RFに印加
しt1に導びいたのち、更にRFとCで形成した
6dB/octローパスフイルタを介してt2に導出し
利得Kを有する正相増巾器A11を通つて出力電圧
e0を取り出すようになる。この場合キヤパシタC
と2個の抵抗RFの連動により基本区間の選択度
を変えずにカツトオフ周波数fciを変えることが
でき、また利得K、すなわち抵抗R2をもつて選
択度Qiを変えることができる。
Here, assuming that each of the secondary basic elements 2 and 3 is configured using the positive feedback circuit shown in Fig. 2a, the input signal ei is applied to the resistance side R F of each basic element 2 and 3 , and the After guiding, it was further formed with R F and C.
The output voltage is derived through a 6 dB/oct low-pass filter to t 2 and passed through a positive phase amplifier A 11 with a gain K.
e 0 will be extracted. In this case, capacitor C
The cutoff frequency fci can be changed without changing the selectivity of the fundamental section by interlocking the and two resistors R F , and the selectivity Qi can be changed by using the gain K, that is, the resistor R2 .

しかして、第1図に示す回路の総合伝達関数T
(s)は次式で与えられる。
Therefore, the overall transfer function T of the circuit shown in FIG.
(s) is given by the following equation.

T(s)=o/2i=1 1/s2+ais+1 …(8) ここで次数n(n=4)が偶数なので式(3)より
第1図の群遅延τ(Ω)は下式のようになる。
T(s)= o/2i=1 1/s 2 +ais+1 …(8) Here, since the order n (n=4) is an even number, the group delay τ(Ω) in Fig. 1 is lower from equation (3). It becomes like the formula.

τ(Ω)=(1+Ω)〔a1/(1+Ω)2+a2Ω +a2/(1−Ω)2+a2Ω …(9) これを整理すると τ(Ω)=(a+a2)×1+(a1a2−1)Ω+(a1a2−1
)Ω2Ω3/1+(a1 2+a2 2−4)Ω+〔6−2(a1 2+a
2 2)+a1 2a2 2〕Ω2+(a1 2+a2 2−4)Ω2+Ω4…(10) となる。また上述した考察より群遅延τ(Ω)が
ω=0の点で最大平坦にするには(5)(6)(7)式を参照
すると次のような連立方程式が得られる。
τ(Ω)=(1+Ω) [a 1 /(1+Ω) 2 +a 2 Ω +a 2 /(1−Ω) 2 +a 2 Ω …(9) To rearrange this, τ(Ω)=(a+a 2 )×1+ (a 1 a 2 -1) Ω + (a 1 a 2 -1
2 Ω 3 /1+(a 1 2 +a 2 2 -4)Ω+[6-2(a 1 2 +a
2 2 ) + a 1 2 a 2 2 ] Ω 2 + (a 1 2 + a 2 2 −4) Ω 2 + Ω 4 …(10). Further, from the above consideration, in order to make the group delay τ (Ω) maximum flat at the point where ω=0, referring to equations (5), (6), and (7), the following simultaneous equations are obtained.

a1a2−1=a1 2+a2 2−4 a1a2−1=6−2(a1 2+a2 2)+a1 2a2 2} …(11) これを解くことによつてa1=1.9562952、 a2=1.3382612が得られ、故に第1図の各基本要
素2,3の選択度Qiは次のように与えられる。
a 1 a 2 −1=a 1 2 +a 2 2 −4 a 1 a 2 −1=6−2(a 1 2 +a 2 2 )+a 1 2 a 2 2 } …(11) By solving this Therefore, a 1 =1.9562952 and a 2 =1.3382612 are obtained, and therefore the selectivity Qi of each basic element 2 and 3 in FIG. 1 is given as follows.

Q1=1/a1=0.5111703 Q2=1/a2=0.7472383 …(12) これにより位相直線の際第2図aの回路中の抵
抗R1R2を次のように設定する。つまり R1/R2=2−1/Q …(13) より1段目の基本要素2のQ1は(12)式よりQ1
0.5111703であるためR1/R2=0.043705となり、また 2段目の基本要素3のQ2は(12)式よりQ2
0.7472383であるためR1/R2=0.661739となる。
Q 1 = 1/a 1 = 0.5111703 Q 2 = 1/a 2 = 0.7472383 (12) Accordingly, in the phase straight line, the resistance R 1 R 2 in the circuit of Fig. 2a is set as follows. In other words, R 1 /R 2 =2-1/Q...(13) From equation (12), Q 1 of basic element 2 in the first stage is Q 1 =
Since it is 0.5111703, R 1 /R 2 = 0.043705, and Q 2 of the basic element 3 in the second stage is Q 2 =
Since it is 0.7472383, R 1 /R 2 =0.661739.

なお、この場合振幅最大平坦時の選択度Qiは
Q1=0.541196、Q2=1.306563である。また総合の
カツトオフ周波数fcはfc=1/2RFCFで与えられ ている。
In this case, the selectivity Qi when the amplitude is maximum and flat is
Q 1 =0.541196, Q 2 =1.306563. Further, the overall cutoff frequency fc is given by fc=1/2R F C F.

したがつて、上記したように各段の基本要素の
カツトオフ周波数fciをフイルタの総合カツトオ
フ周波数fcと一致させるようにカツトオフ定数CF
RF積を固定し、これら各段の基本要素それぞれ
の選択度Qiを算出された所定値に設定してフイ
ルタを構成する。これによりかかる切換えのため
の機構を大巾に簡単化できるとともに部品点数も
減らすことができその分低コスト化を図ることが
できる。ちなみにこの発明による群遅延特性はカ
ツトオフ周波数fcを3dB減衰周波数と規定した場
合、第3図の一点鎖線bに示すように同図の実線
aに示す理想ベツセルの特性に近似し、またその
振幅特性も第4図の一点鎖線bに示すように同図
の実線aに示す理想ベツセルの特性に近似させる
ことができる。
Therefore, as mentioned above, the cutoff constant C F is set so that the cutoff frequency fci of the basic element of each stage matches the overall cutoff frequency fc of the filter.
A filter is configured by fixing the R F product and setting the selectivity Qi of each basic element in each stage to the calculated predetermined value. As a result, the switching mechanism can be greatly simplified, and the number of parts can also be reduced, leading to a corresponding reduction in cost. Incidentally, when the cut-off frequency fc is defined as a 3 dB attenuation frequency, the group delay characteristic according to the present invention approximates the characteristic of an ideal Betz cell as shown by the dashed line b in the figure, as shown by the solid line a in the same figure, and its amplitude characteristic can also be approximated to the characteristics of the ideal Betz cell as shown by the solid line a in FIG. 4, as shown by the dashed-dotted line b in FIG.

なお、この発明は上記実施例にのみ限定されず
要旨を変更しない範囲で適宜変形して実施でき
る。例えば上述の実施例では4次可変のローパス
フイルタについて述べたが任意の次数を有するフ
イルタについても同様に実施できる。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be implemented with appropriate modifications without changing the gist. For example, in the above-described embodiment, a 4-order variable low-pass filter was described, but a filter having an arbitrary order can be similarly implemented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例により構成される
フイルタのブロツク図、第2図a,bは同実施例
で構成されるフイルタに用いられる基本要素の異
なる回路例を示す回路図、第3図および第4図は
それぞれ理想ベツセルの遅延特性および振幅特性
と、実施例および従来の構成によるフイルタの遅
延特性と振幅特性とを説明するための特性図であ
る。 1…入力端子、2,3…基本要素、4…出力端
子。
FIG. 1 is a block diagram of a filter constructed according to an embodiment of the present invention, FIGS. 4 are characteristic diagrams for explaining the delay characteristics and amplitude characteristics of an ideal Beth cell, and the delay characteristics and amplitude characteristics of filters according to the embodiment and the conventional configuration, respectively. 1...Input terminal, 2, 3...Basic element, 4...Output terminal.

Claims (1)

【特許請求の範囲】 1 基本要素はカツトオフ定数CR積で規定され
るカツトオフ周波数fciと選択度Qiとを有し、次
数nが偶数のときは2次の基本要素をn/2段縦
続接続し、また次数nが奇数のときは2次の基本
要素を(n−1)/2段および1次基本要素を1
段縦続接続することによつて構成され、総合カツ
トオフ周波数fcを有するn次の可変周波数形のフ
イルタの設計方法において、 各段の基本要素はカツトオフ定数CR積で規定
される前記カツトオフ周波数fciを前記総合カツ
トオフ周波数fcと同一とし、かつこれら基本要素
のそれぞれには、各段の基本要素の群遅延より求
められるn次群遅延関数をマツクローリン級数に
展開して次数nが偶数のときはn/2次まで、ま
た次数nが奇数のときは(n+1)/2次までの
周波数に対する微分値を零に等置して得られる
n/2または(n+1)/2個の連立方程式の解
により求められる選択度Qiを与えることを特徴
とするフイルタの設計方法。
[Claims] 1. The basic element has a cutoff frequency fci defined by the cutoff constant CR product and a selectivity Qi, and when the order n is an even number, n/2 stages of 2nd order basic elements are connected in cascade. , and when the degree n is an odd number, the second-order fundamental element is (n-1)/2 stages and the first-order fundamental element is 1
In a method for designing an n-th order variable frequency filter that is constructed by cascading stages and has a total cutoff frequency fc, the basic elements of each stage have the cutoff frequency fci defined by the product of cutoff constants CR. The overall cutoff frequency fc is the same as the total cutoff frequency fc, and for each of these basic elements, the n-th group delay function obtained from the group delay of the basic elements of each stage is expanded into a Matslaurin series, and when the order n is an even number, n/ Obtained by solving n/2 or (n+1)/2 simultaneous equations obtained by equating the differential value with respect to the frequency up to the second order, or (n+1)/second order when the order n is an odd number, to zero. A method for designing a filter, characterized in that it provides a selectivity Qi.
JP4245282A 1982-03-17 1982-03-17 Filter Granted JPS58161409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4245282A JPS58161409A (en) 1982-03-17 1982-03-17 Filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4245282A JPS58161409A (en) 1982-03-17 1982-03-17 Filter

Publications (2)

Publication Number Publication Date
JPS58161409A JPS58161409A (en) 1983-09-26
JPH0261807B2 true JPH0261807B2 (en) 1990-12-21

Family

ID=12636457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4245282A Granted JPS58161409A (en) 1982-03-17 1982-03-17 Filter

Country Status (1)

Country Link
JP (1) JPS58161409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339913A (en) * 2005-05-31 2006-12-14 Sharp Corp Infrared remote control receiver unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339913A (en) * 2005-05-31 2006-12-14 Sharp Corp Infrared remote control receiver unit

Also Published As

Publication number Publication date
JPS58161409A (en) 1983-09-26

Similar Documents

Publication Publication Date Title
US6344773B1 (en) Flexible monolithic continuous-time analog low-pass filter with minimal circuitry
US3755749A (en) Sound reenforcement equalization system
Wilson et al. Rc-active networks with reduced sensitivity to amplifier gain bandwidth product
JPS6244443B2 (en)
US4189681A (en) Bandpass filter having low passband phase shift
US5440270A (en) Linear-phase filter having high gain selectivity
US5182522A (en) Polar leapfrog filter
GB2144938A (en) Active iterative filter element
US4779056A (en) Active filter
US6954774B1 (en) Bandpass filter with ability to tune a pass frequency, passband gain and filter Q
JPH0261807B2 (en)
JPH0322727B2 (en)
CA1077146A (en) Active networks having biquadratic transfer functions
US3449696A (en) Dual section all pass lattice filter wherein nonlinearities of two sections cancel
JP2520056B2 (en) Polarized Leapfrog Filter
JP2539301B2 (en) Polarized Leapfrog Filter
JP3092968B2 (en) Circuit device with electronically controllable transfer characteristics
US3858127A (en) Stable and compact low frequency filter
Langhammer et al. Dual-mode multifunctional reconnection-less reconfigurable filter
RU2749400C1 (en) Fourth-order notch filter
RU2722602C1 (en) Second-order active band-pass filter with independent adjustment of main parameters
Soderstrand et al. Design of active filters with zero passive Q-sensitivity
US4085380A (en) Biquad RC active filter
Hill Digital control of active filter characteristics
SU807484A1 (en) Active rc-filter