JPH0261693B2 - - Google Patents

Info

Publication number
JPH0261693B2
JPH0261693B2 JP17919382A JP17919382A JPH0261693B2 JP H0261693 B2 JPH0261693 B2 JP H0261693B2 JP 17919382 A JP17919382 A JP 17919382A JP 17919382 A JP17919382 A JP 17919382A JP H0261693 B2 JPH0261693 B2 JP H0261693B2
Authority
JP
Japan
Prior art keywords
vibrating
vibration
container
tube
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17919382A
Other languages
Japanese (ja)
Other versions
JPS5876722A (en
Inventor
Efu Heruman Eeberuharuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS5876722A publication Critical patent/JPS5876722A/en
Publication of JPH0261693B2 publication Critical patent/JPH0261693B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2966Acoustic waves making use of acoustical resonance or standing waves
    • G01F23/2967Acoustic waves making use of acoustical resonance or standing waves for discrete levels

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は、振動が容器内の充填物に接触したと
きに減衰され、それら振動の振幅に応じて表示を
駆動し、或は切換を行なう装置を具えた2個の振
動素子を有する振動構造からなり、これら両振動
素子は、共振周波数を等しくし、同心的に嵌め合
わせ、充填物の高さを求めるために対抗的に振動
させるようにし、外方の振動素子を、容器内に延
びる振動ロツドとして形成した、容器内の充填物
の一定の高さを制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides two devices equipped with a device that damps vibrations when they come into contact with a filling in a container and drives or switches a display depending on the amplitude of the vibrations. It consists of a vibrating structure with vibrating elements, both of which have equal resonant frequencies, are fitted concentrically, and vibrate counter to each other in order to determine the height of the filling, and the outer vibrating element is , relates to a device for controlling the constant height of a filling in a container, formed as a vibrating rod extending into the container.

西独特許出願第2933618号には、共振周波数が
等しく、同心的に嵌め合わせれ、対抗的に振動さ
せられる、回転振動子としての2個の振動素子を
具え、外方の振動素子を容器内に延ばされた装置
が示されている。これら2個の振動素子を配設
し、また、質量を適切に分布させれば、振動エネ
ルギが容器の壁に伝達されることが殆どなく、従
つてこの振動構造は、高さ制御装置として使用し
た場合、極めて軽量の充填物に対しても非常に高
い感度を得ることができる。加えて、充填物に接
触するのは1本の振動ロツドのみであるから、音
叉形状タイプについて周知の、2本のロツド間に
充填物が詰まつて誤作動するという欠点がない。
German Patent Application No. 2933618 discloses a system comprising two vibrating elements as rotary vibrators with equal resonant frequencies, fitted concentrically and oscillated in opposition, with the outer vibrating element extending into the container. The expanded device is shown. By arranging these two vibrating elements and properly distributing the mass, very little vibrational energy is transmitted to the walls of the container, so this vibrating structure can be used as a height control device. In this case, very high sensitivity can be obtained even for extremely lightweight packings. In addition, since only one vibrating rod is in contact with the filling, there is no drawback of the tuning fork type, which is caused by the filling getting stuck between the two rods and causing malfunction.

この西独特許出願による最も簡単な構成におい
ては、2個の振動素子が、回転振動子として同心
的に配置される。外方の振動素子は、容器内に延
びる管とされ、この管が、復帰用のばねとして作
用する膜の中央に固定される。また、内方の振動
素子は、外方の上記振動素子の管内に突出するロ
ツドとされ、このロツドが、同様に復帰用のばね
として作用する他の膜の中央に固定される。これ
らの膜の外縁は、管片により相互に固定的に結合
される。これらの膜は、共に、復帰用のばねとし
て機能するから、そられも周波数を決定する。そ
して、前記両振動素子の周波数は上記膜に対応す
る必要があるから、膜の加工には高精度を要す
る。更に、この種の従来装置における外方振動素
子は、断面を円形とされている。従つて、これら
従来装置を容器の壁に左右方向で取付けると、充
填物の高さが減少した場合、小麦粉等の粉状充填
物が、第2図に示すように大量に振動素子1上に
堆積することになり、この振動素子1は減衰され
て振動を再開できず、装置の誤作動を招く。
In the simplest configuration according to this West German patent application, two vibrating elements are arranged concentrically as rotating vibrators. The outer vibrating element is a tube extending into the container and fixed in the center of the membrane which acts as a return spring. The inner vibrating element is a rod projecting into the tube of the outer vibrating element, and this rod is fixed in the center of another membrane which likewise acts as a return spring. The outer edges of these membranes are fixedly connected to each other by tube pieces. Since these membranes together act as return springs, they also determine the frequency. Since the frequencies of both of the vibrating elements need to correspond to the membrane, high precision is required for machining the membrane. Furthermore, the external vibration element in this type of conventional device has a circular cross section. Therefore, when these conventional devices are installed on the wall of a container in the left-right direction, when the height of the filling material decreases, a large amount of powdered filling material such as flour will fall onto the vibrating element 1 as shown in FIG. As a result, the vibrating element 1 is damped and cannot resume vibrating, leading to malfunction of the device.

振動素子1に堆積した充填物は、装置の増幅率
を大きくすれば振り落すことができ、装置の制御
を精確にできるが、この方法によれば、この種の
装置が特に適した軽量な充填物を制御し得なくな
る。
The filling material deposited on the vibrating element 1 can be shaken off by increasing the amplification factor of the device, allowing for precise control of the device, but this method allows for a lightweight filling material that is particularly suitable for this type of device. You can't control things.

本発明の目的は、構成が簡単で安価に製造し得
る、上述した種類の装置を提供することにある。
特に、内方振動素子が膜を必要としない構成は注
目すべきである。また、適当な手段を使用すれ
ば、充填材が外方振動素子に堆積することに起因
する装置の誤作動を解消できる。
The object of the invention is to provide a device of the above-mentioned type which is simple in construction and inexpensive to manufacture.
Particularly noteworthy is the configuration in which the internal vibration element does not require a membrane. Moreover, by using appropriate means, it is possible to eliminate malfunctions of the device due to the accumulation of filler material on the external vibration element.

本発明によれば、この問題は、2個の振動素子
を同心的に嵌め合わせるとともに、それらの共振
周波数を等しくし、外方の振動素子を回転振動
子、内方の振動素子を曲げ振動子として形成し、
これらの振動素子を対抗的に励振して充填物の高
さを制御する振動構造により解決される。好適に
は、外方振動素子を、容器内に延びた一端を閉鎖
され、他端を復帰用のばねとして作用する膜の中
央に固定された管とする。一方、内方振動素子と
しては、一端が外方振動素子の管内に突出し、他
端が、剛性を有する板に固着された、円筒形で中
実のロツドとするのが好適である。更に、上記板
は、好適には短い筒で前記膜の外縁に結合し、こ
の筒で、両振動素子を振動を結合する。
According to the present invention, this problem can be solved by fitting two vibrating elements concentrically and making their resonant frequencies equal, so that the outer vibrating element is a rotating vibrator and the inner vibrating element is a bending vibrator. formed as,
The problem is solved by a vibrating structure that excites these vibrating elements in a counter-exciting manner to control the height of the filling. Preferably, the external vibration element is a tube extending into the container, closed at one end, and fixed at the other end in the center of the membrane, which acts as a return spring. On the other hand, the internal vibration element is preferably a cylindrical solid rod with one end protruding into the tube of the external vibration element and the other end fixed to a rigid plate. Furthermore, the plate is preferably connected to the outer edge of the membrane by a short cylinder, with which vibrations are coupled between the two vibrating elements.

この解決法によれば、内方振動素子が、簡単な
ロツドのみで構成され、復帰用のばねとしての膜
が不要になる。従つて、構成が簡単で位価に製造
し得る。また、両振動素子を適切な寸法とし、且
つそれらを周知の態様で望遠鏡の筒のように嵌め
合わせれば、両振動素子の共振周波数を等しくで
きると同時に、両振動素子のトルクおよび質量の
偏位が補償し合うから、両振動素子と、内方振動
素子が取付けられた板とを結合する前記管片を静
止状態に維持し、振動系の節を形成できる。この
管により、或は該管に結合された振動遮断用の環
状膜を介して、振動構造を、振動エネルギが容器
の壁に伝達される危険性を伴うことなく、通常の
方法で上記壁に取付けることができる。この他、
本発明による外方振動素子の断面形状は、従来の
円形ではなく、少くともその上部を楔状とされて
いるため、充填物を急斜面状の側部沿いに容易に
滑り落とさせ得る。また、この輪郭を対称的に、
つまり上方のみならず下方にも楔状としてもよ
い。
According to this solution, the internal vibration element consists of only a simple rod, and no membrane is required as a return spring. Therefore, the structure is simple and can be manufactured at low cost. Furthermore, by making both vibrating elements appropriate dimensions and fitting them together like a telescope tube in a well-known manner, it is possible to equalize the resonant frequencies of both vibrating elements, and at the same time reduce the torque and mass deviation of both vibrating elements. Since the two vibrating elements compensate each other, the tube piece connecting both vibrating elements and the plate to which the internal vibrating element is attached can be maintained in a stationary state, thereby forming a node of the vibrating system. By means of this tube or via a vibration-isolating annular membrane connected to it, the vibrating structure can be moved to the wall of the container in the usual manner without the risk of vibrational energy being transmitted to said wall. Can be installed. In addition,
The cross-sectional shape of the external vibration element according to the present invention is not circular as in the conventional art, but at least its upper portion is wedge-shaped, so that the filler can easily slide down along the steeply sloped side. Also, make this contour symmetrical,
In other words, it may be wedge-shaped not only upwardly but also downwardly.

外方振動素子の内部には、ロツド状の内方振動
素子が、曲げ振動子として、または前記西独特許
出願第2933618号のように回転振動子として、振
動するに十分な空間が画定されている。外方振動
子のこのような特殊な輪郭を得るための特に簡単
な安価な方法として、円形断面の管を前記所望形
状にプレス成形することが挙げられる。しかし、
他の方法を使用できるのはいうまでもなく、例え
ば成形された金属部品の溶接、或は鋳造によるこ
とも可能である。後者の方法によれば、膜と螺入
片を含めた外方振動素子全体を、安価に一体部品
として製造することも可能になる。
A sufficient space is defined inside the external vibrating element for the rod-shaped internal vibrating element to vibrate either as a bending vibrator or as a rotational vibrator as in the above-mentioned West German Patent Application No. 2933618. . A particularly simple and inexpensive method for obtaining such a special profile of the outer transducer is to press a tube of circular cross section into the desired shape. but,
It goes without saying that other methods can be used, such as welding or casting of shaped metal parts. According to the latter method, it is also possible to manufacture the entire external vibration element including the membrane and the screw-in piece as an integral component at low cost.

振動系は、振動面が前記楔の軸線に対して垂直
となるように励振させられる。本発明によるこの
形状に基けば、充填物により生じる振動減衰のた
めの有効表面が、円形断面の振動系に比して本質
的に拡大され、装置の感度が向上する。
The vibration system is excited such that the vibration plane is perpendicular to the axis of the wedge. Due to this shape according to the invention, the effective surface for damping the vibrations caused by the filling is essentially enlarged compared to a vibration system with a circular cross section, and the sensitivity of the device is increased.

励振及び振動測定のためには、いくつかの適当
な方式がある。なかでも、圧電方式が特に有利で
あつた。即ち、圧電方式では、振動面内で、外方
振動素子の膜に2個の圧電セラミツクデイスクを
配設し、好適には接着する。これらセラミツクデ
イスクの一方は励振系として作用する。この目的
のため、該セラミツクデイスクに交流電圧を印加
する。すると、このセラミツクデイスクの直径が
周期的に変化し、膜をそれに応じて変形させるか
ら、系が励振される。他方のセラミツクデイスク
は振動測定系として使用されるもので、振動過程
での膜の周期的変形により、対応する力がこのセ
ラミツクデイスクに作用し、交流電圧信号を出力
させる。この出力信号は、周知の態様で増幅器に
入力され、増幅信号が再び前記一方のセラミツク
デイスクに入力される。その際、位相関係が適正
であれば、ループ増幅率が1以上であると、従来
の発振器と同様に振動するフイードバツク系を得
ることができる。周知のように、この系は、機械
的振動構造の共振周波数で自動的に振動する。容
器内に延びた振動素子に充填物が接触すると、そ
の振動は減衰され、増幅器に直列接続された閾値
判別器がこれに応答して、例えばリレーを切換え
る。充填物の高さが減少し、容器内に延びた振動
素子が再び露出すると、系は振動を再開し、閾値
判別器により、リレーが元の状態に切換えられ
る。
There are several suitable schemes for excitation and vibration measurements. Among them, the piezoelectric method was particularly advantageous. That is, in the piezoelectric method, two piezoelectric ceramic disks are arranged on the membrane of the external vibration element within the vibration plane, and are preferably bonded together. One of these ceramic disks acts as an excitation system. For this purpose, an alternating voltage is applied to the ceramic disk. The system is then excited because the diameter of this ceramic disk changes periodically, causing the membrane to deform accordingly. The other ceramic disc is used as a vibration measuring system, and due to the periodic deformation of the membrane during the vibration process a corresponding force acts on this ceramic disc, causing it to output an alternating voltage signal. This output signal is input to an amplifier in a well-known manner, and the amplified signal is input again to said one ceramic disk. At this time, if the phase relationship is appropriate and the loop amplification factor is 1 or more, it is possible to obtain a feedback system that vibrates like a conventional oscillator. As is well known, this system automatically vibrates at the resonant frequency of the mechanical vibrating structure. When the filling contacts a vibrating element extending into the container, its vibrations are damped and a threshold discriminator connected in series with the amplifier responds by switching, for example, a relay. When the height of the filling decreases and the vibrating element extending into the container is exposed again, the system resumes vibrating and the threshold discriminator switches the relay back to its original state.

以下、本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図に、本発明装置の一実施例を断面図で示
す。第1図の装置には2個の振動素子が含まれ、
これらの振動素子が同軸的に嵌め合わされてい
る。即ち、容器内に延びる外方振動素子として、
膜3の中央に管1が固定されており、上記膜3
は、復帰用のばねとして作用する。この外方振動
素子は、膜3の中心の軸線に関して回転振動す
る。一方、内方振動素子は、上記外方振動素子の
管1内に挿入され、中実で剛性を有する板4に取
付けられた円筒系のロツド2で構成されている。
このロツド2は、その一端で固定され、ロツドの
曲げ振動を生じる。前記膜3の外縁は、管5によ
り、ロツド2が取付けられた前記板4に固定され
ている。膜3の内側には、2個の圧電セラミツク
デイスク6,7が、振動面内で直径方向で相対向
する位置に配設されている。これら圧電セラミツ
クデイスク6,7は、励振、振動測定系として作
用する。圧電セラミツクデイスク6に交流電圧を
印加すると、その直径が周期的に変化し、その都
度膜3が変形する。交流電圧のある位相ではデイ
スク6の直径が大きくなり、膜3が変形して管1
が図の矢Aの方向に駆動される。その反対の位相
では、デイスク6の直径が小さくなり、膜3が変
形して管1が図の矢Aと反対の方向に駆動され
る。この結果、管1は膜3の中央Cを軸として図
の面内で左右方向に振動する。この振動は管1上
の全ての点が軸Cに対して同じ角度で同時に移動
する回転振動となる。このとき膜3は復帰用バネ
として作用する。
FIG. 1 shows a cross-sectional view of an embodiment of the device of the present invention. The device of FIG. 1 includes two vibrating elements,
These vibration elements are coaxially fitted together. That is, as an external vibration element extending into the container,
A tube 1 is fixed to the center of the membrane 3, and the membrane 3
acts as a return spring. This external vibration element rotates and vibrates about the central axis of the membrane 3. On the other hand, the internal vibration element is comprised of a cylindrical rod 2 inserted into the tube 1 of the external vibration element and attached to a solid, rigid plate 4.
This rod 2 is fixed at one end, causing bending vibrations of the rod. The outer edge of the membrane 3 is fixed by a tube 5 to the plate 4, on which the rod 2 is attached. Inside the membrane 3, two piezoelectric ceramic discs 6, 7 are arranged diametrically opposite each other in the plane of vibration. These piezoelectric ceramic disks 6, 7 act as an excitation and vibration measurement system. When an alternating current voltage is applied to the piezoelectric ceramic disk 6, its diameter changes periodically, and the membrane 3 deforms each time. In a certain phase of the AC voltage, the diameter of the disk 6 increases, the membrane 3 deforms, and the tube 1
is driven in the direction of arrow A in the figure. In the opposite phase, the diameter of the disk 6 is reduced, the membrane 3 is deformed and the tube 1 is driven in the direction opposite to arrow A in the figure. As a result, the tube 1 vibrates in the left-right direction within the plane of the figure with the center C of the membrane 3 as an axis. This vibration becomes a rotational vibration in which all points on the tube 1 move simultaneously at the same angle with respect to the axis C. At this time, the membrane 3 acts as a return spring.

管1および膜3からなる外方振動素子が振動を
開始すると、この振動は管5を経てロツド2を支
える板4に伝達され、板4に交流トルクが作用す
る。これによつて板4はロツド2に図の面内で左
右方向に振動させる曲げ振動を励起させる。曲げ
振動は偏位が非直線的で、固定点からの距離が大
きくなるにつれて偏位角の大きくなる振動であ
る。ロツド2の振動は管1が図の矢Aの方向に駆
動されるときに、管5を振動系の節として対抗的
に図の矢Bの方向に駆動される振動となる。な
お、管1の内部には、管1に対して対抗的に振動
するロツド2のために十分な空間が設けられてい
る。膜3の前記した周期的変形により、他方の圧
電セラミツクデイスク7には振動過程で交番的な
力か作用する結果、同デイスク7は、機械的な振
動の振幅と振動数に対応する交流電圧を発生す
る。この交流電圧は増幅器11に入力されて増幅
され、この増幅器11の出力が、励振系として作
用する圧電セラミツクデイスク6に入力される。
従つて、ループ増幅率が1以上であれば、機械的
振動の共振周波数で自動的に振動するフイードバ
ツク系が得られる。振動系が閾値で振動すると
き、前記増幅器11と直列接続された判別器12
がこれに応答し、リレー13を切換える。前述し
たように、両振動素子1および2は同一の共振周
波数を有して対抗的に振動するため、振動過程で
両振動素子により生じる2種のトルクが互いに補
償し合い、また、両振動素子はそれらの質量の振
動偏位に起因する影響も補償し合うような寸法と
されているので、管5に振動系の節が形成され、
系全体の重心と管5及び板4とは振動過程で静止
状態に維持される。
When the external vibration element consisting of the tube 1 and the membrane 3 starts to vibrate, this vibration is transmitted to the plate 4 supporting the rod 2 through the tube 5, and an alternating current torque acts on the plate 4. As a result, the plate 4 excites a bending vibration that causes the rod 2 to vibrate in the left-right direction within the plane of the figure. Bending vibration is a vibration in which the deflection is nonlinear, and the deflection angle increases as the distance from the fixed point increases. When the tube 1 is driven in the direction of the arrow A in the figure, the vibration of the rod 2 becomes a vibration that is counter-driven in the direction of the arrow B in the figure with the tube 5 as a node of the vibration system. It should be noted that sufficient space is provided inside the tube 1 for the rod 2 to vibrate in opposition to the tube 1. Due to the above-mentioned periodic deformation of the membrane 3, an alternating force acts on the other piezoelectric ceramic disk 7 during the vibration process, so that the disk 7 receives an alternating voltage corresponding to the amplitude and frequency of the mechanical vibration. Occur. This AC voltage is input to an amplifier 11 and amplified, and the output of this amplifier 11 is input to a piezoelectric ceramic disk 6 which acts as an excitation system.
Therefore, if the loop amplification factor is 1 or more, a feedback system that automatically vibrates at the resonant frequency of mechanical vibration can be obtained. When the vibration system vibrates at a threshold value, a discriminator 12 connected in series with the amplifier 11
responds to this and switches relay 13. As mentioned above, both vibrating elements 1 and 2 have the same resonant frequency and vibrate opposingly, so the two types of torque generated by both vibrating elements compensate each other during the vibration process, and both vibrating elements are dimensioned so as to compensate for the effects caused by the vibrational deviation of their masses, so nodes of the vibration system are formed in the tube 5,
The center of gravity of the entire system and the tubes 5 and plates 4 are kept stationary during the vibration process.

第1図は更に、容器の壁10に螺入された螺入
片9に対して環状膜8を設けた状態を示す。
FIG. 1 further shows a state in which an annular membrane 8 is provided on a screw-in piece 9 screwed into the wall 10 of the container.

また第2図は、円形断面の外方振動素子1の一
例において、例えば小麦粉等、粉状の充填物14
の高さが減少した後、その充填物14が板状に残
ることがあり、その場合には、系が減衰させられ
て振動を再開できなくなり、装置が誤つた表示を
することを表わす断面図である。
Further, FIG. 2 shows an example of the external vibration element 1 having a circular cross section, in which a powdery filler 14 such as wheat flour is filled.
After the height of the filling 14 is reduced, the filling 14 may remain in the form of a plate, in which case the system is damped and cannot resume oscillation, and the device gives a false indication. It is.

他方、第3図及び第4図は、本発明の一実施例
による振動素子1を示す断面図で、これは、充填
物が側面を容易に滑り落ちるように、上方に向け
て楔状に形成されている。この場合、対称という
理由で、振動素子1は下方に向けても楔状とされ
ている。また、この振動素子1の内部には、対抗
的に振動するロツド2のために余裕が設けられて
いる。
On the other hand, FIGS. 3 and 4 are cross-sectional views showing a vibrating element 1 according to an embodiment of the present invention, which is wedge-shaped upward so that the filling can easily slide down the side surface. There is. In this case, for reasons of symmetry, the vibrating element 1 is wedge-shaped even when facing downward. Further, inside the vibrating element 1, a margin is provided for a rod 2 that vibrates in opposition.

第3図は鋳造で製造できる実施例を示し、第4
図は、例えば2個の半張殻体を溶接するか、特に
好適には円形断面の管をプレス成形して得られる
実施例を示す。本発明の形状によれば、充填物の
振動減衰のための有効表面が拡大される結果、装
置の感度が向上することは明らかであろう。
Figure 3 shows an embodiment that can be manufactured by casting;
The figure shows an embodiment obtained, for example, by welding two half-tight shells or, particularly preferably, by pressing a tube of circular cross-section. It will be clear that, according to the shape of the invention, the effective surface for vibration damping of the filling is enlarged, resulting in an increase in the sensitivity of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2
図は従来装置の欠点を説明するための断面図、第
3図及び第4図は、本発明の異る実施例を示す断
面図である。 1……管(外方振動素子)、2……ロツド(内
方振動素子)、3……膜、4……板、6,7……
圧電セラミツクデイスク。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and FIG.
The figure is a cross-sectional view for explaining the drawbacks of the conventional device, and FIGS. 3 and 4 are cross-sectional views showing different embodiments of the present invention. 1...Pipe (external vibration element), 2...Rod (internal vibration element), 3...Membrane, 4...Plate, 6, 7...
Piezoelectric ceramic disc.

Claims (1)

【特許請求の範囲】 1 振動が容器内の充填物に接触したときに減衰
され、それら振動の振幅に応じて表示を駆動し、
或は切換を行なう手段を具えた2個の振動素子を
有する振動構造からなり、それら両振動素子は同
心的に嵌め合わされるとともに、共振周波数が等
しく振動が対抗的である、容器内の充填物の高さ
を制御する装置にして、外方の振動素子を回転振
動子として形成する一方、内方の振動素子を曲げ
振動子として形成したことを特徴とする容器内の
充填物の高さを制御する装置。 2 外方の振動素子を、容器内に延び、一端を閉
鎖される一方、復帰用のばねとして作用する膜の
中央に他端を固定された管1で構成し、内方の曲
げ振動子を、一端を剛性を有する板4に固定さ
れ、励振されるとその共振周波数で振動し、前記
管1内に突出したロツドとし、更に、板4を管5
で膜3の外縁に結合することにより、両振動素子
の振動結合体を構成したことを特徴とする、特許
請求の範囲第1項に記載の装置。 3 両振動素子のトルク及び質量の偏位が、両振
動素子の振動過程により補償し合い、両振動素子
を結合する管5が振動系の節を形成し、且静止状
態に維持されるように、両振動素子の寸法を設定
し、そのような距離に亘つて嵌め合わせたことを
特徴とする、特許請求の範囲第1項又は第2項に
記載の装置。 4 励振と振動測定のために、膜3の上に圧電セ
ラミツクデイスク6,7を配設したことを特徴と
する、特許請求の範囲第1項乃至第3項のいずれ
かに記載の装置。 5 圧電セラミツクデイスク7の電気信号を増幅
器11に入力可能とし、該増幅器11の出力信号
を他方の圧電セラミツクデイスク6と、リレーを
駆動する閾値判別器12に入力可能としたことを
特徴とする、特許請求の範囲第1項乃至第4項の
いずれかに記載の装置。 6 振動が充填物に接触したときに減衰される振
動構造を具え、この振動構造を、容器内に延びた
管状の外方振動素子と、該外方振動素子の凹部内
に突出したロツド状の内方振動素子とで構成し、
これら両振動素子の共振周波数を等しくするとと
もに、対抗的な回転振動子及び曲げ振動子として
形成した、容器内の充填物の高さを制御する装置
にして、外方振動素子の少くとも頂部側を楔状に
形成することにより、充填物が容易にその側部を
滑り落ちるようにしたことを特徴とする容器内の
充填物の高さを制御する装置。 7 外方振動素子を、上方及び下方に楔状とした
ことを特徴とする、特許請求の範囲第6項に記載
の装置。 8 外方振動素子の輪郭を、円形断面の管をプレ
ス成形して得ることを特徴とする、特許請求の範
囲第6項または第7項に記載の装置。
[Claims] 1. The vibrations are attenuated when they come into contact with the filling in the container, and the display is driven according to the amplitude of the vibrations,
or a filling in a container consisting of a vibrating structure having two vibrating elements equipped with means for switching, both vibrating elements being fitted concentrically and having equal resonance frequencies and opposing vibrations; A device for controlling the height of a filling in a container, characterized in that an outer vibrating element is formed as a rotating vibrator, and an inner vibrating element is formed as a bending vibrator. A device to control. 2. The outer oscillating element consists of a tube 1 which extends into the container and is closed at one end, while the other end is fixed in the center of a membrane which acts as a return spring, and the inner flexural oscillator is , one end of which is fixed to a rigid plate 4, vibrates at its resonant frequency when excited, and forms a rod protruding into the tube 1, and the plate 4 is connected to the tube 5.
2. The apparatus according to claim 1, wherein the vibration element is coupled to the outer edge of the membrane 3 to form a vibration coupling body of both vibration elements. 3. The torque and mass deviation of both vibrating elements are compensated for each other by the vibration process of both vibrating elements, and the tube 5 connecting both vibrating elements forms a node of the vibrating system and is maintained in a stationary state. The device according to claim 1 or 2, characterized in that both vibrating elements are dimensioned and fitted over such a distance. 4. Device according to any one of claims 1 to 3, characterized in that piezoelectric ceramic discs 6, 7 are arranged on the membrane 3 for excitation and vibration measurement. 5. The electric signal of the piezoelectric ceramic disk 7 can be input to the amplifier 11, and the output signal of the amplifier 11 can be input to the other piezoelectric ceramic disk 6 and the threshold value discriminator 12 that drives the relay. An apparatus according to any one of claims 1 to 4. 6. A vibrating structure that damps vibrations when it comes into contact with the filling, and this vibrating structure is composed of a tubular external vibrating element extending into the container and a rod-shaped external vibrating element protruding into the recess of the external vibrating element. Consisting of an internal vibration element,
A device for equalizing the resonant frequencies of these two vibrating elements and controlling the height of the filling in the container formed as an opposing rotational vibrator and a bending vibrator, at least on the top side of the external vibrating element. 1. A device for controlling the height of a filler in a container, characterized in that the filler is formed into a wedge shape so that the filler easily slides down the side of the container. 7. The device according to claim 6, wherein the external vibration element is wedge-shaped at the upper and lower sides. 8. The device according to claim 6 or 7, characterized in that the contour of the external vibration element is obtained by press-molding a tube with a circular cross section.
JP17919382A 1981-10-15 1982-10-14 Device for controlling height of filler in vessel Granted JPS5876722A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19813140938 DE3140938A1 (en) 1981-10-15 1981-10-15 Device for ascertaining and/or checking a given level in a container
DE3140938.5 1981-10-15
DE3149464.1 1981-12-14

Publications (2)

Publication Number Publication Date
JPS5876722A JPS5876722A (en) 1983-05-09
JPH0261693B2 true JPH0261693B2 (en) 1990-12-20

Family

ID=6144156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17919382A Granted JPS5876722A (en) 1981-10-15 1982-10-14 Device for controlling height of filler in vessel

Country Status (2)

Country Link
JP (1) JPS5876722A (en)
DE (1) DE3140938A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311862A (en) * 1992-05-11 1993-11-22 Aavan Supeesu:Kk Preparation assisting tool for construction

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3416254C2 (en) * 1984-05-02 1986-06-19 VEGA Grieshaber GmbH & Co, 7620 Wolfach Device for determining a certain fill level of a product in a container
JPS6258711U (en) * 1985-10-02 1987-04-11
DE3625779A1 (en) * 1986-07-30 1988-02-04 Vega Grieshaber Gmbh & Co Apparatus for determining a specific level in a container
JPS6397821U (en) * 1986-12-15 1988-06-24
DE3740598C2 (en) * 1987-11-30 1998-03-26 Grieshaber Vega Kg Vibrating unit for level vibration limit switch
DE3808481C2 (en) * 1988-03-14 1997-11-27 Endress Hauser Gmbh Co Device for determining a certain level in a container
DE4318750C1 (en) * 1993-06-05 1994-06-01 Eberhard F Hermann Container filling material level measuring and=or controlling system - has tubular and rod-shaped vibrating elements having same resonance frequency but vibrating counter phase and protruding in container
RU2127873C1 (en) * 1997-09-15 1999-03-20 Николай Иванович Балин Ultrasonic liquid level gauge
DE19843512B4 (en) * 1997-09-24 2004-02-12 Georg Ziegler Return conveyor for processing media
DE10014724A1 (en) * 2000-03-24 2001-09-27 Endress Hauser Gmbh Co Liquid level and density monitoring method employed in food, chemical industry, involves evaluating vibration of vibrating rods arranged immersed in liquid at two different modes and recognizing mass change in rods
DE10321025B4 (en) * 2003-05-10 2005-07-28 Eberhard Hermann Device for detecting a filling level of a filling material in a container

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2933618A1 (en) * 1979-08-20 1981-03-26 Vega Grieshaber Kg, 77709 Wolfach DEVICE FOR DETECTING AND / OR CONTROLLING A SPECIFIC LEVEL IN A CONTAINER
DE2855643B2 (en) * 1978-12-22 1980-10-16 Vega Vertrieb Und Fertigung Elektronischer Geraete Und Apparate Grieshaber Kg, 7620 Wolfach Device for determining and / or checking a certain level in a container
DE3011603C2 (en) * 1980-03-26 1983-04-28 VEGA Grieshaber GmbH & Co, 7620 Wolfach Device for determining a certain level in a container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311862A (en) * 1992-05-11 1993-11-22 Aavan Supeesu:Kk Preparation assisting tool for construction

Also Published As

Publication number Publication date
DE3140938C2 (en) 1991-02-14
JPS5876722A (en) 1983-05-09
DE3140938A1 (en) 1983-05-19

Similar Documents

Publication Publication Date Title
JPH0261693B2 (en)
JP2504628B2 (en) Detecting and monitoring device for a predetermined filling level in a container
US6823733B2 (en) Z-axis vibration gyroscope
US3520195A (en) Solid state angular velocity sensing device
US4740726A (en) Vibrator-type level sensor
EP0153189B1 (en) Gyroscopic devices
US5670709A (en) Transducer for the measurement of attributes of flowable media
US5323638A (en) Sensor apparatus
US3220258A (en) Sensing the presence or absence of material
US4299122A (en) Force transducer
CA1140249A (en) Apparatus for determining and/or controlling a fixed filling level in a container
EP0175508A1 (en) Vibrational gyroscope
CN111433573A (en) Vibration sensor
EP0943893A1 (en) Angular velocity sensor
GB2202944A (en) Vibrating element fluid transducer
KR920004325B1 (en) Vibration type measuring apparatus
GB2119090A (en) Level detecting device for fluent material
JPH07117440B2 (en) Filling surface adjustment device
JPS6350645B2 (en)
US4703216A (en) Oscillating crystal transducer systems
JPS6257932B2 (en)
JPH10339656A (en) Achieving and/or monitoring apparatus for specified filled level in container
KR100420882B1 (en) Force / pressure sensor
JPH07151664A (en) Method for measuring mass/concentration of dust particle in gas
SU772852A1 (en) Twin-mass vibrated platform