JPH0261682B2 - - Google Patents

Info

Publication number
JPH0261682B2
JPH0261682B2 JP58031200A JP3120083A JPH0261682B2 JP H0261682 B2 JPH0261682 B2 JP H0261682B2 JP 58031200 A JP58031200 A JP 58031200A JP 3120083 A JP3120083 A JP 3120083A JP H0261682 B2 JPH0261682 B2 JP H0261682B2
Authority
JP
Japan
Prior art keywords
gap
probe
elastic plate
tip
probe tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58031200A
Other languages
Japanese (ja)
Other versions
JPS59157503A (en
Inventor
Kazuichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP58031200A priority Critical patent/JPS59157503A/en
Publication of JPS59157503A publication Critical patent/JPS59157503A/en
Publication of JPH0261682B2 publication Critical patent/JPH0261682B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 この発明は、例えば列状に林立するロツドの間
隙を連続的に測定するための間隙測定プローブに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gap measuring probe for continuously measuring gaps between, for example, rods standing in rows.

例えば、原子炉用燃料集合体は、離間対向され
た複数の支持格子に多数の制御棒案内管を挿通し
て固定し、この制御棒案内管の下部に下部ノズル
を取り付け、前記支持格子に多数の燃料棒を所定
の間隔をおいて挿通した後前記制御棒案内管の上
端部に上部ノズルを取り付けたものである。
For example, in a nuclear reactor fuel assembly, a number of control rod guide tubes are inserted and fixed through a plurality of support grids spaced apart from each other, lower nozzles are attached to the lower part of the control rod guide tubes, and a number of control rod guide tubes are fixed to the support grids. After the fuel rods are inserted at predetermined intervals, an upper nozzle is attached to the upper end of the control rod guide tube.

従つて、燃料集合体においては燃料棒が下部ノ
ズルの上方に列状に林立した状態となつている。
Therefore, in the fuel assembly, the fuel rods are arranged in rows above the lower nozzle.

このような燃料集合体は炉心に多数装荷され、
その使用時には多数の燃料棒の間〓を冷却水が流
通し、この冷却水に発熱した燃料棒から熱が伝達
する。この際、燃料棒から冷却水に熱を有効に伝
えるためには各燃料棒間隙及び制御棒案内管、燃
料棒間〓を所定の寸法に保つ必要がある。このた
め、燃料集合体の使用前その各燃料棒間隙及び制
御棒案内管、燃料棒間隙が許容寸法範囲内にある
かどうかを正確に測定しておかなければならな
い。
A large number of such fuel assemblies are loaded into the reactor core,
During use, cooling water flows between a large number of fuel rods, and heat is transferred to the cooling water from the fuel rods that generate heat. At this time, in order to effectively transfer heat from the fuel rods to the cooling water, it is necessary to maintain the gaps between the fuel rods, the control rod guide tubes, and the distance between the fuel rods to predetermined dimensions. Therefore, before using the fuel assembly, it is necessary to accurately measure whether the gaps between the fuel rods, the control rod guide tubes, and the fuel rod gaps are within allowable dimensional ranges.

ところが、これら各燃料棒間隙は3mm前後で狭
小である上に、制御棒案内管、燃料棒間隙は各燃
料棒間隙よりさらに狭いので、燃料集合体の奥の
方の燃料棒間隙を測定するには、このように狭い
制御棒案内管、燃料棒間隙を通り越してその奥で
測定しなければならない。
However, each fuel rod gap is narrow, around 3 mm, and the control rod guide tube and fuel rod gaps are even narrower than each fuel rod gap, so it is difficult to measure the fuel rod gap at the back of the fuel assembly. must be measured deep inside the narrow control rod guide tubes and fuel rod gaps.

そこで、針金の先端に隙間ゲージが取り付けら
れたものや、その他のいろいろな間隙測定子が用
いられたり、別の新しい測定方法が案出されたり
しているが、いずれにも一長一短があり、未だ満
足すべきものが出現していないのが実情である。
Therefore, a gap gauge attached to the tip of a wire, various other gap measuring devices have been used, and other new measurement methods have been devised, but each has its advantages and disadvantages, and is still not used. The reality is that nothing satisfying has emerged.

この発明は前記事情に鑑みてなされたもので、
薄い弾性板の先端部両側面に互いに対向して対を
なすスペーサ及び弾性を有して自由時には先端側
が前記弾性板の板厚方向へ開き内面にストレンゲ
ージが設けられ弾性板から張り出したプローブチ
ツプを取り付けることにより、ロツド間にプロー
ブチツプを挿通してこのプローブチツプの変形に
よるストレンゲージの抵抗変化から列状に林立す
る棒状体の奥の方の狭小な棒状体間隙量をも正確
に測定することができる間隙測定プローブを提供
することを目的とする。
This invention was made in view of the above circumstances,
A pair of spacers facing each other on both sides of the tip of a thin elastic plate, and a probe tip that has elasticity and when free, the tip side opens in the thickness direction of the elastic plate and has a strain gauge on its inner surface and protrudes from the elastic plate. By attaching a probe tip between the rods, it is possible to accurately measure the narrow gap between the rods at the back of the rows of rods by inserting a probe tip between the rods and observing the change in resistance of the strain gauge caused by the deformation of the probe tip. The purpose of the present invention is to provide a gap measurement probe that can be used.

以下、この発明の一実施例を第1図乃至第9図
に基づいて説明する。第1図中1は略長方形の薄
い弾性板であり、厚さ0.15mm、幅約18mmの長い板
を熱処理した高力ベリリウム銅からなり、弾性に
富んでいる。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 9. Reference numeral 1 in FIG. 1 is a thin, approximately rectangular elastic plate, which is made of high-strength beryllium copper that has been heat-treated as a long plate with a thickness of 0.15 mm and a width of about 18 mm, and is highly elastic.

弾性板1の先端部には2つの長方形の窓孔2,
3が弾性板1の長さ方向に若干離間して形成され
ている。弾性板1の基部には、この基部の一部が
直角に折曲されてなる折曲部1aが形成されてい
る。窓孔2の縁部には、第2図に示すように弾性
板1の両側面先端側に位置して対をなすスペーサ
4,5が固着されている。これらスペーサ4,5
は板厚0.4mmの長方形板である。スペーサ4,5
の各外面間の寸法は約1mmとされている。
There are two rectangular window holes 2 at the tip of the elastic plate 1.
3 are formed slightly apart in the length direction of the elastic plate 1. A bent portion 1a is formed at the base of the elastic plate 1 by bending a portion of the base at a right angle. A pair of spacers 4 and 5 are fixed to the edges of the window hole 2, as shown in FIG. These spacers 4, 5
is a rectangular plate with a thickness of 0.4 mm. Spacers 4, 5
The dimension between each outer surface of is approximately 1 mm.

また、弾性板1の窓孔2,3間部分の両側面に
は、第4図に示すようにチツプ用スペーサ6,7
及び対をなすプローブチツプ8,9が重ね合せら
れて取り付けられている。チツプ用スペーサ6,
7は板厚0.3mmのベリリウム銅からなる長方形板
である。プローブチツプ8,9は板厚0.12mmのベ
リリウム銅からなる弾性に富んだ板であり、チツ
プ用スペーサ6,7と同形同大の基部と、この基
部からスペーサ4,5側へ突出し弾性板1から張
り出した三角形状部とからなつている。この三角
形状部は、該三角形状部のどの位置においても曲
げ応力が等しくなるような平等強さはりの構造を
なしており、その頂部には、第3図に示すように
斜面10,11が形成されている。斜面10,1
1は三角形状部の頂角の二等分線に対し対称的に
形成されている。また、プローブチツプ8,9は
第2図に示すように弾性板1に対し対称的に、全
体として略ハの字形となるように先端が開いた状
態に設けられている。プローブチツプ8,9の三
角形状部の先端は第4図に示すように弾性板1側
が凹となるように湾曲させられて円弧部12,1
3が形成されている。円弧部12,13の自由時
における立上り高さhは約2.1mmであり、従つて
各円弧部12,13の外面最大間隔は約5.2mmと
されている。
Also, on both sides of the portion between the window holes 2 and 3 of the elastic plate 1, chip spacers 6 and 7 are provided as shown in FIG.
and a pair of probe chips 8 and 9 are attached in an overlapping manner. Chip spacer 6,
7 is a rectangular plate made of beryllium copper with a thickness of 0.3 mm. The probe chips 8 and 9 are highly elastic plates made of beryllium copper with a thickness of 0.12 mm, and have a base that is the same shape and size as the chip spacers 6 and 7, and an elastic plate that protrudes from this base toward the spacers 4 and 5. It consists of a triangular part extending from 1. This triangular part has a uniform strength beam structure in which the bending stress is equal at any position of the triangular part, and the top thereof has slopes 10 and 11 as shown in FIG. It is formed. slope 10,1
1 is formed symmetrically with respect to the bisector of the apex angle of the triangular portion. Further, as shown in FIG. 2, the probe tips 8 and 9 are provided symmetrically with respect to the elastic plate 1, with their tips open so as to form a substantially V-shape as a whole. The tips of the triangular parts of the probe tips 8 and 9 are curved so that the elastic plate 1 side is concave as shown in FIG.
3 is formed. The rising height h of the arcuate portions 12, 13 when they are free is about 2.1 mm, and therefore the maximum distance between the outer surfaces of each of the arcuate portions 12, 13 is about 5.2 mm.

また、プローブチツプ8,9の三角形状部の内
面(弾性板1側面)の略中央部にはストレンゲー
ジ14,15が貼着されている。これらストレン
ゲージ14,15にはそれぞれリード線16が接
続され、これらリード線16はそのままあるいは
窓孔3を通過させられ弾性板1の一側面側に集め
られ、弾性板1に沿つてこの弾性板1の基端部側
へ延ばされ、この基端部に取り付けられたコネク
タ17に接続されている。各リード線16は絶縁
電線からなり、弾性板1に貼着された接着絶縁テ
ープ18の上に重ねられ、さらにもう一枚の接着
絶縁テープ18により覆われ、この接着絶縁テー
プ18を弾性板1に貼着することにより弾性板1
に動かぬように取り付けられている。また、弾性
板1のリード線16が接着絶縁テープ18により
取り付けられた面と反対側の面には、第5図に示
すようにリード線16及び接着絶縁テープ18と
バランスをとるために他の接着絶縁テープ18が
貼着されている。なお、コネクタ17に接続され
たリード線16はコネクタ17内においてブリツ
ジ回路が組まれるように結線され、コネクタ17
にブリツジボツクス19が電気的に接続され、ブ
リツジボツクス19には、第8図に示すように増
幅器20,アナログデジタル変換器21及び間隙
測定寸法表示器22が電気的に接続されている。
Further, strain gauges 14 and 15 are attached to approximately the center of the inner surfaces of the triangular portions of the probe tips 8 and 9 (side surfaces of the elastic plates 1). Lead wires 16 are connected to each of these strain gauges 14 and 15, and these lead wires 16 are passed through the window hole 3 and gathered on one side of the elastic plate 1, and are passed along the elastic plate 1. 1 and is connected to a connector 17 attached to the base end. Each lead wire 16 is made of an insulated wire, and is superimposed on the adhesive insulating tape 18 attached to the elastic plate 1, and is further covered with another adhesive insulating tape 18. By pasting it on the elastic plate 1
It is attached so that it does not move. In addition, on the surface of the elastic plate 1 opposite to the surface to which the lead wire 16 is attached with the adhesive insulating tape 18, as shown in FIG. An adhesive insulating tape 18 is attached. Note that the lead wire 16 connected to the connector 17 is connected so that a bridge circuit is assembled within the connector 17.
A bridgebox 19 is electrically connected to the bridgebox 19, and an amplifier 20, an analog-to-digital converter 21, and a gap measurement dimension display 22 are electrically connected to the bridgebox 19, as shown in FIG.

しかして、燃料集合体の各燃料棒間隙及び制御
棒案内管、燃料棒間隙を測定する場合には、これ
らの間隙に上述のように構成された間隙測定プロ
ーブを、その先端(プローブチツプ8,9が取り
付けられた部)側から挿入する。この際、プロー
ブチツプ8,9の先端は湾曲しているのでスムー
スに内側へ撓められて燃料棒間隙へ入り込む。プ
ローブチツプ8,9が撓むと、ストレンゲージ1
4,15の電気抵抗が変化し、ブリツジ回路の出
力が増幅器20,アナログデジタル変換器21を
経て間隙測定寸法表示器22に燃料棒間隙寸法測
定値として表示される。
Therefore, when measuring the fuel rod gaps, control rod guide tubes, and fuel rod gaps in a fuel assembly, a gap measurement probe configured as described above is inserted into these gaps at its tip (probe tip 8, Insert from the side where 9 is attached. At this time, since the tips of the probe tips 8 and 9 are curved, they are smoothly bent inward and enter the gap between the fuel rods. When the probe tips 8 and 9 bend, the strain gauge 1
The electrical resistances 4 and 15 change, and the output of the bridge circuit passes through an amplifier 20 and an analog-to-digital converter 21 and is displayed on a gap measurement size display 22 as a fuel rod gap size measurement value.

また、燃料集合体の奥部の各燃料棒間隙を測定
するには、各燃料棒間隙よりも狭い制御棒案内
管、燃料棒間隙を前記同様に測定し、さらにその
奥へ間隙測定プローブを進めて奥部の各燃料棒間
隙を前記同様に測定する。この場合、間隙測定プ
ローブは、先端のプローブチツプ8,9が湾曲さ
せられ、かつ弾性板1が自由に撓むことができる
ので燃料集合体の奥部まで容易に進入することが
できる。
To measure the gaps between the fuel rods deep inside the fuel assembly, measure the control rod guide tube and fuel rod gap, which are narrower than the gaps between the fuel rods, in the same manner as above, and then advance the gap measurement probe deeper into the gap. Then measure the gap between each fuel rod in the inner part in the same manner as above. In this case, the probe tips 8 and 9 at the tip of the gap measurement probe are curved, and the elastic plate 1 can be freely bent, so that the gap measurement probe can easily penetrate deep into the fuel assembly.

また、間隙測定プローブが特に狭隘な燃料棒間
隙や制御棒案内管、燃料棒間隙に挿入された場合
でも、前述のようにプローブチツプ8,9の先端
に斜面10,11が形成されているためにプロー
ブチツプ8,9の先端同志が接触するのを回避す
ることができ、これによりプローブチツプ8,9
を保護することができる。
Furthermore, even when the gap measurement probe is inserted into a particularly narrow fuel rod gap, control rod guide tube, or fuel rod gap, the slopes 10 and 11 are formed at the tips of the probe tips 8 and 9 as described above. It is possible to avoid the tips of the probe tips 8 and 9 from coming into contact with each other.
can be protected.

また、間隙測定プローブが各燃料棒間隙または
制御棒案内管、燃料棒間隙に入るとき、これらの
間隙が非常に狭い場合(第2図におけるスペーサ
4の上面,スペーサ5の下面間隔より狭いとき)
には、スペーサ4,5が燃料棒,制御棒案内管に
当り、その位置より先へ間隙測定プローブを進め
ることができない。従つて、この場合においても
プローブチツプ8,9の破損を防止することがで
きる。
Also, when the gap measurement probe enters each fuel rod gap, control rod guide tube, or fuel rod gap, if these gaps are very narrow (when narrower than the distance between the upper surface of spacer 4 and the lower surface of spacer 5 in Fig. 2).
In this case, the spacers 4 and 5 hit the fuel rod and control rod guide tubes, and the gap measurement probe cannot be advanced beyond that position. Therefore, even in this case, damage to the probe tips 8 and 9 can be prevented.

また、プローブチツプ8,9は前述のように三
角形状の平等強さばりの構造とされているので、
プローブチツプ8,9が撓んだ場合において、そ
の三角形状部のどの位置においても曲げ応力が等
しいという特徴を有し、従つてプローブチツプ
8,9へのストレンゲージの取付位置のずれによ
る僅かな間隙測定誤差の発生をも防止することが
できる。
In addition, since the probe tips 8 and 9 have a triangular structure with equal strength as described above,
When the probe tips 8, 9 are bent, the bending stress is the same at any position of the triangular part, and therefore, there is a slight bending stress due to a deviation in the mounting position of the strain gauge to the probe tips 8, 9. It is also possible to prevent gap measurement errors from occurring.

また、燃料棒間隙、制御棒案内管と燃料棒との
間隙に間隙測定プローブが挿入されて蛇行し、燃
料棒または制御棒案内管へのプローブチツプ8の
接触状態と、プローブチツプ9の接触状態が異な
つていても、ストレンゲージ8,9の抵抗はブリ
ツジ回路により合成されるので常に高精度の測定
結果が得られる。
In addition, a gap measurement probe is inserted into the gap between the fuel rods and the gap between the control rod guide tube and the fuel rod and meandering, and the contact state of the probe tip 8 with the fuel rod or control rod guide tube and the contact condition of the probe tip 9 with the fuel rod or the control rod guide tube are measured. Even if the resistances of the strain gauges 8 and 9 are different, since the resistances of the strain gauges 8 and 9 are combined by the bridge circuit, highly accurate measurement results can always be obtained.

なお、燃料棒間隙、制御棒案内管と燃料棒との
間隙の測定範囲はプローブチツプ8,9の大きさ
を変えることにより変更可能である。
The measurement range of the fuel rod gap and the gap between the control rod guide tube and the fuel rod can be changed by changing the sizes of the probe tips 8 and 9.

以上説明したようにこの発明によれば、薄い弾
性板の先端部両側面に互いに対向して対をなすス
ペーサ及び弾性を有して自由時には先端側が前記
弾性板の板厚方向へ開き内面にストレンゲージが
設けられ弾性板から張り出したプローブチツプを
取り付けた構成であるから列状に林立する棒状体
間隙に挿入された場合にその外側の間隙を容易に
かつ正確に測定することができるのはもちろんの
こと、弾性板の弾性により蛇行することができ、
これにより棒状体間隙からなる通路が多少曲つた
り、この通路の幅が部分的に異なつたりしていて
も奥の方の狭小な棒状体間隙をも直接、連続的に
かつ正確に測定することができ、また、弾性板の
一方側に位置するプローブチツプの棒状体への接
触状態と、弾性板の他方側に位置するプローブチ
ツプの棒状体への接触状態とが異なつていても両
プローブチツプに設けられたストレンゲージの抵
抗が合成されるので、常に高精度の測定結果を得
ることができ、また、棒状体間隙が非常に狭い場
合にはスペーサが棒状体に当りそれ以上間隙測定
プローブを進めることができないのでこの間隙測
定プローブの破損を防止することができる。さら
に、プローブチツプが平等強さはりの構造を持つ
三角形板状をなしているので、プローブチツプが
撓んだ状態において、プローブチツプのどの位置
においても曲げ応力が等しくなるので、プローブ
チツプへのストレンゲージの取付位置のずれによ
る間〓測定誤差の発生を防止することができる。
また、プローブチツプの先端が弾性板側が凹とな
るように湾曲しているので、棒状体間〓に間〓測
定プローブを挿入する際に、一対のプローブチツ
プが棒状体に引つ掛かつてこの棒状体やプローブ
チツプを傷付けたりすることなく、互いに接近す
る方向に撓まされるので、棒状体間〓に間〓測定
プローブをスムーズに挿入することができより測
定が容易になる。
As explained above, according to the present invention, a thin elastic plate has a pair of opposing spacers on both side surfaces of the tip thereof, and has elasticity, so that when free, the tip side opens in the thickness direction of the elastic plate and creates a strain on the inner surface. Since the probe is equipped with a gauge and a probe tip protruding from an elastic plate, it is possible to easily and accurately measure the outer gap when inserted into a gap between rod-like bodies arranged in a row. It is possible to meander due to the elasticity of the elastic plate,
As a result, even if the passage consisting of the rod-shaped body gap is slightly curved or the width of this passage varies partially, even the narrow rod-shaped body gap at the back can be directly, continuously, and accurately measured. Furthermore, even if the state of contact of the probe tip with the rod-shaped body located on one side of the elastic plate is different from the state of contact of the probe tip with the rod-shaped body of the probe tip located on the other side of the elastic plate, both Since the resistances of the strain gauges installed on the probe tip are combined, highly accurate measurement results can always be obtained.Also, if the gap between the rods is very narrow, the spacer will hit the rod and it will not be possible to measure the gap further. Since the probe cannot be advanced, damage to the gap measurement probe can be prevented. Furthermore, since the probe tip has a triangular plate shape with an equal-strength beam structure, the bending stress is the same at any position on the probe tip when the probe tip is bent, so the stress on the probe tip is reduced. It is possible to prevent measurement errors caused by misalignment of the mounting position of the gauge.
In addition, since the tip of the probe tip is curved so that the elastic plate side is concave, when inserting the measuring probe between the rod-shaped bodies, the pair of probe tips will be caught on the rod-shaped body. Since they are bent in the direction of approaching each other without damaging the body or the probe tip, the measuring probe can be smoothly inserted between the rod-shaped bodies, making measurement easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す側面図、第
2図はその下面図、第3図はそのプローブチツプ
の側面図、第4図はそのプローブチツプの断面
図、第5図は第1図の―線に沿う断面図、第
6図はその間隙測定プローブと棒状体との関係を
示す斜視図、第7図はそのプローブチツプが棒状
体間隙へ挿入される状態を示す概略説明図、第8
図はその間隙測定プローブへの表示器等の接続を
示すブロツク図である。 1……弾性板、4,5……スペーサ、6,7…
…チツプ用スペーサ、8,9……プローブチツ
プ、14,15……ストレンゲージ。
1 is a side view showing an embodiment of the present invention, FIG. 2 is a bottom view thereof, FIG. 3 is a side view of the probe tip, FIG. 4 is a sectional view of the probe tip, and FIG. 5 is a sectional view of the probe tip. FIG. 6 is a perspective view showing the relationship between the gap measuring probe and the rod-shaped body, and FIG. 7 is a schematic explanatory view showing the state in which the probe tip is inserted into the gap between the rod-shaped bodies. , 8th
The figure is a block diagram showing the connection of a display, etc. to the gap measuring probe. 1... Elastic plate, 4, 5... Spacer, 6, 7...
...Spacer for tip, 8, 9... Probe tip, 14, 15... Strain gauge.

Claims (1)

【特許請求の範囲】[Claims] 1 薄い弾性板の先端部両側面に対向して、この
弾性板の先端部から基端部方向へ順次対をなすス
ペーサ及び弾性を有して自由時には先端側が前記
弾性板の板厚方向へ開き内面にストレンゲージが
設けられた弾性板から張り出した対をなすプロー
ブチツプを取り付け、このプローブチツプに電気
回路を接続してなり、前記プローブチツプが平等
強さはりの構造を持つ三角形板状をなし、かつ前
記プローブチツプの先端が前記弾性板側が凹とな
るように湾曲させられており、間〓に前記プロー
ブチツプを挿入することにより間〓が測定される
ことを特徴とする間〓測定プローブ。
1 Opposed to both sides of the distal end of a thin elastic plate, spacers are arranged in pairs sequentially from the distal end to the proximal end of the elastic plate, and have elasticity so that when free, the distal end side opens in the thickness direction of the elastic plate. A pair of probe tips protruding from an elastic plate provided with a strain gauge on the inner surface is attached, and an electric circuit is connected to the probe tip, and the probe tip has a triangular plate shape with a structure of equal strength beams. , and a tip of the probe tip is curved so that the elastic plate side is concave, and the gap is measured by inserting the probe tip into the gap.
JP58031200A 1983-02-26 1983-02-26 Gap measuring probe Granted JPS59157503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58031200A JPS59157503A (en) 1983-02-26 1983-02-26 Gap measuring probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031200A JPS59157503A (en) 1983-02-26 1983-02-26 Gap measuring probe

Publications (2)

Publication Number Publication Date
JPS59157503A JPS59157503A (en) 1984-09-06
JPH0261682B2 true JPH0261682B2 (en) 1990-12-20

Family

ID=12324772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031200A Granted JPS59157503A (en) 1983-02-26 1983-02-26 Gap measuring probe

Country Status (1)

Country Link
JP (1) JPS59157503A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819444Y2 (en) * 1978-02-15 1983-04-21 三菱重工業株式会社 Bent pipe inner diameter measuring device
JPS5714805U (en) * 1980-06-18 1982-01-26

Also Published As

Publication number Publication date
JPS59157503A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
WO2018228290A1 (en) Strain gauge, pressure sensor, and interventional medical catheter
JPH11287715A (en) Thermocouple
US4703253A (en) Probe for monitoring the corrosion of a steel reinforcement member in a concrete body
KR940004654B1 (en) Spring-force measuring apparatus
CN210774452U (en) Strain gauge, pressure sensor and interventional medical catheter
JPH0261682B2 (en)
CN117470421A (en) Full-bridge type semiconductor strain gauge and manufacturing method thereof
JPH0431528Y2 (en)
JP2523772B2 (en) Clip type capacitive strain gauge
CN112179943B (en) Probe for measuring heat conductivity coefficient and preparation method thereof
JPH0236242Y2 (en)
KR100545728B1 (en) 5 sensor conductive probe
US3482199A (en) Standard thermometer
JPH0261681B2 (en)
JPH0454467Y2 (en)
JPH0320749Y2 (en)
JPH032802Y2 (en)
JPH01233331A (en) Sheathed thermocouple
US4025891A (en) Method for making a hot wire anemometer and product thereof
JPS6020938Y2 (en) Parts for semiconductor integrated circuits
JPH11132988A (en) Probe of gauge for measuring crack
CN114076869A (en) Universal COF combined type electrical measurement jig device and installation method
JP3131166B2 (en) Beryllium reflector bending measurement method
JPH0729497Y2 (en) Multi-pin probe
JPS5824724Y2 (en) feeler gauge