JPH0261608A - Scan optical system with surface tilt correction - Google Patents

Scan optical system with surface tilt correction

Info

Publication number
JPH0261608A
JPH0261608A JP21338488A JP21338488A JPH0261608A JP H0261608 A JPH0261608 A JP H0261608A JP 21338488 A JP21338488 A JP 21338488A JP 21338488 A JP21338488 A JP 21338488A JP H0261608 A JPH0261608 A JP H0261608A
Authority
JP
Japan
Prior art keywords
optical system
scanning
light source
deflector
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21338488A
Other languages
Japanese (ja)
Other versions
JP2629870B2 (en
Inventor
Kazuo Yamakawa
山川 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP21338488A priority Critical patent/JP2629870B2/en
Publication of JPH0261608A publication Critical patent/JPH0261608A/en
Application granted granted Critical
Publication of JP2629870B2 publication Critical patent/JP2629870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To reduce the cost and facilitate the adjustment by composing a linear image formation optical system of a single lens which is convex on its light source side at right angles to a scanning surface and symmetrically convex on its deflector side about the optical axis. CONSTITUTION:A laser scanning device consists of a semiconductor laser 1 as a light source, the linear image formation optical system 2, a polygon mirror 3, and ftheta lens 4, a photosensitive drum 5, etc. Then the linear image formation optical system 2 consists of the single lens which is convex on the side of the light source 1 at right angles to the scanning surface and symmetrically convex on the side of the deflector 3 about the optical axis. Namely, nearly parallel luminous flux is obtain in the scanning surface direction and a linear image is formed on the deflector 3 at right angles to the scanning surface. Consequently, the cost is reduced greatly and the adjustment is facilitated.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、主としてレーザビームプリンタ等に用いら
れて、走査線の副走査方向についてのピッチのムラを除
去する面倒れ補正走査光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a surface tilt correction scanning optical system that is mainly used in laser beam printers and the like and eliminates pitch unevenness in the sub-scanning direction of scanning lines.

さらに詳述すると、光源から発した光線束を偏向器の偏
向反射面上に線状に結像する線状結像光学系と、上記偏
向器で反射偏向された光線束を被走査物上に結像する走
査結像光学系とを備えた面倒れ補正走査光学系において
、特に上記線状結像光学系に関するものである。
More specifically, there is a linear imaging optical system that forms a linear image of a beam of light emitted from a light source onto a deflection/reflection surface of a deflector, and a linear imaging optical system that forms a linear image of a beam of light emitted from a light source onto a deflection/reflection surface of a deflector, and a beam of light reflected and deflected by the deflector onto an object to be scanned. The present invention particularly relates to the linear imaging optical system described above in a surface tilt correction scanning optical system including a scanning imaging optical system that forms an image.

[従来の技術] レーザビームプリンタは、記録を極めて高速で行える利
点に加えて、昨今、その小型化と低コスト化が次第に実
現されてきており、OA4!器の多様化および発達に伴
って、益々その需要か高まっている。
[Prior Art] Laser beam printers have the advantage of being able to perform recording at extremely high speeds, and in recent years, they have gradually become smaller and lower in cost. With the diversification and development of pottery, the demand for it is increasing.

次に、第7図を参照してこのようなレーザビームプリン
タを説明する。
Next, such a laser beam printer will be explained with reference to FIG.

光源としての半導体レーザlからの画情情報に応じて直
接変調されたレーザビームBは線状結像光学系2により
走査面に直交する方向について収束され、偏向器である
ポリゴンミラー3の偏向反射面3aに線状に結像する。
A laser beam B directly modulated according to image information from a semiconductor laser l as a light source is converged in a direction perpendicular to the scanning plane by a linear imaging optical system 2, and is deflected and reflected by a polygon mirror 3 as a deflector. A linear image is formed on the surface 3a.

この偏向反射面3aて反射されたレーザビームBはポリ
ゴンミラー3の回転に伴って偏向され、走査結像系であ
るfθレンズ4によって感光体ドラム5上に結像され、
六方向に走査するように構成されている。
The laser beam B reflected by this deflection reflecting surface 3a is deflected as the polygon mirror 3 rotates, and is imaged on the photoreceptor drum 5 by an fθ lens 4 which is a scanning imaging system.
It is configured to scan in six directions.

このようなレーザビームプリンタにおいて、光源lから
の光線束Bを走査するために用いられるポリゴンミラー
3等の偏向器の偏向反射面3aには、製作誤差や取付誤
差、あるいは回転時の振動等によって、走査面に直交す
る方向に対して多少の倒れ誤差かある。
In such a laser beam printer, the deflection reflection surface 3a of the deflector such as the polygon mirror 3 used to scan the beam B from the light source 1 may be affected by manufacturing errors, installation errors, vibrations during rotation, etc. , there is some inclination error in the direction perpendicular to the scanning plane.

そのため、このような倒れ誤差のある偏向反射面3aて
反射された光線束Bは、被走査物体上の結像位置か副走
査方向にずれ、走査線のピッチのムラか生じる。そして
、この走査線のピッチのムラは、例λばレーザビームプ
リンタのような記録装置においては、記録の画質低下を
引き起こすことになる。
Therefore, the beam B reflected by the deflection reflecting surface 3a having such a tilt error shifts the image formation position on the object to be scanned in the sub-scanning direction, resulting in uneven scanning line pitch. This unevenness in the pitch of the scanning lines causes a deterioration in the image quality of recording, for example in a recording apparatus such as a laser beam printer.

前述した面倒れ補正走査光学系は、このような走査線の
ピッチムラを除去するためのものであり、光源1からの
光線束Bを一旦線状結像光学系2によって走査面に直交
する方向に収束させて偏向器の偏向反射面3a上に線状
に結像させ、偏向反射点からの光線束を走査結像光学系
によってこの方向において復元して被走査物体上に共役
に結像することで、偏向反射面3aの倒れ誤差の影響を
受けないようにするものである。
The above-mentioned surface tilt correction scanning optical system is intended to eliminate such pitch unevenness of the scanning line, and once the beam B from the light source 1 is directed to the direction perpendicular to the scanning plane by the linear imaging optical system 2. Converging and forming a linear image on the deflection reflection surface 3a of the deflector, restoring the light beam from the deflection reflection point in this direction by a scanning imaging optical system and forming a conjugate image on the object to be scanned. This is to avoid being affected by the tilting error of the deflection reflecting surface 3a.

なお、この明細書において、「走査面」とは、走査され
る光線束の時系列的な集合によって形成される平面、即
ち、被走査物における主走査ラインと、この面倒れ補正
走査光学系の光軸とを含む平面を意味するものとする。
In this specification, the term "scanning plane" refers to a plane formed by a time-series collection of light beams to be scanned, that is, the main scanning line on the object to be scanned, and the plane of this surface tilt correction scanning optical system. It shall mean a plane that includes the optical axis.

[発明が解決しようとする課題] 従来、このような走査光学系における半導体レーザー等
の拡り角の大きな光源に対しての線状結像光学系は、光
源から発した光線束を、先ずコリメータレンズにとって
略平行な光束とし、次に走査面に直交する方向に正の屈
折力をもったシリンドリカルレンズによって偏向反射面
上に線状に結像させるものであった。
[Problems to be Solved by the Invention] Conventionally, in such a scanning optical system, a linear imaging optical system for a light source with a large divergence angle, such as a semiconductor laser, first passes a beam of light emitted from a light source through a collimator. A light beam is made approximately parallel to the lens, and then a linear image is formed on a deflection and reflection surface by a cylindrical lens having positive refractive power in a direction perpendicular to the scanning plane.

この場合、光源の拡り角の大きさや、コリメータレンズ
が取り込む光線束の割合によっても異なるか、コリメー
タレンズとしては普通2〜4枚構成のレンズ系か必要て
あり、さらにシリンドリカルレンズを配置することによ
って線状結像光学系か構成される。
In this case, it may depend on the size of the divergence angle of the light source and the proportion of the light beam taken in by the collimator lens, but the collimator lens usually requires a lens system consisting of 2 to 4 lenses, and a cylindrical lens may also be arranged. A linear imaging optical system is constructed.

この発明は、線状結像光学系を最も単純な単レンズのみ
で構成し大幅なコスト低減を図り、さらに調整を極めて
簡素化することを目的とする面倒れ補正光学系を提供す
るにある。
SUMMARY OF THE INVENTION The present invention provides an optical system for correcting surface inclination, which aims to significantly reduce costs by configuring a linear imaging optical system using only the simplest single lens, and further simplifies adjustment.

[課題を解決するための手段および作用]この発明によ
る面倒れ補正走査光学系の線状結像光学系は、光源側か
走査面に直交する方向に凸面て、偏向器側か光軸対称の
凸面である単レンズで構成することを特徴とする。
[Means and effects for solving the problem] The linear imaging optical system of the scanning optical system for surface tilt correction according to the present invention has a convex surface on the light source side in a direction perpendicular to the scanning surface, and a convex surface on the deflector side in the direction perpendicular to the scanning surface. It is characterized by being composed of a single lens with a convex surface.

この発明による線状結像光学系においては、光源から発
した光線束を光源側の面を走査方向に直交する方向に凸
面とし、偏向器側の面を光軸対称の凸面とすることて、
走査面方向ては略平行の光束とし、走査面方向に直交す
る方向では偏向器上で線状に結像する。
In the linear imaging optical system according to the present invention, the light beam emitted from the light source is formed so that the surface on the light source side is a convex surface in a direction perpendicular to the scanning direction, and the surface on the deflector side is a convex surface symmetrical to the optical axis.
The light beam is substantially parallel in the scanning plane direction, and a linear image is formed on the deflector in the direction perpendicular to the scanning plane direction.

光源の拡り角か大きく、また光源から発した光束の多く
を取り込む場合は、偏向器側の面を光軸対称の凸の非球
面として収差を小さくすることか望ましい。
If the divergence angle of the light source is large and a large amount of the light beam emitted from the light source is to be captured, it is desirable to reduce aberrations by making the surface on the deflector side a convex aspherical surface symmetrical to the optical axis.

また、光源側の面は、走査方向に直交する方向に凸の非
球面とし、この方向における収差補正をよりよくするこ
とが望ましい。
Further, it is desirable that the surface on the light source side be an aspherical surface that is convex in a direction perpendicular to the scanning direction to better correct aberrations in this direction.

偏向器面一ヒて線状結像する光束の走査面に直交する方
向のNA’はこの方向ての光源の拡り角。
The NA' in the direction perpendicular to the scanning plane of the light beam that forms a linear image on the deflector surface is the divergence angle of the light source in this direction.

取り込む光束の割合、さらに被走査物における最終スポ
ット径と走査光学系の走査面に直交する方向での倍率(
即ち、面倒れ補正のため、この方向ては偏向点と被走査
物とは略共役関係にあり、この結像倍率を指す。)とて
決定されるが、このNA’が大きい場合は、光源側の面
を走査方向に直交する方向に凸の非球面とすることによ
って。
The ratio of the captured luminous flux, the final spot diameter on the scanned object, and the magnification in the direction perpendicular to the scanning plane of the scanning optical system (
That is, due to surface tilt correction, the deflection point and the object to be scanned have a substantially conjugate relationship in this direction, and this refers to the imaging magnification. ), but if this NA' is large, the surface on the light source side is made an aspherical surface that is convex in the direction perpendicular to the scanning direction.

この方向の収差を小さくする必要かある。Is it necessary to reduce aberration in this direction?

即ち、走査方向に直交する方向においては、偏光器側の
凸の非球面(光軸対称)に応じて光源側の凸の非球面(
方向に直ヌする方向)を決めることで、より大きなNA
”に対して上記線状結像系が得られる。
That is, in the direction perpendicular to the scanning direction, the convex aspherical surface (optical axis symmetry) on the light source side corresponds to the convex aspherical surface (optical axis symmetry) on the polarizer side.
A larger NA can be achieved by determining the
”, the above linear imaging system is obtained.

このようにして、線状結像光学系を単レンズのみで構成
することができるため、コストの大幅な低減および調整
の簡素化が可能となる。
In this way, the linear imaging optical system can be configured with only a single lens, making it possible to significantly reduce costs and simplify adjustment.

特に、コスト低減では、例えば、レンズをダイレクトプ
レス等の製造方法によればその効果は非常に大きなもの
となる。
In particular, in terms of cost reduction, for example, if the lens is manufactured by a manufacturing method such as direct pressing, the effect will be very large.

[実 施 例] 以下、この発明の実施例を図面に基づいて具体的に説明
する。この発明による面倒れ補正走査光学系は、例えば
レーザビームプリンタ等のレーザ走査装置において用い
られる光学系である。
[Example] Hereinafter, an example of the present invention will be specifically described based on the drawings. The surface tilt correction scanning optical system according to the present invention is an optical system used, for example, in a laser scanning device such as a laser beam printer.

第7図に示すように、レーザ走査装置は、光源としての
半導体レーザl、線状結像光学系2.ポリゴンミラー3
.fθレンズ4および感光体ドラム5等から構成されて
いる。
As shown in FIG. 7, the laser scanning device includes a semiconductor laser 1 as a light source, a linear imaging optical system 2. polygon mirror 3
.. It is composed of an fθ lens 4, a photoreceptor drum 5, and the like.

半導体レーザ1からは1画面情報に応じて直接変調され
たレーザビームBが発せられ、光線束の一例であるこの
レーザビームBは線状結像光学系2により線状に収束さ
れ、偏向器の一例であるポリゴンミラー3の偏向反射面
3aに結像する。この偏向反射面3aで反射された後の
レーザビームBは、ポリゴンミラー3の回転に伴って偏
向され、走査結像光学系の一例であるfθレンズ4によ
って感光体ドラム5上に結像されて図中へ方向に走査さ
れる。
A laser beam B that is directly modulated according to one-screen information is emitted from the semiconductor laser 1, and this laser beam B, which is an example of a beam bundle, is linearly converged by the linear imaging optical system 2, and is focused by the deflector. An image is formed on a deflection reflection surface 3a of a polygon mirror 3, which is an example. The laser beam B reflected by the deflection reflecting surface 3a is deflected as the polygon mirror 3 rotates, and is imaged on the photoreceptor drum 5 by an fθ lens 4, which is an example of a scanning imaging optical system. The image is scanned in the direction shown in the figure.

面倒れ補正走査光学系は、主に上述した線状結像光学系
2と走査結像光学系4とからなり、偏向器3の偏向反射
面3aの面倒れにより生じる走査線のピッチのずれを除
去するものである。
The surface tilt correction scanning optical system mainly consists of the above-mentioned linear imaging optical system 2 and scanning imaging optical system 4, and corrects the pitch deviation of the scanning line caused by the surface tilt of the deflection reflecting surface 3a of the deflector 3. It is to be removed.

以下、この発明による線状結像光学系2の具体的構成を
表わす実施例1および実施例2の諸元を第2表および第
3表に示す。
Tables 2 and 3 show the specifications of Example 1 and Example 2 representing the specific configuration of the linear imaging optical system 2 according to the present invention.

なお、実施例は2例あり、それぞれ、第1図および第2
図にそのレンズ構成図を示し、第3図ないし第6図に収
差曲線図を示す。下記の第1表にそれらの対応関係を一
括して示す。
There are two examples, respectively shown in Fig. 1 and Fig. 2.
The lens configuration diagram is shown in the figure, and the aberration curve diagrams are shown in FIGS. 3 to 6. Table 1 below summarizes their correspondence.

第   1   表 第     2     表 f=IO,N、八、−0,2(光源側)曲率′f−径 
 曲率半径 ・  軸上面間隔 屈折率各しンズ構成区
において、(A)は走査面に沿って切断したレンズ配置
を、また、(B)は走査面に直交する面に沿って切断し
たレンズ配置をそれぞれ示すものである。
Table 1 Table 2 f = IO, N, 8, -0, 2 (light source side) curvature 'f - diameter
Radius of curvature・Axis spacing Refractive indexIn each lens component section, (A) shows the lens arrangement cut along the scanning plane, and (B) shows the lens arrangement cut along the plane perpendicular to the scanning plane. They are shown below.

各収差図の収差曲線は、実際の光束の進む方向と逆の方
向でトレースして光源面での評価としている。
The aberration curves in each aberration diagram are evaluated on the light source plane by tracing them in a direction opposite to the direction in which the light beam actually travels.

即ち、第1.第2実施例の二個とも光源から発した光束
は光学系を通った後走査面に沿う方向では平行光束とな
り、走査面に直交する方向では結像している。
That is, 1st. After passing through the optical system, the light beams emitted from the two light sources in the second embodiment become parallel light beams in the direction along the scanning plane, and form an image in the direction perpendicular to the scanning plane.

「1′シリンドリ力ル非球面 a  4−0.6ゴ324  X   In−’   
 a  6− 0.15252  X   lff−’
r2■非球面 a 4  +  0.47旧コ X  10−コ   
a6  +  0.21518  x  10−’(光
源はr、から−6,691mm) (走査面に直交する方向での結像位置から120m5)
但し、非球面形状は、光軸方向にX座標、その直交方向
にY座標をとったとき。
"1' Cylindrical force Drill aspherical surface a 4-0.6 go 324 X In-'
a 6- 0.15252 X lff-'
r2 ■ Aspherical surface a 4 + 0.47 old co X 10-co
a6 + 0.21518 x 10-' (-6,691 mm from the light source r) (120 m5 from the imaging position in the direction perpendicular to the scanning plane)
However, for an aspherical shape, the X coordinate is taken in the direction of the optical axis, and the Y coordinate is taken in the direction perpendicular to the optical axis.

(以下余白) a+:JF球面係数 第 3表 f=IO,N、^、at 0.25 (光源側)曲率半
径 曲率半径 軸上面間隔 屈折率 rI′シリンドリカル非球面 a4−0.41171  X  10−’    aa
  +  0.751HX  10−’「2°非球面 a4 + 0.48576 x  10−’  aa 
+ 0.22954 x  10−’(光源は「、から
−8,015m■) (走査面に直交する方向での結像位置から100110
0l1 L、、非球面形状は、光軸方向にX座標、その
直交方向にY座標をとったとき、 [発明の効果] 以上説明したとおり、この発明によれば最も簡単な単レ
ンズのみで面倒れ補正走査光学系の線状結像光学系を構
成することかできる。しかも、何ら性能を落すことなく
極めて鮮明な走査光学系を形成することが可能となる。
(Leaving space below) a+: JF spherical coefficient Table 3 f = IO, N, ^, at 0.25 (Light source side) Radius of curvature radius of curvature axis upper surface interval Refractive index rI' Cylindrical aspherical surface a4-0.41171 X 10- ' aa
+ 0.751HX 10-' 2° aspherical surface a4 + 0.48576 x 10-' aa
+ 0.22954 x 10-' (light source is ', -8,015 m) (100110 m from the imaging position in the direction perpendicular to the scanning plane)
0l1 L,, When the aspherical shape is taken with the X coordinate in the direction of the optical axis and the Y coordinate in the direction perpendicular to the It is also possible to configure a linear imaging optical system as a deviation correction scanning optical system. Moreover, it is possible to form an extremely clear scanning optical system without any deterioration in performance.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る面倒れ補正走査光学系の実施例を示
し、第1図(A)、(B)および第2図(A)、(B)
は、実施例のレンズ構成図で、第1図(A)および第2
図(A)は走査面に沿った方向で切断したレンズ構成図
、第1図(B)および第2図(B)は走査面に直交する
方向で切断したレンズ構成図、 第3図ないし第4図は、各実施例における走査面に沿っ
た方向の収差図、 第5図ないし第6図は、各実施例における走査面に沿っ
た方向の収差図 第7図は、レーザビームプリンタの走査装置の概略図で
ある。 l ・ 2 ・ 3 ・  a 4 ・ 5 ・ B ・ 光源 線状結像光学系 偏向器 ・偏向反射面 走査結像光学系 被走査物 光線束 特許出願人 ミノルタカメラ株式会社
The drawings show an embodiment of the surface tilt correction scanning optical system according to the present invention, and FIG. 1 (A), (B) and FIG. 2 (A), (B).
1(A) and 2(A) are lens configuration diagrams of the example.
Figure (A) is a lens configuration diagram cut in the direction along the scanning plane, Figures 1 (B) and 2 (B) are lens configuration diagrams cut in the direction perpendicular to the scanning plane, and Figures 3 to 3. Figure 4 is an aberration diagram in the direction along the scanning plane in each example. Figures 5 and 6 are aberration diagrams in the direction along the scanning plane in each example. Figure 7 is an aberration diagram in the direction along the scanning plane in each example. FIG. 2 is a schematic diagram of the device. l ・ 2 ・ 3 ・ a 4 ・ 5 ・ B

Claims (2)

【特許請求の範囲】[Claims] (1)光源から発した光線束を偏向器の偏向反射面上に
線状に結像する線状結像光学系と、上記偏向器で反射偏
向された光線束を被走査物上に結像する走査結像光学系
とを備えた面倒れ補正走査光学系であって、 上記線状結像光学系が、光源側が走査面に直交する方向
に凸面で、偏向器側が光軸対称の凸面である単レンズで
構成されることを特徴とする面倒れ補正走査光学系。
(1) A linear imaging optical system that forms a linear image of the light beam emitted from the light source on the deflection reflection surface of a deflector, and forms an image of the light beam reflected and deflected by the deflector onto the object to be scanned. A scanning optical system for surface tilt correction, wherein the linear imaging optical system has a convex surface on the light source side in a direction perpendicular to the scanning surface, and a convex surface on the deflector side that is symmetrical to the optical axis. A surface tilt correction scanning optical system characterized by being composed of a single lens.
(2)上記線状結像光学系が、光源側が走査面に直交す
る方向に凸面の非球面で、偏向器側が光軸対称の凸の非
球面である単レンズで構成されることを特徴とする請求
項1記載の面倒れ補正走査光学系。
(2) The linear imaging optical system is characterized by being composed of a single lens whose light source side is a convex aspherical surface in a direction perpendicular to the scanning plane, and whose deflector side is a convex aspherical surface symmetrical to the optical axis. The surface tilt correction scanning optical system according to claim 1.
JP21338488A 1988-08-26 1988-08-26 Surface tilt correction scanning optical system Expired - Lifetime JP2629870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21338488A JP2629870B2 (en) 1988-08-26 1988-08-26 Surface tilt correction scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21338488A JP2629870B2 (en) 1988-08-26 1988-08-26 Surface tilt correction scanning optical system

Publications (2)

Publication Number Publication Date
JPH0261608A true JPH0261608A (en) 1990-03-01
JP2629870B2 JP2629870B2 (en) 1997-07-16

Family

ID=16638308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21338488A Expired - Lifetime JP2629870B2 (en) 1988-08-26 1988-08-26 Surface tilt correction scanning optical system

Country Status (1)

Country Link
JP (1) JP2629870B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192413A (en) * 1987-04-13 1993-03-09 Fuji Electric Co., Ltd. Electroosmotic dewaterer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192413A (en) * 1987-04-13 1993-03-09 Fuji Electric Co., Ltd. Electroosmotic dewaterer

Also Published As

Publication number Publication date
JP2629870B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
JPH0627904B2 (en) Laser beam scanning optics
JPH04260017A (en) Optical system for scanning light beam
JPH10142543A (en) Optical scanning device
JPH06118325A (en) Optical scanner
JPH04194814A (en) Light beam scanning optical system
JPH01121815A (en) Scanning optical system for laser beam printer or the like
JPS6350812A (en) Surface tilt correcting and scanning optical system
JPH06281872A (en) Optical system for scanning light beam
JPH11218699A (en) Multibeam optical scanner
US4586782A (en) Laser beam optical system with inclined cylindrical lens
JPH08248345A (en) Optical scanner
JPH0261608A (en) Scan optical system with surface tilt correction
JPH0261609A (en) Scan optical system with surface tilt correction
JP2716428B2 (en) Surface tilt correction scanning optical system
JPH10260371A (en) Scanning optical device
JPH01200221A (en) Light beam scanning optical system
JP2657381B2 (en) Light flux adjusting method for scanning optical device
JPS6321619A (en) Scanning optical system with correction for surface tilt
JP3069281B2 (en) Optical scanning optical system
JPS6350814A (en) Surface tilt correcting and scanning optical system
JPH055853A (en) Light scanning optical system and optical scanner
JP2750597B2 (en) High density scanning device
JPH0543090B2 (en)
JPH02285321A (en) Highly accurate toric ftheta lens system
JPH01200220A (en) Light beam scanning optical system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12