JPH026157A - Manufacture of substrate for thermal head - Google Patents

Manufacture of substrate for thermal head

Info

Publication number
JPH026157A
JPH026157A JP15743388A JP15743388A JPH026157A JP H026157 A JPH026157 A JP H026157A JP 15743388 A JP15743388 A JP 15743388A JP 15743388 A JP15743388 A JP 15743388A JP H026157 A JPH026157 A JP H026157A
Authority
JP
Japan
Prior art keywords
substrate
alumina
heat
water
soluble polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15743388A
Other languages
Japanese (ja)
Inventor
Yoichi Nishioka
洋一 西岡
Matsue Nakayama
中山 松江
Toyosaku Sato
佐藤 豊作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP15743388A priority Critical patent/JPH026157A/en
Publication of JPH026157A publication Critical patent/JPH026157A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a heat-insulating layer having low thermal conductivity and excellent heat retaining properties in required thickness by small mandays by applying the mixture of a colloidal solution containing alumina and an alumina hydrate and a water-soluble polymer onto an insulating substrate. CONSTITUTION:Pure water at 80 deg.C is added to alumina isopropoxyd Al(i-OC3 H7)3 having 99% purity, agitated strongly and hydrolyzed. 1NHCl is added, and sol as a colloidal solution is obtained through defluocculation for one hundred hr at 90 deg.C. Polyvinyl alcohol and ethylene glycol are dissolved into pure water and changed into a water-soluble polymer, thus preparing a PVA aqueous solution. Sol is added to the PVA aqueous solution, and mixed. A coating liquid is spin-coated onto an alumina substrate for one min at 500rpm. The substrate is thermally treated for one min on a hot plate heated at 200 deg.C, and cooled. The substrate is baked for one hr at 600 deg.C, thus acquiring a porous alumina film (a heat-insulating layer).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、感熱式印字装置等に使用されるサーマルヘッ
ドに好適なサーマルヘッド用基板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a thermal head substrate suitable for a thermal head used in a thermal printing device or the like.

〔従来の接衝〕[Conventional collision]

第2図は従来のサーマルヘッドの要部を示す断面図であ
る。同図において、11は絶縁性の基板、12は基板1
1上にガラスで形成された保温層であり、以上でサーマ
ルヘッド用基板を構成している。そして、この保温層1
2上に発熱抵抗体13、導電体14a及び14b、fR
護層15か順に形成されており、発熱抵抗体13の導電
体14aと14bの間の部分Aが発熱部となる。
FIG. 2 is a sectional view showing the main parts of a conventional thermal head. In the figure, 11 is an insulating substrate, 12 is a substrate 1
This is a heat insulating layer formed of glass on top of the thermal head substrate. And this heat insulation layer 1
2, a heating resistor 13, conductors 14a and 14b, fR
A protective layer 15 is formed in this order, and a portion A between the conductors 14a and 14b of the heat generating resistor 13 becomes a heat generating portion.

上記保温層12は断熱材としての機能を有し、発熱抵抗
体13で発生した熱が熱伝導率の高い基板11から必要
以上に放熱されないよう作用する。
The heat insulating layer 12 has a function as a heat insulating material, and acts to prevent the heat generated by the heat generating resistor 13 from being radiated more than necessary from the substrate 11 having high thermal conductivity.

このため、保温層12の熱伝導率は発熱抵抗体13を挾
んで反対に配置される保護層15の熱伝導率より小さい
材質とすることが望ましい。従来は、一般に保護711
5の材質としてSiO□やT a 205等が使用され
ており、一方、上記したように蓄熱層はガラスで構成さ
れており、これらの熱伝導率はほぼ等しくいずれも10
 ’cal/ci −s −”C程度であった。そこで
、従来のサーマルヘッド用基板にあっては、保温層12
を厚く形成することによって、保護層15より大きな断
熱性を持たせて、必要以上の放熱がなされないように構
成していた。
For this reason, it is desirable that the thermal conductivity of the heat insulating layer 12 be made of a material smaller than that of the protective layer 15 disposed on the opposite side with the heating resistor 13 sandwiched therebetween. Conventionally, protection 711
SiO□, T a 205, etc. are used as the material of 5. On the other hand, as mentioned above, the heat storage layer is made of glass, and the thermal conductivities of these are almost equal and are all 10.
'cal/ci-s-'C. Therefore, in the conventional thermal head substrate, the heat insulating layer 12
By forming the protective layer 15 thicker, the protective layer 15 has a greater heat insulating property than the protective layer 15, and is configured to prevent excessive heat radiation.

ところが、上記のように保温層12を厚く形成した場合
には、発熱抵抗体13の通電をオフにした後の発熱部A
の放熱が速やかになされなくなる。
However, when the heat insulating layer 12 is formed thickly as described above, the heat generating portion A after the heating resistor 13 is turned off.
heat dissipation is not done quickly.

このため、印字繰返し周期が速い場合には、発熱部Aの
温度が十分低下しないうちに次の印字が開始され、発熱
部Aの温度が上昇し過ぎて、印字品質が低下する問題が
あった。
For this reason, when the printing repetition cycle is fast, the next printing starts before the temperature of the heat generating part A has sufficiently decreased, causing the temperature of the heat generating part A to rise too much, resulting in a problem in which the print quality deteriorates. .

この問題を解消するため、熱伝導率が小さい多孔質体を
保温層として使用して、保温ノーの膜厚を薄くし、熱応
答性を速くする提案もあるが、例えばガラス内部からの
気泡の発生を利用して多孔質体を形成する場合には、膜
形成が困難なうえに、表面に凹凸ができる等の池の問題
があった。
In order to solve this problem, there is a proposal to use a porous material with low thermal conductivity as a heat insulating layer to reduce the thickness of the heat insulating layer and speed up the thermal response. When forming a porous body using generation, not only is it difficult to form a film, but there are also problems such as formation of irregularities on the surface.

そこで、セラミックスの作製技術として知られるゾル−
ゲル法により、多孔質体を形成する提案がある。例えば
、金属アルコキシドを加水分解して得られる微粒子のコ
ロイド溶液を作製し、このコロイド溶液を乾燥させゲル
とし、その後焼成してセラミックスが得られる。
Therefore, we decided to use sol, which is known as a technique for producing ceramics.
There is a proposal to form a porous body by a gel method. For example, a colloidal solution of fine particles obtained by hydrolyzing a metal alkoxide is prepared, this colloidal solution is dried to form a gel, and then fired to obtain ceramics.

このようにして得られたセラミックスは、耐熱性、均質
性、表面の平滑性の点で優れており、低温焼成が可能で
、しかも多孔質膜に作製できる。
The ceramics thus obtained have excellent heat resistance, homogeneity, and surface smoothness, can be fired at low temperatures, and can be made into porous films.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、ゾル−ゲル法による成膜においても、次
に示す問題があった。即ち、この方法では粘度の低いゾ
ルをデイツプコーティング法やスピンコーティング法等
の塗布法により塗布するので、数十μm程度以下の薄い
膜厚の膜しか良質に作製できず、保温層として要求され
る5〜20μm程度の膜厚の膜の作製が困鉗である問題
があった。
However, film formation by the sol-gel method also has the following problems. In other words, in this method, a sol with low viscosity is applied by a coating method such as dip coating or spin coating, so that only a thin film of several tens of micrometers or less can be produced with good quality, which is required as a heat insulating layer. There is a problem in that it is difficult to produce a film with a thickness of about 5 to 20 μm.

さらに、ゾル−ゲル法では一般に、塗布膜の熱処理によ
る収縮が大きく、クラックが発生しやすい問題があった
Furthermore, in the sol-gel method, there is generally a problem that the coating film shrinks significantly due to heat treatment and cracks are likely to occur.

そこで、本発明は上記したような従来技術の課題を解決
するなめになされたもので、その目的とするところは、
熱伝導率の低い保温層を、保温層として要求される膜厚
に、クラックの発生しにくい方法により作製できるサー
マルヘッド用基板の製造方法を提供することにある。
Therefore, the present invention has been made to solve the problems of the prior art as described above, and its purpose is to:
An object of the present invention is to provide a method for manufacturing a substrate for a thermal head in which a heat insulating layer with low thermal conductivity can be manufactured to a thickness required for the heat insulating layer by a method that does not easily cause cracks.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のサーマルヘッド用基板の製造方法は、アルミナ
とアルミナ水和物とを含むコロイド溶液と、水溶性ポリ
マーとの混合物質を調製する工程と、絶縁基板上に上記
混合物質を塗布する工程と、これを乾燥する工程と、こ
れを焼成する工程とを有することを特徴としている。
The method for manufacturing a thermal head substrate of the present invention includes the steps of preparing a mixed substance of a colloidal solution containing alumina and alumina hydrate and a water-soluble polymer, and applying the mixed substance on an insulating substrate. , it is characterized by having a step of drying it and a step of firing it.

〔作 用〕[For production]

本発明の製造方法においては、アルミナとアルミナ水和
物とを含むコロイド溶液と水溶性ポリマーとの混合物質
を絶縁基板上に塗布する。上記コロイド溶液としては、
例えばアルミニウムアルコキシドを加水分解し、その後
解膠することにより合成されたゾルが用いられる。また
、水溶性ポリマーとしては、例えばポリビニルアルコー
ルが用いられる。
In the manufacturing method of the present invention, a mixed substance of a colloidal solution containing alumina and alumina hydrate and a water-soluble polymer is applied onto an insulating substrate. The above colloidal solution is
For example, a sol synthesized by hydrolyzing aluminum alkoxide and then peptizing it is used. Further, as the water-soluble polymer, for example, polyvinyl alcohol is used.

ここでは、コロイド溶液が水溶性ポリマー中に良く分散
することを利用し、混合物質を絶縁基板上に塗布した際
に、均質で且つ表面の平滑な塗布膜が得られるようにし
ている。
Here, by utilizing the fact that a colloidal solution is well dispersed in a water-soluble polymer, a homogeneous coating film with a smooth surface can be obtained when the mixed substance is coated on an insulating substrate.

また、水溶性ポリマーはコロイド溶液の粘度を増大させ
るため、絶縁基板上に塗布される膜厚を厚く形成できる
Further, since the water-soluble polymer increases the viscosity of the colloidal solution, it is possible to form a thick film coated on the insulating substrate.

さらに、水溶性ポリマーの熱分解温度は約400℃であ
り100〜200℃の乾燥では膜中に残存しており、こ
の水溶性ポリマーの存在がクラックの発生を生じに<<
シている。
Furthermore, the thermal decomposition temperature of a water-soluble polymer is approximately 400°C, and it remains in the film when dried at 100-200°C, and the presence of this water-soluble polymer can cause cracks to occur.
It's on.

〔実施例〕〔Example〕

以下に本発明を図示の実施例に基づいて説明する。 The present invention will be explained below based on illustrated embodiments.

第1図は本発明に係るサーマルヘッド用基板の製造方法
の一実施例を示ず製造工程図である。
FIG. 1 is a manufacturing process diagram showing an embodiment of a method for manufacturing a thermal head substrate according to the present invention.

同図に示すように、本実施例の製造方法は塗布液調製工
程と、塗布、乾燥、焼成工程を有している。
As shown in the figure, the manufacturing method of this example includes a coating liquid preparation step, and coating, drying, and baking steps.

先ず最初に塗布液調製工程について説明する。First, the coating liquid preparation process will be explained.

この工程では塗布液を以下のように調製する。In this step, a coating solution is prepared as follows.

先ず、アルミニウムアルコキシドAll  (OR)3
 [n=CH(n=0.1.2.3.4)n    2
n季ト コである純度99%のアルミニウムイソプロポキシドl
  (1−QC3H7)340.8gに8゜°Cの純水
360gを加え、スターラーで1時間激しくかく拌し、
加水分解する。そして、解膠剤としてINのIICJを
14m!加え、90゛cで1゜0時間解膠させてコロイ
ド溶液としてのゾルを得る。
First, aluminum alkoxide All (OR)3
[n=CH(n=0.1.2.3.4)n2
99% pure aluminum isopropoxide
Add 360g of pure water at 8°C to 340.8g of (1-QC3H7), stir vigorously with a stirrer for 1 hour,
Hydrolyze. And 14m of IN IICJ as a deflocculant! The mixture was then peptized at 90°C for 1°0 hours to obtain a sol as a colloidal solution.

一方、上記コロイ1(溶液の調製と並行して、水溶性ポ
リマーを以下のように調製する。即ち、ポリビニルアル
コール(PVA、重合度約2000)3.2gと、可塑
剤としてのエチレンク刃コール0.128gとを、12
.8gの純水中に溶解させて水溶性ポリマーとしてのP
VA水溶液を調製する。
Meanwhile, in parallel with the preparation of Colloy 1 (solution), a water-soluble polymer is prepared as follows: 3.2 g of polyvinyl alcohol (PVA, degree of polymerization approximately 2000) and 0.0 g of ethylene glycol as a plasticizer. .128g and 12
.. P as a water-soluble polymer by dissolving it in 8 g of pure water.
Prepare VA aqueous solution.

次に、PVA水溶液に上記ゾルを加えて混合する。この
混合溶液を200m1まで濃縮し、沢過、脱泡して混合
溶液(塗布液)を得る。
Next, the above sol is added to the PVA aqueous solution and mixed. This mixed solution is concentrated to 200 ml, filtered and defoamed to obtain a mixed solution (coating solution).

次に、塗布液の塗布、乾燥、焼成工程について説明する
Next, the steps of applying the coating liquid, drying, and baking will be explained.

先ず、塗布液の塗布は、アルミナ基板(純度97%、片
面研磨)の上に500 r p rnで1分間スピンコ
ード〜する。次に、200℃に加熱したポットプレート
上で1分間熱処理し、冷却する。このスピンコード、熱
処理、冷却の工程を1回繰返し、塗布液の膜厚を所定の
値にする。
First, the coating solution was applied by spin code at 500 rpm for 1 minute on an alumina substrate (purity 97%, single side polished). Next, heat treatment is performed for 1 minute on a pot plate heated to 200° C., and then cooled. This process of spin code, heat treatment, and cooling is repeated once to bring the film thickness of the coating liquid to a predetermined value.

次に、600℃で1時間焼成し、多孔質アルミナ膜(保
温層)を得る。
Next, it is fired at 600° C. for 1 hour to obtain a porous alumina film (heat retaining layer).

第3図は上記製造方法で作製した試料におけるスピンコ
ードの回数と、焼成後の保温層の膜厚を測定したデータ
を示すグラフである。また、同図には、比較のなめ、P
VAを加えないゾル塗布液の試験データも示している。
FIG. 3 is a graph showing data obtained by measuring the number of times of spin cording and the film thickness of the heat insulating layer after firing for the sample produced by the above manufacturing method. Also, in the same figure, there is a comparison name, P
Test data for a sol coating solution without added VA is also shown.

このグラフより、本実施例の製造方法の場合には、少な
いスピンコードの回数で厚い保温層を形成できることが
わかる。
From this graph, it can be seen that in the case of the manufacturing method of this example, a thick heat insulating layer can be formed with a small number of spin cords.

また、ゾルのみで塗布液を作製した試料では、スピンコ
ード5回以上でクラックが発生したが、ゾルにPVAを
加えた塗布液で作製した試料では、クラックは発生しな
かった。これは、熱分解温度的400℃のPVAは10
0〜200℃の乾燥工程において塗布膜中に残存してお
り、このPVAかクラックを生じに<<シているためで
ある。
In addition, in the sample in which the coating liquid was prepared using only sol, cracks occurred after five or more spin cycles, but in the sample prepared with the coating liquid in which PVA was added to the sol, no cracks occurred. This means that PVA at a thermal decomposition temperature of 400°C is 10
This is because PVA remains in the coating film during the drying process at 0 to 200°C, and this PVA tends to cause cracks.

尚、ポリビニルアルコールは、急速に水には溶解しない
ので、塗布、乾燥を繰り返した場合であっても下層のポ
リビニルアルコールが水を多く含む−FnIに溶解する
ことはなく、ポリビニルアルコールは下層に残留してい
る。
In addition, polyvinyl alcohol does not dissolve in water rapidly, so even if coating and drying are repeated, the polyvinyl alcohol in the lower layer will not dissolve in -FnI, which contains a lot of water, and the polyvinyl alcohol will remain in the lower layer. are doing.

このように、少ないスピンコード回数で厚い保温層を形
成できること及びPVAによりクラックが生じにくく急
速加熱、急速冷却が可能であることから、製造時間の短
縮も可能である。
In this way, it is possible to form a thick heat insulating layer with a small number of spin cords, and since PVA prevents cracks from occurring and enables rapid heating and rapid cooling, it is also possible to shorten the manufacturing time.

第4図は上記製造工程で作製した試料の透過型電子W4
黴′MA(TEM)による細孔の径と、個数割合の関係
を測定したデータを示すグラフである。
Figure 4 shows the transmission electron W4 of the sample produced in the above manufacturing process.
It is a graph showing data obtained by measuring the relationship between the diameter of pores and the number ratio by mold MA (TEM).

測定結果は、細孔径の最小値が7.992nm、細孔径
の最大値が43.956nm、平均値が16.96nm
であり、標準開基が6.09である。
The measurement results are that the minimum value of the pore diameter is 7.992 nm, the maximum value of the pore diameter is 43.956 nm, and the average value is 16.96 nm.
and the standard opening group is 6.09.

以上のように、微細な孔を存する多孔質アルミナ膜が形
成される。多孔質アルミナ膜は熱伝導率が低く保温性に
潰れた性質を有するので、蓄熱層を薄型化しても十分な
保温性を持たせることができる。そして、蓄熱層を薄型
化できることによって、蓄熱層上に形成された発熱体の
放熱速度は速くなる(熱応答性が速くなる)ので、印字
速度の高速化が可能になる。また、本実施例においては
、ガラス粉内部より気泡を発生させた場合と異なり、蓄
熱層表面に凹凸が形成されることはない。
As described above, a porous alumina film containing fine pores is formed. Since the porous alumina membrane has a low thermal conductivity and a collapsed property for heat retention, it can provide sufficient heat retention even if the heat storage layer is made thin. Since the heat storage layer can be made thinner, the heat dissipation rate of the heat generating element formed on the heat storage layer becomes faster (the thermal response becomes faster), so it becomes possible to increase the printing speed. Furthermore, in this example, unlike the case where bubbles are generated from inside the glass powder, no unevenness is formed on the surface of the heat storage layer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、熱伝導率の低い
保温性に潰れた保温層を、少ない工数で要求される厚さ
に形成できる。また、水溶性ポリマーを加え塗布液で作
製した本発明の場合には、水溶性ポリマーが乾燥工程に
おいて塗布膜中に残存しておりクラックが生じにくい。
As explained above, according to the present invention, it is possible to form a heat-retaining layer with low heat-retaining properties and a required thickness with a small number of man-hours. Furthermore, in the case of the present invention, which is prepared using a coating solution containing a water-soluble polymer, the water-soluble polymer remains in the coating film during the drying process, making it difficult for cracks to occur.

さらに、このように、少ない工数で厚い保温層を形成で
きること及びクラックが生じにくく急速加熱、急速冷却
が可能であることから、製造時間の短縮が可能となる。
Furthermore, since a thick heat insulating layer can be formed with fewer man-hours and cracks are less likely to occur and rapid heating and cooling are possible, manufacturing time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るサーマルヘッド用基板のM遣方法
の一実施例を示す製造工程図、第2図は従来のサーマル
ヘッド用基板を用いて形成されたサーマルヘッドの構成
を示す要部断面図、 第3図は本実施例の製造工程で作製した試料のスピンコ
ードの回転数と焼成後の膜厚を示すグラフ、 第4図は製造工程で作製した試料の細孔分布を示ずグラ
フである。 1・・・アルミナ基板(絶縁基板)、 2・・・保温層。
FIG. 1 is a manufacturing process diagram showing an example of the M method for a thermal head substrate according to the present invention, and FIG. 2 is a main part showing the configuration of a thermal head formed using a conventional thermal head substrate. A cross-sectional view, Figure 3 is a graph showing the rotation speed of the spin cord and the film thickness after firing for the sample fabricated in the manufacturing process of this example, and Figure 4 shows the pore distribution of the sample fabricated in the manufacturing process. It is a graph. 1... Alumina substrate (insulating substrate), 2... Heat insulation layer.

Claims (1)

【特許請求の範囲】 アルミナとアルミナ水和物とを含むコロイド溶液と、水
溶性ポリマーとの混合物質を調製する工程と、 絶縁基板上に上記混合物質を塗布する工程と、これを乾
燥する工程と、 これを焼成する工程と を有することを特徴とするサーマルヘッド用基板の製造
方法。
[Claims] A step of preparing a mixed substance of a colloidal solution containing alumina and alumina hydrate and a water-soluble polymer, a step of applying the mixed substance on an insulating substrate, and a step of drying the same. A method for manufacturing a thermal head substrate, comprising the steps of: and firing the substrate.
JP15743388A 1988-06-24 1988-06-24 Manufacture of substrate for thermal head Pending JPH026157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15743388A JPH026157A (en) 1988-06-24 1988-06-24 Manufacture of substrate for thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15743388A JPH026157A (en) 1988-06-24 1988-06-24 Manufacture of substrate for thermal head

Publications (1)

Publication Number Publication Date
JPH026157A true JPH026157A (en) 1990-01-10

Family

ID=15649541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15743388A Pending JPH026157A (en) 1988-06-24 1988-06-24 Manufacture of substrate for thermal head

Country Status (1)

Country Link
JP (1) JPH026157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376576A (en) * 1992-11-19 1994-12-27 Hyundai Electronics Industries Co., Ltd. Method for the insulation of polysilicon film in semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376576A (en) * 1992-11-19 1994-12-27 Hyundai Electronics Industries Co., Ltd. Method for the insulation of polysilicon film in semiconductor device

Similar Documents

Publication Publication Date Title
TW581713B (en) Mesoporous films having reduced dielectric constants
US5302198A (en) Coating solution for forming glassy layers
JPH026157A (en) Manufacture of substrate for thermal head
KR20030023524A (en) Coating solution for forming transparent silica coating film and method for producing transparent silica coating film
JP2000212442A (en) Polyorganosiloxane coated elastic fine particle, its manufacture and liquid crystal display
KR20200131034A (en) Method for manufacturing of aerogel composition and aerogel composition manufactured by the method
JPH01225567A (en) Substrate for thermal head and preparation thereof
JP3161471B2 (en) Method for producing barium titanate thin film
JPH026156A (en) Substrate for thermal head and manufacture thereof
JPH02217318A (en) Production of barium titanate gel and barium titanate
JPH02150364A (en) Production of thermal head substrate
JP2642860B2 (en) Inorganic xerogel membrane, method for producing the same, and gas separation membrane comprising inorganic xerogel membrane
JPH0127574B2 (en)
JP2002179430A (en) Method for manufacturing thin molding by sol-gel method
JP2000319530A (en) Composition for semiconductor element
JPS63256460A (en) Substrate for thermal head and production thereof
JPH026154A (en) Substrate for thermal head and manufacture thereof
JPH0267149A (en) Substrate for thermal head and preparation thereof
JP3161477B2 (en) Method of forming manganese cobalt oxide thin film
JPH026155A (en) Manufacture of substrate for thermal head
JPS62226840A (en) Reflection preventive film and its production
JPH101319A (en) Production of glass
JPH01225568A (en) Substrate for thermal head and preparation thereof
JPH03288667A (en) Thermal head
JPH0812342A (en) Production of glass