JPH0261481A - Method and device for manufacturing ultra-high purity nitrogen - Google Patents

Method and device for manufacturing ultra-high purity nitrogen

Info

Publication number
JPH0261481A
JPH0261481A JP20837988A JP20837988A JPH0261481A JP H0261481 A JPH0261481 A JP H0261481A JP 20837988 A JP20837988 A JP 20837988A JP 20837988 A JP20837988 A JP 20837988A JP H0261481 A JPH0261481 A JP H0261481A
Authority
JP
Japan
Prior art keywords
nitrogen
liquid nitrogen
high purity
ultra
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20837988A
Other languages
Japanese (ja)
Inventor
Shoji Koyama
小山 祥二
Hisazumi Ishizu
石津 尚澄
Junichi Hosokawa
純一 細川
Hiroshi Tsushima
津島 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP20837988A priority Critical patent/JPH0261481A/en
Publication of JPH0261481A publication Critical patent/JPH0261481A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/44Separating high boiling, i.e. less volatile components from nitrogen, e.g. CO, Ar, O2, hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To collect ultra-high purity nitrogen containing the oxygen content of less than 1ppb by a method wherein a nitrogen circulating circuit consisting of a booster heat exchanger, a fractionating tower and a condenser is provided and the elevating gas of high purity liquid nitrogen, supplied from a liquid nitrogen tank, in a refining tower is condensed to fractionate it as circulating liquid. CONSTITUTION:A liquid nitrogen tank 1 is filled with liquid nitrogen, having a high purity or a purity inferior thereto, directly from an air separator or by a tank lorry. The liquid nitrogen is supplied to the lower part of a refining tower 3 for an ultra-high purity nitrogen refining unit. The liquid nitrogen is mixed further with descending liquid in the refining tower 3 to obtain circulating liquid nitrogen, is taken out of the bottom of the refining tower 3 and is reduced in the pressure thereof by a pressure reducing valve 12. Thereafter, the circulating liquid nitrogen is sent into a condenser 4. In the condenser 4, provided at the top of the refining tower 3, heat exchange between ultra-high purity nitrogen gas in the top of the refining tower 3 and the circulating liquid nitrogen is effected to produce descending liquid nitrogen. The descending liquid nitrogen is collected in the top of the refining tower 3 and one portion thereof is taken out of a pipe 28 as refined ultra-high purity nitrogen and is reserved into an ultra-high purity liquid nitrogen tank 2 through a regulating valve 13 for keeping the collecting amount of the ultra-high purity liquid nitrogen in constant.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超高純度窒素の製造方法及び装置に係り、特
に従来の高純度あるいはそれを下回る純度の液体窒素か
ら、超高純度液体窒素を得るのに好適な超高純度窒素の
製造方法及び装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for producing ultra-high purity nitrogen, and in particular, to a method and apparatus for producing ultra-high purity nitrogen, particularly for producing ultra-high purity liquid nitrogen from conventional liquid nitrogen of high purity or lower purity. The present invention relates to a method and apparatus for producing ultra-high purity nitrogen suitable for obtaining nitrogen.

〔従来の技術] 窒素ガスの超高純度化(ppbオーダー)要求は、最近
になって急速にかつ、より厳しい規定となってきている
。従来の空気分離装置においては、高純度用装置におい
ても製品窒素中の酸素濃度は0.01〜0.02Vo1
. PPM (l O〜201)pb)程度が限度であ
り1通常装置では窒素中の酸素濃度はI Vol、 P
PM以上であることがほとんどである6 従来技術としては、これらの高純度窒素あるいは、それ
を下回る純度の窒素を製造するためには触媒により反応
と常温吸着を組み合わせた窒素ガス製造装置を用いるこ
とが一般的な方法であり。
[Prior Art] The requirement for ultra-high purity (ppb order) of nitrogen gas has recently become rapidly and more stringent. In conventional air separation equipment, even in high-purity equipment, the oxygen concentration in the product nitrogen is 0.01 to 0.02 Vo1.
.. PPM (l O ~ 201) pb) is the limit. 1 In a normal device, the oxygen concentration in nitrogen is I Vol, P
In most cases, it is higher than PM6. In order to produce these high-purity nitrogen or lower purity nitrogen, conventional technology uses a nitrogen gas production device that combines reaction with a catalyst and room-temperature adsorption. is a common method.

製品窒素ガスラインあるいは、液体窒素の場合は液体窒
素蒸発設備の後流側に該装置を設置していた。しかし2
反応・吸着による精製システムで得られる窒素純度は、
酸素濃度0. OIVol、 PPM (10ppb)
以下とすることは非常に困難であり、また液体窒素とし
て採り出すことも困難であった・ また、深冷分離によって得られた超高純度液体窒素(酸
素濃度1 ppb以下)でも、タンクローリ−による移
送を行った場合はローリ−への払い出しおよび、ローリ
−からの需要先貯蔵タンクへの充填時に、微量の不純物
が混入する可能性が高く、その品質確保が非常に難しい
ものであった。
The device was installed on the product nitrogen gas line or, in the case of liquid nitrogen, on the downstream side of the liquid nitrogen evaporation equipment. But 2
The nitrogen purity obtained with a reaction/adsorption purification system is
Oxygen concentration 0. OIVol, PPM (10ppb)
It is very difficult to extract the following liquid nitrogen, and it is also difficult to extract it as liquid nitrogen.Also, even ultra-high purity liquid nitrogen (oxygen concentration 1 ppb or less) obtained by cryogenic separation can be transported by tank truck. In the case of transport, there is a high possibility that trace amounts of impurities will be mixed in when discharging to the lorry and filling the storage tank of the customer from the lorry, making it extremely difficult to ensure the quality.

なお、この種の装置として関連するものには例えば特開
昭51−48793号等が挙げられる。
Incidentally, related devices of this type include, for example, Japanese Patent Application Laid-Open No. 51-48793.

[発明が解決しようとする課題] 上記従来技術は超高純度窒素の製造について配慮がされ
ておらず、超高純度窒素(1ppbo□程度)の製造が
困難であること、また超高純度液体窒素として取り出す
ことができない等の不具合があった。
[Problems to be solved by the invention] The above conventional technology does not take into account the production of ultra-high purity nitrogen, and it is difficult to produce ultra-high purity nitrogen (approximately 1 ppbo□). There were some problems, such as not being able to take it out.

本発明の目的は、既に設備・稼動している空気分離装置
から製造され液体窒素タンクに貯蔵された液体窒素ある
いは、窒素需要先にタンクローリ−等で搬送・貯蔵され
た液体窒素を、効率良く。
An object of the present invention is to efficiently use liquid nitrogen produced from an air separation device that is already installed and in operation and stored in a liquid nitrogen tank, or liquid nitrogen that is transported and stored in a tank truck or the like to a nitrogen demand destination.

超高純度(1ppbo z以下)液体窒素に精製できる
超高純度窒素の製造方法及び装置を提供することにある
An object of the present invention is to provide a method and apparatus for producing ultra-high purity nitrogen that can be purified to ultra-high purity (1 ppbo z or less) liquid nitrogen.

[課題を解決するための手段] 上記目的は、液体窒素タンクから供給される高純度ある
いはそれを下回る純度の液体窒素を、精製塔で更に精留
することにより達成される。精留塔で精留を行うために
、昇圧機態交換器、精留塔および凝縮器より成る窒素循
環回路を設け、精製塔上昇ガスを凝縮器で凝縮させて還
流液とし精留を行うことにより、達成される。
[Means for Solving the Problems] The above object is achieved by further rectifying liquid nitrogen of high purity or lower purity supplied from a liquid nitrogen tank in a purification column. In order to carry out rectification in a rectification column, a nitrogen circulation circuit consisting of a boosting mechanism exchanger, a rectification column and a condenser is installed, and the gas rising in the purification column is condensed in the condenser to be used as a reflux liquid for rectification. This is achieved by

[作   用J 液体窒素タンクから供給される高純度あるいはそれを下
回る純度の液体窒素は、精製塔の下部に導入され精製塔
で更に精留されるので、精製塔の上部から酸素弁i p
pb以下の超高純度窒素が採取できる。
[Function J High purity or lower purity liquid nitrogen supplied from the liquid nitrogen tank is introduced into the lower part of the purification tower and further rectified in the purification tower, so the oxygen valve i p
Ultra-high purity nitrogen below PB can be collected.

精製塔で精留分離される不純物は、酸素が主体であるが
、窒素より沸点の高い水分、炭酸ガス。
The impurities that are separated by rectification in the purification tower are mainly oxygen, but also water and carbon dioxide gas, which have a higher boiling point than nitrogen.

−酸化窒素、炭化水素等もl ppb以下にすることが
できる。
- Nitrogen oxides, hydrocarbons, etc. can also be reduced to 1 ppb or less.

〔実 施 例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図において、液体窒素(受入れ)タンク1には空気
分離装置より直接あるいは、タンクローリ−によって高
純度あるいはそれを下回る純度の液体窒素が充填される
0本実施例の場合、該液体窒素タンクlは従来より窒素
需要家に設置されていたものが使用され、またタンクロ
ーリ−より充填される液体窒素の仕様は従来通りの酸素
濃度IVo1. PPMで約7 kg/cm2Gの圧力
で所蔵されている。
In FIG. 1, a liquid nitrogen (receiving) tank 1 is filled with liquid nitrogen of high purity or lower purity directly from an air separation device or by a tank truck. The liquid nitrogen that has been installed at nitrogen consumers is used, and the liquid nitrogen filled from the tank truck has the same oxygen concentration IVo1. It is stored at a pressure of approximately 7 kg/cm2G in PPM.

この液体窒素は、管21を通り超高純度窒素精製ユニッ
トの保冷槽内に設けられた精製塔3の下部に供給される
。さらに、精製塔3内の下降液と混合され、約15〜2
0 Vol、 PPM Oxの循環液体窒素となって、
精製塔3塔底より取り出され、減圧弁12で約5 、6
 kg/cm”Gに減圧された後、凝縮器4へ送入され
る。
This liquid nitrogen passes through a pipe 21 and is supplied to the lower part of the purification tower 3 provided in the cold storage tank of the ultra-high purity nitrogen purification unit. Furthermore, it is mixed with the descending liquid in the purification tower 3, and about 15 to 2
0 Vol, PPM Ox becomes circulating liquid nitrogen,
It is taken out from the bottom of purification tower 3, and about 5,6
After being depressurized to kg/cm''G, it is sent to the condenser 4.

精製塔3頂部に設けられた凝縮器4は、精製塔3頂部の
超高純度窒素ガスと、循環液体窒素とを熱交換させ、精
製塔3内の下降液体窒素を造ると共に、循環液体窒素を
ガス化させる。
The condenser 4 installed at the top of the purification tower 3 exchanges heat between the ultra-high purity nitrogen gas at the top of the purification tower 3 and the circulating liquid nitrogen to produce liquid nitrogen descending within the purification tower 3, and also to circulate liquid nitrogen. Gasify.

凝縮器4で液化した超高純度の精製塔3内の下降液体窒
素は、精製塔3頂部で集められ、その−部は管28より
精製超高純度窒素(lppb021として約6 、 7
 kg/cm”Gの圧力で取り出され、採取量な一定に
保つために設けられた調節弁13を経て超高純度の液体
窒素(貯蔵)タンク2に貯蔵される。また、残りの超高
純度液体窒素は精製塔3内の下降液として塔内精留皿上
を下降し窒素精製を行う。
The descending liquid nitrogen in the ultra-high purity purification tower 3 that has been liquefied in the condenser 4 is collected at the top of the purification tower 3, and a -part of it is sent to purified ultra-high purity nitrogen (approximately 6,7 liters per ppb021) through a pipe 28.
kg/cm"G pressure, and is stored in an ultra-high purity liquid nitrogen (storage) tank 2 through a control valve 13 provided to keep the sampling amount constant. In addition, the remaining ultra-high purity The liquid nitrogen descends over the rectifying pan in the column as a descending liquid in the purification column 3 to perform nitrogen purification.

一方、凝縮器4でガス化された循環窒素は、管22を通
って熱交換器5に導かれ、常温の循環窒素ガス(往)と
熱交換して常温まで温度回復し。
On the other hand, the circulating nitrogen gasified in the condenser 4 is led to the heat exchanger 5 through the pipe 22, where it exchanges heat with the circulating nitrogen gas (outgoing) at room temperature and recovers its temperature to room temperature.

管23を通り循環窒素昇圧機6の吸入側に送入される。It passes through the pipe 23 and is sent to the suction side of the circulating nitrogen booster 6.

尚、凝縮器4の圧力は圧力調整計(PIC)によって、
管23より分岐される管24ラインに設けられた調節弁
15から、液体窒素供給量の5〜10%程度常時大気放
出されることにより一定に保たれている。また、凝縮器
4の液面は一定に保つよう、液面調節計(L I C)
と調節弁11によって自動的に液体窒素供給量が調節さ
れる。昇圧機6で約7 、5 kg/cm″Gに昇圧さ
れた酸素濃度段15〜20Vo1. PPMの循環窒素
ガスは。
The pressure in the condenser 4 is determined by a pressure regulator (PIC).
Approximately 5 to 10% of the amount of liquid nitrogen supplied is kept constant by being constantly released into the atmosphere from a control valve 15 provided in a pipe 24 line branched from the pipe 23. In addition, a liquid level controller (LIC) is installed to keep the liquid level in the condenser 4 constant.
The amount of liquid nitrogen supplied is automatically adjusted by the control valve 11. The circulating nitrogen gas at the oxygen concentration stage 15 to 20 Vo1.PPM is pressurized to about 7.5 kg/cm''G by the booster 6.

アフタークーラー7で冷却された後、管25を通って熱
交換器5に導かれ、前述の低温循環窒素(復)と熱交換
される。熱交換器5で飽和温度に近い約−173℃程度
まで冷却された循環窒素は。
After being cooled in the aftercooler 7, it is led to the heat exchanger 5 through the pipe 25, where it is heat exchanged with the aforementioned low-temperature circulating nitrogen (return). The circulating nitrogen is cooled in the heat exchanger 5 to about -173°C, which is close to the saturation temperature.

管26を経て精製塔3の下部に送入されて精製塔3内の
上昇ガスとなる。精製塔3内の還流比(下降液量と上昇
ガス量の比)の調整あるいは、この超高純度窒素精製ユ
ニットの負荷変更は、この循環窒素量の調整によって行
うことができ、管26ラインに設けられた調節弁14を
任意に調節することによって可能である。この場合、昇
圧機6の吐出ライン(管25)には圧力調節計(P I
 C)および、調節弁16.バイパスライン(管27)
が設けられており、昇圧機6の吐出圧力が上昇する場合
は自動的に一定圧力を保つよう循環窒素はバイパスされ
る。本超高純度窒素精製ユニットは、液体窒素を供給し
低温で精留・精製を行うもので、供給する液体窒素は凝
縮器液面を一体に保つように自動的に調整されて精製塔
に送入される。それによって、液体窒素供給量と超高純
度液体窒素採取量の量的平衡および、寒冷エネルギー平
衡が一定に保たれる。また、凝縮器運転圧力も圧力調節
器および調節弁によって一定制御され。
The gas is sent to the lower part of the purification tower 3 through the pipe 26 and becomes the rising gas in the purification tower 3. Adjustment of the reflux ratio (ratio of descending liquid amount to rising gas amount) in the purification tower 3 or changing the load on this ultra-high purity nitrogen purification unit can be performed by adjusting the amount of circulating nitrogen. This is possible by arbitrarily adjusting the provided control valve 14. In this case, the discharge line (pipe 25) of the booster 6 is equipped with a pressure regulator (PI
C) and control valve 16. Bypass line (pipe 27)
is provided, and when the discharge pressure of the booster 6 increases, the circulating nitrogen is automatically bypassed to maintain a constant pressure. This ultra-high purity nitrogen purification unit supplies liquid nitrogen and performs rectification and purification at low temperatures.The supplied liquid nitrogen is automatically adjusted to keep the liquid level in the condenser constant before being sent to the purification tower. entered. Thereby, the quantitative balance between the amount of liquid nitrogen supplied and the amount of ultra-high purity liquid nitrogen collected, as well as the refrigeration energy balance, are maintained constant. In addition, the condenser operating pressure is constantly controlled by a pressure regulator and a control valve.

該ユニットは自動的に安定運転することができる。The unit can automatically operate stably.

窒素循環回路は、昇圧機で昇圧された窒素ガスを精製塔
内の上昇ガスとして精製塔下部に送入し、窒素精製後凝
縮器内で蒸発した窒素ガスを昇圧機成入側へ戻す回路で
形成されている。この循環回路流量を変化させることに
よって、精製塔内の還流比を変化させることができ、該
ユニットの最適運転調整を行うことができる。本実施例
によれば0分離器本体の大巾な改造を行うことなく。
The nitrogen circulation circuit is a circuit in which the nitrogen gas pressurized by the booster is sent to the lower part of the purification tower as rising gas in the purification tower, and after nitrogen purification, the nitrogen gas evaporated in the condenser is returned to the booster input side. It is formed. By changing the flow rate of this circulation circuit, the reflux ratio within the purification column can be changed, and the optimum operation of the unit can be adjusted. According to this embodiment, there is no need to make extensive modifications to the main body of the 0 separator.

既存の空気分離装置に精製ユニットを追設するだけで超
高純度液体窒素(1ppb011以下)の採取が可能と
なる。また、タンクローリ−による液体窒素供給を受け
ていた需要家においては、購入液体窒素の仕様を変更す
ることなく、超高純度窒素を得ることができる。また、
タンクローリ−による搬送中における微量な不純物の混
入の可能性が一切徘除でき、超高純度窒素の品質確保に
大きな効果がある。また、精製効率が良(、液体窒素の
精製ロスが少ない。−例として500 Nrr?/H程
度を処理する精製装置においては、約90%以上を超高
純度液体窒素として取り出すことができ、また、液体窒
素圧力は、 0 、5 kg/cm2G以下の圧力損失
で超高純度窒素が採取できる。さらに、得られる超高純
度液体窒素は、酵素分のみではな(、その他の成分も精
製されるので、下記の不純物組成を有する超高純度窒素
とすることが可能となる。等の効果がある。
Ultra-high purity liquid nitrogen (1 ppb011 or less) can be collected by simply adding a purification unit to an existing air separation device. Furthermore, customers who have been supplied with liquid nitrogen by tank truck can obtain ultra-high purity nitrogen without changing the specifications of the purchased liquid nitrogen. Also,
The possibility of trace amounts of impurities being mixed in during transportation by tank truck can be completely eliminated, and this has a great effect on ensuring the quality of ultra-high purity nitrogen. In addition, it has good purification efficiency (and there is little loss in purification of liquid nitrogen. For example, in a purification device that processes about 500 Nrr?/H, more than 90% of the nitrogen can be extracted as ultra-high purity liquid nitrogen, and Ultra-high purity nitrogen can be collected with a pressure drop of less than 0.5 kg/cm2G.Furthermore, the obtained ultra-high purity liquid nitrogen contains not only enzyme components (but also other components). Therefore, it is possible to obtain ultra-high purity nitrogen having the following impurity composition.

02 :<1ppb NOx:<O,1ppb CO2:<0.5ppb T、H,C(総炭化水素):<O,1ppbH20:<
2ppb 〔発明の効果1 本発明によれば、液体タンクから供給される高純度ある
いはそれを下回る純度の液体窒素を精製塔で更に精留す
ることにより、酵素分i ppb以下の超高純度窒素を
採取できる効果がある。
02:<1ppb NOx:<O,1ppb CO2:<0.5ppb T, H, C (total hydrocarbons):<O,1ppbH20:<
2 ppb [Effect of the invention 1 According to the present invention, by further rectifying liquid nitrogen of high purity or lower purity supplied from a liquid tank in a purification column, ultra-high purity nitrogen with an enzyme content of i ppb or less can be produced. There are effects that can be harvested.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超高純度窒素の製造装置の
概略系統図である。 1、2−一−−−−液体窒素タンク、 3−−−−−一
精製塔、 4−−−−−一凝縮器、 5−−−−−一熱
交換器。
FIG. 1 is a schematic system diagram of an apparatus for producing ultra-high purity nitrogen according to an embodiment of the present invention. 1, 2-1---liquid nitrogen tank, 3----1 purification column, 4----1 condenser, 5-----1 heat exchanger.

Claims (1)

【特許請求の範囲】 1、空気分離装置より直接あるいは、タンクローリー等
より充填される液体窒素を液体窒素タンクで貯蔵する窒
素製造方法において、 前記液体窒素タンクから供給される液体窒素を精製塔に
導入して更に精留し、精製塔の上部から微量酸素を含む
超高純度窒素を取出し一旦別の液体窒素タンクに貯蔵し
製品として供給すると共に、精製塔下部から取出した液
体窒素を精製塔上部の凝縮器でガス化させ、熱交換器で
温度回復させ、昇圧機で昇圧し、熱交換器で冷却し、再
び精製塔へ導入することを特徴とする超高純度窒素の製
造方法。 2、空気分離装置より直接あるいは、タンクローリー等
より充填される液体窒素貯蔵タンクと該附帯設備から成
る液体窒素貯蔵設備と、液体窒素ポンプ、液体窒素蒸発
器等から成る液体窒素貯蔵・圧送・蒸発設備において、 精留分離を行う窒素精製塔および窒素凝縮器、熱交換器
で構成される深冷機器を内蔵する保冷槽と、精留分離に
必要な窒素ガスを昇圧・循環させる窒素循環回路とで構
成される窒素精製ユニットを設けたことを特徴とする超
高純度窒素の製造装置。
[Claims] 1. In a nitrogen production method in which liquid nitrogen filled directly from an air separation device or from a tank truck or the like is stored in a liquid nitrogen tank, the liquid nitrogen supplied from the liquid nitrogen tank is introduced into a purification tower. Then, it is further rectified, and ultra-high purity nitrogen containing a trace amount of oxygen is extracted from the upper part of the purification tower and stored in another liquid nitrogen tank to be supplied as a product.The liquid nitrogen taken out from the lower part of the purification tower is A method for producing ultra-high purity nitrogen, which is characterized by gasifying it in a condenser, recovering the temperature in a heat exchanger, increasing the pressure in a booster, cooling it in a heat exchanger, and reintroducing it into a purification tower. 2. Liquid nitrogen storage equipment consisting of a liquid nitrogen storage tank that is filled directly from an air separation device or from a tank truck, etc., and its auxiliary equipment; and liquid nitrogen storage, pressure feeding, and evaporation equipment that consists of a liquid nitrogen pump, liquid nitrogen evaporator, etc. The system consists of a nitrogen purification tower for rectification separation, a cold storage tank with built-in cryogenic equipment consisting of a nitrogen condenser, and a heat exchanger, and a nitrogen circulation circuit that pressurizes and circulates the nitrogen gas necessary for rectification separation. An apparatus for producing ultra-high purity nitrogen, characterized in that it is equipped with a nitrogen purification unit consisting of:
JP20837988A 1988-08-24 1988-08-24 Method and device for manufacturing ultra-high purity nitrogen Pending JPH0261481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20837988A JPH0261481A (en) 1988-08-24 1988-08-24 Method and device for manufacturing ultra-high purity nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20837988A JPH0261481A (en) 1988-08-24 1988-08-24 Method and device for manufacturing ultra-high purity nitrogen

Publications (1)

Publication Number Publication Date
JPH0261481A true JPH0261481A (en) 1990-03-01

Family

ID=16555300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20837988A Pending JPH0261481A (en) 1988-08-24 1988-08-24 Method and device for manufacturing ultra-high purity nitrogen

Country Status (1)

Country Link
JP (1) JPH0261481A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0592323A1 (en) * 1992-10-09 1994-04-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the production of ultra-pure nitrogen under pressure
EP1342968A1 (en) * 2002-03-08 2003-09-10 Linde Aktiengesellschaft Process and device for the production of an ultra high purity product from a feed with lower purity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0592323A1 (en) * 1992-10-09 1994-04-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the production of ultra-pure nitrogen under pressure
EP1342968A1 (en) * 2002-03-08 2003-09-10 Linde Aktiengesellschaft Process and device for the production of an ultra high purity product from a feed with lower purity

Similar Documents

Publication Publication Date Title
EP0194795B1 (en) Purification of carbon dioxide for use in brewing
US5806340A (en) High purity nitrogen generator unit and method
JPS58193080A (en) Method and device for recovering argon from air separating plant only for oxygen
CN106288653A (en) A kind of single column cryogenic rectification reclaims device and the method for purification recovery argon of argon
US3056268A (en) Method for stabilizing the operation of a plant for the low temperature rectification of gaseous mixtures
JPH06174365A (en) Manufacture and facility of plurality of gaseous nitrogen having different purity
CN101595356B (en) Method and device for separating a gas mixture by cryogenic distillation
JPH10132458A (en) Method and equipment for producing oxygen gas
JPH0345883A (en) Improved nitrogen generator
JPH0217795B2 (en)
JPH0261481A (en) Method and device for manufacturing ultra-high purity nitrogen
US2180200A (en) Method and apparatus for separating ethylene from a gaseous mixture
CN211198612U (en) Argon recovery device for removing carbon monoxide and integrating high-purity nitrogen by rectification method
JPH07127971A (en) Argon separator
JPH07146066A (en) Separator for high purity argon
JPH1163812A (en) Manufacture and device for low-purity oxygen
JPS6044587B2 (en) Totally low pressure air separation method and device
CN211290724U (en) Integrated high-purity nitrogen and argon recovery system
JP3254523B2 (en) Method and apparatus for purifying nitrogen
JPH07270067A (en) Fractionating method for rare gas
JPH02183789A (en) Method and apparatus for manufacturing ultra purity nitrogen
JP2001194055A (en) Method and apparatus for recovering argon
JPS60142184A (en) Method of liquefying and separating air
JPH02157586A (en) Ultra-pure nitrogen gas rectifying method and apparatus
JP3295816B2 (en) Ultra-high purity nitrogen production method and equipment