JPH0261344A - Slow driving controller for internal combustion engine - Google Patents

Slow driving controller for internal combustion engine

Info

Publication number
JPH0261344A
JPH0261344A JP21134688A JP21134688A JPH0261344A JP H0261344 A JPH0261344 A JP H0261344A JP 21134688 A JP21134688 A JP 21134688A JP 21134688 A JP21134688 A JP 21134688A JP H0261344 A JPH0261344 A JP H0261344A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
intake
transmission
intake control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21134688A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kinoshita
木下 美明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21134688A priority Critical patent/JPH0261344A/en
Publication of JPH0261344A publication Critical patent/JPH0261344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make constant braking torque addable to a load device irrespective of shift speed of a transmission by controlling the opening of an intake control valve installed in a passage bypassing a throttle valve according to an engine driving state and a reduction gear ration of the transmission at the time of starting the slow driving of an engine. CONSTITUTION:An intake control valve M4 is installed in an intake passage M3 bypassing a throttle valve M2 of an internal combustion engine M1, and this intake control valve M4 is opened up to the specified opening being set according to an engine driving state at time of a start of slow driving when at least the throttle valve 2 becomes fully closed, and thenit is controlled so as to be closed by degrees. In this case, there is provided with a reduction gear detecting mean M8 detecting a reduction gear ratio of a transmission M7 which transmits turning torque of the engine M1 to a load device M6. Then, opening of the intake control valve M2 being controlled by the intake control means M5 is constituted so as to be compensated by a compensating means M9 according to the detected reduction gear ratio.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は内燃機関の減速運転時にスロットルバルブを迂
回する吸気通路に設けられた吸気制御弁を開弁してダッ
シュポット効果を得るようにした内燃機関の減速運転制
御装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention opens an intake control valve provided in an intake passage that bypasses a throttle valve during deceleration operation of an internal combustion engine to obtain a dashpot effect. The present invention relates to a deceleration operation control device for an internal combustion engine.

[従来の技ト1:■コ 内燃機関では、スロットルバルブを全閉上で減速運転こ
こ入ると、スロットルバルブ下流の吸気通路に大きな負
圧が発生して吸気通路壁面に付着している燃料が・燃焼
室に一時に吸引され、混合気がオーバーリッチとなって
アフタバーンが発生するとか、体積効率が低下して燃焼
室内の残留ガス割合が増大するため、失火が発生し易く
なり、場合によっては内燃機関が停止してしまうといっ
たことがある。そこで従来ではごうした問題を解決する
ため、スロットルバルブを迂回する吸気通路に該通路の
開度を制御するバルブを設け、内燃機関の減速運転時に
はこのバルブを開いて吸入空気量を確保し、その後徐々
に閉じてゆくことで、スロットルバルブに恰もダッシュ
ポットを設けた如き効果が得られるようにすることが行
われている。
[Conventional Technique 1: ■In an internal combustion engine, when the throttle valve is fully closed and deceleration is started, a large negative pressure is generated in the intake passage downstream of the throttle valve, causing the fuel adhering to the intake passage wall to dissipate.・The air-fuel mixture may be drawn into the combustion chamber at once and become overrich, causing afterburn, or the volumetric efficiency may decrease and the proportion of residual gas in the combustion chamber may increase, making misfires more likely to occur. In some cases, the internal combustion engine may stop. Therefore, in order to solve this conventional problem, a valve is installed in the intake passage that bypasses the throttle valve to control the opening degree of the passage.When the internal combustion engine is decelerating, this valve is opened to secure the amount of intake air, and then By gradually closing the throttle valve, the effect is similar to that of a dashpot installed on the throttle valve.

またスロットルバルブが全閉され、内燃機関が減速運転
に入ると、内燃機関は負荷装置側での慣性トルクによっ
てモータリング運転され、負荷装置側にはエンジンブレ
−キとして制動トルクが加えられることとなるのである
が、この減速運転開始時に内燃機関の出力トルクが激減
すると、負荷装置側での慣性トルクと内燃機関の出力ト
ルクとの偏差によって動力伝達軸に捩れ振動が発生し、
更に内燃機関自体が出力軸を中心に振動するといったこ
とがある。そこで従来では、減速運転開始時のバルブ開
度を、減速前の内燃機関の運転状態(吸気管圧力や回転
速度等)に応じて制i卸することにより、内燃機関の出
力トルクをスムーズに低下させ、出力トルクが激減して
、内燃機関或はその動力伝達系に振動が発生するのを防
止することも考えられている(特開昭55−60636
号。
Furthermore, when the throttle valve is fully closed and the internal combustion engine enters deceleration operation, the internal combustion engine is motored by the inertia torque on the load device side, and braking torque is applied to the load device side as an engine brake. However, when the output torque of the internal combustion engine decreases sharply at the start of deceleration operation, torsional vibration occurs in the power transmission shaft due to the deviation between the inertia torque on the load device side and the output torque of the internal combustion engine.
Furthermore, the internal combustion engine itself may vibrate around its output shaft. Conventionally, the output torque of the internal combustion engine is smoothly reduced by controlling the valve opening at the start of deceleration operation according to the operating state of the internal combustion engine before deceleration (intake pipe pressure, rotational speed, etc.). It is also considered to prevent vibrations from occurring in the internal combustion engine or its power transmission system due to a drastic decrease in output torque (Japanese Patent Laid-Open No. 55-60636)
issue.

特開昭58−176441号、特開昭59−11904
0号等)。
JP-A-58-176441, JP-A-59-11904
No. 0, etc.).

[発明が解決しようとする課題] ところで内燃機関の出力軸には、通常、変速機が設けら
れ、変速機を介して負荷装置を駆動するようにされてい
る。つまり自動車のように、内燃機関を動力源とする装
置では、駆動輪等の負荷装置と内燃機関との間に変速機
が設けられ、負荷装置の駆動状態に応じて変速機の変速
段・(即ち減速比)を自動又は手動で変更することによ
り、負荷装置を安定して駆動できるようにされている。
[Problems to be Solved by the Invention] By the way, the output shaft of an internal combustion engine is usually provided with a transmission, and a load device is driven through the transmission. In other words, in devices such as automobiles that use an internal combustion engine as a power source, a transmission is installed between a load device such as a drive wheel and the internal combustion engine, and the gear position of the transmission is changed according to the driving state of the load device. In other words, by automatically or manually changing the reduction ratio), the load device can be driven stably.

ところが上記従来の制御装置では、減速運転開始時のバ
ルブ開度を、変速機の変速段に関係なく一律に制御して
いたため、変速機の減速比が大きい場合に内燃機関や動
力伝達系に振動が発生するとか、逆に変速機の減速比が
小さい場合にエンジンブレーキが効かず、負荷装置をス
ムーズに減速できないといすた問題があった。
However, in the conventional control device described above, the valve opening at the start of deceleration operation was uniformly controlled regardless of the gear position of the transmission, which caused vibrations in the internal combustion engine and power transmission system when the reduction ratio of the transmission was large. There was a problem that if the reduction ratio of the transmission was small, the engine brake would not work and the load device could not be decelerated smoothly.

即ちまず上記バルブ開度を変速機の減速比が低い状態で
適合させた場合には、変速機の減速比が高い場合に、変
速機を介して負荷装置に伝達されるH、IJ動1ルクが
大きくなり過ぎ、内燃機関や動力伝達系に振動が発生し
、自動車においてはサージ。
That is, if the above-mentioned valve opening degree is first adapted to a state where the reduction ratio of the transmission is low, then when the reduction ratio of the transmission is high, 1 torque of H and IJ motion transmitted to the load device via the transmission will be reduced. becomes too large, causing vibrations in the internal combustion engine and power transmission system, and in automobiles, surges occur.

或はしゃくりといった不快な車体の前後振動となり、車
両の走行安定性が損なわれるといった問題が発生する。
Otherwise, unpleasant back-and-forth vibrations of the vehicle body, such as hiccups, occur, resulting in a problem that the running stability of the vehicle is impaired.

また逆に上記バルブ開度を変速機の減速比が高い状態で
適合させた場合には、変速機の減速比が低い場合ζこ、
変速機を介して負荷装置に伝達される制動トルクが小さ
過ぎ、エンジンブレーキの効きが悪くなって、自動車に
おいては車両の減速性が低下してしまう。
Conversely, if the above valve opening is adapted to a state where the reduction ratio of the transmission is high, if the reduction ratio of the transmission is low, ζ
If the braking torque transmitted to the load device via the transmission is too small, the effectiveness of engine braking becomes poor, and the deceleration performance of the vehicle decreases.

そこで本発明は、内燃機関の減速運転時にスロットルバ
ルブを迂回する吸気通路を開閉制御する装置において、
変速機の変速段にかかわらず、内燃機関又は動力伝達系
に発生する振動を抑制しつつ、負荷装置をスムーズに減
速できるようにすることを目的としてなされた。
Therefore, the present invention provides a device for controlling the opening and closing of an intake passage that bypasses a throttle valve during deceleration operation of an internal combustion engine.
The purpose of this invention is to enable smooth deceleration of a load device while suppressing vibrations occurring in the internal combustion engine or power transmission system, regardless of the gear position of the transmission.

[課題を解決するための手段] 即ち上記目的を達するためになされた本発明の構成は、
第1図に例示する如く、 内燃機関M1のスロットルバルブM2を迂回する吸気通
路M3に設けられ、該吸気通路M3の開度を調整する吸
気制御弁M4と、 少なくとも上記スロットルバルブM2が全閉となる内燃
機関M1の減速運転開始時には、上記吸気制御弁M2を
内燃機関M1の運転状態に応じて設定される所定開度ま
で開弁じ、その後行々に閉弁させる吸気制御手段M5と
、 を備えた内燃機関の減速運転制御装置において、内燃機
関M1の回転トルクを負荷装置M6に伝達する変速aM
7の減速比を検出する減速比検出手段M8と、 該検出された減速比に応じて上記吸気制御平段M5で制
御される吸気制御弁開度を補正する補正手段M9と、 を備えたことを特徴とする内燃機関の減速運転制御装置
を要旨としている。
[Means for solving the problem] That is, the configuration of the present invention made to achieve the above object is as follows:
As illustrated in FIG. 1, an intake control valve M4 is provided in an intake passage M3 that bypasses a throttle valve M2 of an internal combustion engine M1 and adjusts the opening degree of the intake passage M3; At the start of deceleration operation of the internal combustion engine M1, the intake control valve M5 opens the intake control valve M2 to a predetermined opening degree set according to the operating state of the internal combustion engine M1, and then gradually closes the intake control valve M5. In the deceleration operation control device for an internal combustion engine, a speed change aM transmits rotational torque of the internal combustion engine M1 to a load device M6.
a reduction ratio detection means M8 for detecting a reduction ratio of 7; and a correction means M9 for correcting the intake control valve opening controlled by the intake control flat stage M5 according to the detected reduction ratio. The gist of this paper is a deceleration operation control device for an internal combustion engine, which is characterized by:

[作用コ 以上のように構成された本発明の内燃機関の減速運転制
御装置においては、内燃機関M1の減速運転開始時に、
スロットルバルブM2を迂回する吸気通路M4が、内燃
機関M1の運転状態に応じて設定される所定開度まで開
弁されるだけでなく、その開度が、変速機M7の減速比
に応じて補正される。この結果、内燃機関の減速運転開
始時に変速IM7を介して負荷装置M6に伝達される制
動トルクを、変速機M7の変速段にかかわらず一定に制
御することが可能となり、内燃機関或はその動力伝達系
に発生する振動を抑制しつつ、負荷装置を所望の減速度
でスムーズに減速できるようになる。
[Operations] In the internal combustion engine deceleration operation control device of the present invention configured as described above, at the start of deceleration operation of the internal combustion engine M1,
The intake passage M4 that bypasses the throttle valve M2 is not only opened to a predetermined opening degree that is set according to the operating state of the internal combustion engine M1, but also the opening degree is corrected according to the reduction ratio of the transmission M7. be done. As a result, it becomes possible to control the braking torque transmitted to the load device M6 via the gear change IM7 at a constant level regardless of the gear position of the transmission M7 at the start of deceleration operation of the internal combustion engine, and the internal combustion engine or its power It becomes possible to smoothly decelerate the load device at a desired deceleration rate while suppressing vibrations generated in the transmission system.

[実施例] 以下に本発明の実施例を図面と共に説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

まず第2図は本発明が適用された自動車用内燃機関2及
びその周辺装置の構成を表す概略構成図である。
First, FIG. 2 is a schematic configuration diagram showing the configuration of an automobile internal combustion engine 2 and its peripheral devices to which the present invention is applied.

図において4はエアクリーナ6を介して空気を吸入する
吸気管を衷し、この吸気管4には、上流から、吸気温度
を検出する吸気温センサ8、吸気量を制↑卸するための
スロットルバルブ″10、スロットルバルブ10の開度
な検出するスロットル開度センサ12、吸気の脈動を抑
えるためのサージタンク14、その内部の圧力(吸気管
圧力)Pを検出する吸気圧センサ16、及び内燃機関2
に燃料供給を行なうための燃料噴射弁1日が備えられて
いる。
In the figure, reference numeral 4 crosses an intake pipe that sucks air through an air cleaner 6, and this intake pipe 4 includes, from upstream, an intake air temperature sensor 8 that detects the intake air temperature, and a throttle valve that controls the amount of intake air. 10, a throttle opening sensor 12 that detects the opening of the throttle valve 10, a surge tank 14 that suppresses intake pulsation, an intake pressure sensor 16 that detects the internal pressure (intake pipe pressure) P, and an internal combustion engine. 2
A fuel injection valve is provided for supplying fuel to the engine.

また吸気管4にはス[lットルバルブ10を迂回するバ
イパス通路4aが形成されており、このバイパス通路/
la!こは、ス[rットルバルブ10全閉時の吸入空気
量を調整して内燃機関2のアイドル回転速度及び減速運
転時の車両減速度を制御するためのアイドルスピードコ
ントロールバルブ(以下、rscvという。)20が設
けられている。
In addition, a bypass passage 4a that bypasses the throttle valve 10 is formed in the intake pipe 4, and this bypass passage/
la! This is an idle speed control valve (hereinafter referred to as rscv) for controlling the idle rotation speed of the internal combustion engine 2 and the vehicle deceleration during deceleration operation by adjusting the amount of intake air when the throttle valve 10 is fully closed. 20 are provided.

一方22は排気管で、排気中の酸素濃度から内燃機関2
に供給された燃料混合気の空燃比を検出する空燃比セン
サ24、及び排気を?浄化するための三元触媒コンバー
タ26が備えられている。
On the other hand, 22 is an exhaust pipe, and from the oxygen concentration in the exhaust gas, the internal combustion engine 2
The air-fuel ratio sensor 24 detects the air-fuel ratio of the fuel mixture supplied to the air-fuel mixture, and the exhaust gas. A three-way catalytic converter 26 is provided for purification.

また内燃機関2には、その運転状態を検出するためのセ
ンサとして、上述の吸気温センサ8、スロットル開度セ
ンサ12、吸気圧センサ16、及び空燃比センサ24の
他、ディストリビュータ2日の回転から内燃機関2の回
転速度を検出する回転速度センサ30、同じくディスト
リビュータ2日の回転から内燃機関2への燃料噴射タイ
ミングや点火時間等を検出するためのクランク角センサ
32、内燃機関2の冷却水温を検出する水温センサ34
、及び車速を検出する車速センサ35が備えられている
、尚’F!−/フトリビゴー々9Rはイグナイタ36か
らの高電圧を所定の点火タイミングで各気筒の点火プラ
グ3日に印加するためのものである。
In addition, the internal combustion engine 2 has sensors for detecting its operating state, including the above-mentioned intake temperature sensor 8, throttle opening sensor 12, intake pressure sensor 16, and air-fuel ratio sensor 24. A rotation speed sensor 30 detects the rotation speed of the internal combustion engine 2, a crank angle sensor 32 detects the fuel injection timing and ignition time to the internal combustion engine 2 based on the rotation of the distributor 2, and a crank angle sensor 32 detects the cooling water temperature of the internal combustion engine 2. Water temperature sensor 34 to detect
, and a vehicle speed sensor 35 for detecting vehicle speed. -/Fliction Control 9R is for applying high voltage from the igniter 36 to the spark plug of each cylinder at a predetermined ignition timing.

次に上記各センサからの検出信号は電子制御回路40に
人力される。電子制御回路40は上記各センサからの検
出信号に基づき燃料噴射弁18及びイグナイタ36を駆
動して内燃機関2への燃料噴射量及び点火時間を制御す
ると共に、l5CV200開度を制御して内燃機関2の
アイドル回転速度制御や減速制御を行なうためのもので
、周知のようにマイクロコンピュータを中心とする論理
演算回路として構成されている。
Next, the detection signals from each of the above-mentioned sensors are input manually to the electronic control circuit 40. The electronic control circuit 40 drives the fuel injection valve 18 and the igniter 36 based on the detection signals from the above-mentioned sensors to control the fuel injection amount and ignition time to the internal combustion engine 2, and also controls the opening degree of the l5CV 200 to control the internal combustion engine. This is for performing the idle rotation speed control and deceleration control of No. 2, and is configured as a logic operation circuit centered on a microcomputer, as is well known.

即ち電子制御回路40は、予め設定された制御プログラ
ムに従って内燃機関1を制御するための各種演算処理を
実行するセントラルプロセシングユニット(CPU)4
2、CPU42で各種演算処理を実行するのに必要な制
御プログラムや初期データが記録されたリードオンリメ
モリ(ROi’Vl)44、同じ<CPtJ42で各種
演算処理を実行するのに必要な各種データが一時的に読
み書きされるランダムアクセスメモリ(RAM)46、
上記各センサからの検出信号を人力するための人力ボー
ト48、及び燃料噴射弁18、l5CV20、イグナイ
タ36等に駆動信号を出力する出力ボート50が備えら
れ、これら各部を内燃機関2の運転状態に応じて駆動制
御できるようにされている。
That is, the electronic control circuit 40 includes a central processing unit (CPU) 4 that executes various calculation processes for controlling the internal combustion engine 1 according to a preset control program.
2. A read-only memory (ROi'Vl) 44 in which control programs and initial data necessary for executing various arithmetic processes by the CPU 42 are recorded, and various data necessary for executing various arithmetic processes by the same random access memory (RAM) 46, which is temporarily read and written;
A human-powered boat 48 for manually inputting detection signals from the above-mentioned sensors, and an output boat 50 for outputting drive signals to the fuel injection valve 18, l5CV 20, igniter 36, etc. are provided, and these parts are controlled to the operating state of the internal combustion engine 2. The drive can be controlled accordingly.

このように構成された電子制御回路40では、吸気圧セ
ンサ22及び回転速度センサ32によって検出された吸
気管圧力PMと回転速度NEとに基づき内燃機関2の基
本燃料噴射量及び基本点火時間を夫々算出し、この算出
された各基本制御量を他のセンサによる検出結果に基つ
き補正することにより燃料噴射量及び点火時間を決定し
、燃料噴射弁1B及びイグナイタ36を駆動制御する、
といった手順で燃料噴射制御及び点火時期制御が繰り返
し実行され、またスロットルバルブ10が全閉状態で車
速が0となる内燃機関2のアイドル運転時には、内燃機
関2の回転速度NEが所定のアイドル回転速度になるよ
うl5CV20の開度を制御するアイドル回転速度制御
が実行されることとなるのであるが、こうした制御動作
は従来より周知であるので詳しい説明は省略し、以下に
本発明にかかわる主要な処理である内燃機関2の減速制
御について説明する。
In the electronic control circuit 40 configured in this way, the basic fuel injection amount and basic ignition time of the internal combustion engine 2 are determined based on the intake pipe pressure PM and the rotational speed NE detected by the intake pressure sensor 22 and the rotational speed sensor 32, respectively. determine the fuel injection amount and ignition time by correcting each calculated basic control amount based on the detection results from other sensors, and drive and control the fuel injection valve 1B and the igniter 36.
Fuel injection control and ignition timing control are repeatedly executed in the following steps, and during idling operation of the internal combustion engine 2 in which the throttle valve 10 is fully closed and the vehicle speed is 0, the rotational speed NE of the internal combustion engine 2 is set to a predetermined idle rotational speed. Idle rotation speed control is executed to control the opening degree of 15CV20 so that Deceleration control of the internal combustion engine 2 will be explained.

まず時点T1で内燃機関2を定常状態から加速し、その
後時点T2で減速すると、内燃機関2のトルク変化によ
って、車体の前後方向に加わる加減速度Gは第3図に示
す如く変化する。またこのように内燃機関2の運転状態
が加速(又は定常)運転から減速運転に移行するとき、
図に示す加減速度Gの変化量ΔGが大き過ぎると、内燃
機関2や動力伝達系に大きな振動が発生し、車体が前後
方向に大きく振動して車両の乗り心地を悪化させる。
First, when the internal combustion engine 2 is accelerated from a steady state at time T1 and then decelerated at time T2, the acceleration/deceleration G applied to the vehicle body in the longitudinal direction changes as shown in FIG. 3 due to changes in the torque of the internal combustion engine 2. Also, when the operating state of the internal combustion engine 2 shifts from acceleration (or steady) operation to deceleration operation in this way,
If the amount of change ΔG in the acceleration/deceleration G shown in the figure is too large, large vibrations will occur in the internal combustion engine 2 and the power transmission system, causing the vehicle body to vibrate significantly in the longitudinal direction and worsening the ride comfort of the vehicle.

そこで本実施例では、内燃機関2が減速運転に入ったと
きに車体振動が発生することのないよう、この変化量Δ
Gを所定量に制御する。即ち本実施例では、以下に説明
する如き手順でl5CV20の制御則を決定し、これに
よって車両減速開始時には、車体に働く加減速度の変化
量ΔGが常に所定値△Gcになるように内燃機関2の出
力トルクを制御している。
Therefore, in this embodiment, the amount of change Δ
G is controlled to a predetermined amount. That is, in this embodiment, the control law for l5CV20 is determined by the procedure described below, and as a result, when the vehicle starts decelerating, the internal combustion engine 2 is controlled so that the amount of change ΔG in acceleration/deceleration acting on the vehicle body always becomes a predetermined value ΔGc. The output torque is controlled.

まず車両減速時の加減速度Gの変化量△Gは、次式(1
)の如く、減速前の車両加速度△G1と減速後の車両減
速度ΔG2との和として記述できる。
First, the amount of change △G in acceleration/deceleration G during vehicle deceleration is calculated using the following formula (1
), it can be described as the sum of vehicle acceleration ΔG1 before deceleration and vehicle deceleration ΔG2 after deceleration.

ΔG=△G1+ΔG2      ・・・(1)また車
両加速度ΔG1は内燃機関2の出力トルクTと、内燃機
関2の回転を駆動輪に伝達する変速機の減速比にと、車
両重量Mとから次式(2)の如く記述でき、 ΔGl’;T−に/M        ・・・(2)車
両減速度ΔG2は、駆動軸側から内燃機関2に伝達され
るモータリングトルクtと、変速機の減速比にと、車両
重量Mとから次式(3)の如く記述できる。
ΔG=ΔG1+ΔG2 (1) Vehicle acceleration ΔG1 is calculated from the output torque T of the internal combustion engine 2, the reduction ratio of the transmission that transmits the rotation of the internal combustion engine 2 to the drive wheels, and the vehicle weight M using the following formula. (2) It can be written as ΔGl';T-/M (2) Vehicle deceleration ΔG2 is the motoring torque t transmitted from the drive shaft side to the internal combustion engine 2 and the reduction ratio of the transmission. From this and the vehicle weight M, it can be written as shown in the following equation (3).

ΔG2鴇t−に/M        ・・・(3)また
更に内燃機関2の出力トルクTは、内燃機関2の吸気管
圧力PM(又は内燃機関2の一回転当りの吸気ff1Q
/NE)に略比例し、モータリングトルクtは内燃機関
2の回転速度NEに略比例するので、上記(2)及び(
3)式は、夫々次式(4)及び(5)式の如く記述でき
る。
ΔG2t-/M (3) Furthermore, the output torque T of the internal combustion engine 2 is determined by the intake pipe pressure PM of the internal combustion engine 2 (or the intake air ff1Q per revolution of the internal combustion engine 2).
/NE), and the motoring torque t is approximately proportional to the rotational speed NE of the internal combustion engine 2, so the above (2) and (
Equation 3) can be written as the following equations (4) and (5), respectively.

ΔG  1  : f (PM) φ K/M    
      ・・・(4)ΔG2嬌g (NE)・K/
M      ・・・(5)但し、f (PM) :吸
気管圧力PMの関数g (NE) :回転速度NEの関
数 次にl5CV20が設けられるバイパス通路は細く、内
部を流れる吸気は音速(一定速度)で移動するので、l
5CV20を介して内燃機関2に流人する吸気4i、Q
は、l5CV2(1の開度(以下、rscv開度という
。)Sに比例する。従ってスロットルバルブ10が閉じ
られ、内燃機関2が減速運転に入ったときに生ずる内燃
機関2の出力トルクTiqCは、次式(6)ノ如<S/
NEに比例することとなり、この発生トルクにより車体
に生ずる加速度へ〇iscは、次式(7)の如く記述で
きる。
ΔG 1 : f (PM) φ K/M
...(4)ΔG2嬌g (NE)・K/
M...(5) However, f (PM) : Function of intake pipe pressure PM g (NE) : Function of rotational speed NE Next, the bypass passage in which l5CV20 is installed is narrow, and the intake air flowing inside is at the sonic speed (constant speed ), so l
Intake air 4i, Q flowing into internal combustion engine 2 via 5CV20
is proportional to l5CV2 (1 opening degree (hereinafter referred to as rscv opening degree)) S. Therefore, the output torque TiqC of the internal combustion engine 2 generated when the throttle valve 10 is closed and the internal combustion engine 2 enters deceleration operation is , as in the following equation (6) <S/
It is proportional to NE, and the acceleration generated in the vehicle body due to this generated torque, 〇isc, can be described as shown in the following equation (7).

T isc # Q/ N Ea: S/ N E  
  −=(6)このため、既述したように内燃機関2が
減速運転乙こ入っノとときの車両加酸速度Gの変化量Δ
Gを所定値△Gcに制御するには、上記△G15cか次
式(8)の如くなるようにすれはよく、ΔG15c=Δ
G−△Gc       ・・(8)このためにはl5
CV20の開度Sを、次式(9)の如く制御すれはよい
ことがわかる。
T isc # Q/ N Ea: S/ N E
−=(6) Therefore, as mentioned above, the amount of change Δ in the vehicle acceleration speed G when the internal combustion engine 2 enters deceleration operation
In order to control G to a predetermined value △Gc, it is best to set △G15c above to the following equation (8), △G15c=Δ
G-△Gc...(8) For this, l5
It can be seen that the opening degree S of the CV 20 can be controlled as shown in the following equation (9).

5ocNE (T+ t−C/K) 、’、 S = A◆NE (f(PM)+g(NE)
−C/K)−・・(9)但し、C:定数(=ΔGc−M
)、A:比例定数つまり減速運転開始時のl5CV20
の開度Sは、変速機の減速比が大きい程、内燃機関2の
回転速度NEが大きい程、或は吸気管圧力PMが高い程
、大きい値に設定すれはよい。
5ocNE (T+ t-C/K),', S = A◆NE (f(PM)+g(NE)
-C/K)-...(9) However, C: constant (=ΔGc-M
), A: Proportionality constant, that is, l5CV20 at the start of deceleration operation
It is better to set the opening degree S to a larger value as the reduction ratio of the transmission becomes larger, the rotational speed NE of the internal combustion engine 2 becomes larger, or the intake pipe pressure PM becomes higher.

そこで本実施例では、内燃機関2が減速運転に入るまで
はl5CV20を上記(9)式に基づき求められる開度
に制御し、スロットルバルブ10が全閉され減速運転に
入ったときに車両加減速度、Gの変化部°が△Gcとな
るようにすると共に、その後I 5CV20がアイドル
運転時の基準開度Sm1nになるまで徐々に閉弁するこ
とで、減速運転時の車体振動を防止しつつ良好な減速性
能が得られるようにしている。
Therefore, in this embodiment, l5CV20 is controlled to the opening degree determined based on the above equation (9) until the internal combustion engine 2 enters deceleration operation, and when the throttle valve 10 is fully closed and deceleration operation begins, the vehicle acceleration/deceleration is , G changes to △Gc, and then gradually closes the I5CV20 until it reaches the reference opening Sm1n during idling operation, thereby preventing vehicle body vibration during deceleration operation. This makes it possible to obtain excellent deceleration performance.

以下、このようにl5CV開度Sを制御するためにCP
U42で実行されるl5CV開度算出処理を、第4図に
示すフローチャートに沿って説明する。尚このl5CV
開度算出処理でl5CV開度Sが設定されると、図示し
ないl5CV駆動処理で、I 5CV20の開度がこの
設定されたl5CV開度Sとなるようl5CV20が駆
動制御される。
Hereinafter, in order to control the l5CV opening degree S in this way, CP
The l5CV opening degree calculation process executed at U42 will be explained along the flowchart shown in FIG. Furthermore, this l5CV
When the l5CV opening degree S is set in the opening calculation process, the l5CV20 is drive-controlled in an unillustrated l5CV drive process so that the opening degree of the I5CV20 becomes the set l5CV opening degree S.

l5CV開度算出処理は、CPU42で所定時間(本実
施例では8m5ec−)毎に実行されるもので、処理が
開始されると、まずステップ100を実行し、吸気圧セ
ンサ161回転速度センサ30゜及び車速センサ35に
より検出される吸気管圧力PM、回転速度NE、及び車
速SPDを夫々読み取る。そして続くステップ110で
は、吸気管圧)JPMに基づき上記(9)式におけるト
ルク比例項f (PM)算出し、続くステップ120に
移行して、回転速度NEに基づき上記(9)式における
回転速度比例項g (NE)を算出する。ここでステッ
プ110及びステップ120では、夫々第5図及び第6
図に示す如きマツプが用いられる。このマ・ンブは、夫
々、吸気管圧力1’Mと出力トルクTとの関係、回転速
度NEとモータリングトルクtとの関係を表すもので、
予め実験等によって求められROM44内に格納されて
いる。
The l5CV opening degree calculation process is executed by the CPU 42 at predetermined time intervals (8 m5ec- in this embodiment). When the process is started, step 100 is first executed, and the intake pressure sensor 161 rotation speed sensor 30° Then, the intake pipe pressure PM, rotational speed NE, and vehicle speed SPD detected by the vehicle speed sensor 35 are read. Then, in the following step 110, the torque proportional term f (PM) in the above equation (9) is calculated based on the intake pipe pressure) Calculate the proportional term g (NE). Here, in step 110 and step 120, FIGS.
A map as shown in the figure is used. This MA represents the relationship between intake pipe pressure 1'M and output torque T, and the relationship between rotational speed NE and motoring torque t, respectively.
It is determined in advance through experiments or the like and stored in the ROM 44.

次にステップ130では、ステップ100で読み取った
回転速度NEと車速SPDとに基づき変速機の変速段を
検出し、その検出した変速段に応じた減速比Kを設定す
る。つまり、内燃機関2の回転速度NEと車速SPDと
の関係は、第7図に示す如く、変速機の変速段に応じて
異なり、また各変速段の減速比には予め所定の値に設定
されているので、ここでは回転速度NEと車速SPDと
の関係から変速機の変速段を求め、その変速段に応じた
減速比Kを設定するのである。そしてこのように変速機
の減速比Kが設定されると、続くステップ140に移行
して、減速比にと予め設定された定数Cとから上記(9
)式における変速段補正項C/Kを算出し、続くステッ
プ150に移行して、上記(9)式を用いてl5CV開
度S′を算出する。
Next, in step 130, the gear position of the transmission is detected based on the rotational speed NE and vehicle speed SPD read in step 100, and a reduction ratio K is set in accordance with the detected gear position. In other words, the relationship between the rotational speed NE of the internal combustion engine 2 and the vehicle speed SPD differs depending on the gear position of the transmission, as shown in FIG. 7, and the reduction ratio of each gear position is set to a predetermined value in advance. Therefore, the gear position of the transmission is determined from the relationship between the rotational speed NE and the vehicle speed SPD, and the reduction ratio K is set in accordance with the gear position. Once the reduction ratio K of the transmission is set in this way, the process proceeds to step 140, where the reduction ratio is calculated from the preset constant C (9).
) is calculated, and the process proceeds to step 150, where the l5CV opening degree S' is calculated using the above equation (9).

次にステップ160では、現在設定されているl5CV
開度S(1!IIち現時点での実際のI SCV開度)
に1より小さい所定値B(例えば0.95 ’)を乗じ
た値をl5CV開度Sとして算出し、続くステップ17
0で、その設定したl5CV開度Sとステップ150で
求めたrscv開度S開度の(g差(S−5”)が負の
値になるか否かを判断する。そしてこの偏差が負になる
と判断されると、ステップ180に移行り、で、I S
CV開度開度して上記ステップ150で求めた開度S′
を設定した後、ステップ190に移行し、そうでなけれ
ばそのままステップ190に移行する。
Next, in step 160, the currently set l5CV
Opening degree S (1!II, actual I SCV opening degree at the moment)
is multiplied by a predetermined value B smaller than 1 (for example, 0.95'), and the value is calculated as the l5CV opening degree S, followed by step 17.
0, it is determined whether the (g difference (S-5") between the set l5CV opening S and the rscv opening S obtained in step 150 is a negative value. Then, if this deviation is negative If it is determined that I S
Opening degree S' obtained in step 150 above by CV opening degree
After setting, the process proceeds to step 190, and if not, the process directly proceeds to step 190.

聞ちこのステップ160〜ステツプ180では、ステッ
プ150で求めたrscv開度S開度現在のl5CV開
度Sに所定値Bを乗じた値とを大小比較し、そのいずれ
か大きい方をl5CV開度Sとして設定するようにして
いる。
In steps 160 to 180, the rscv opening S obtained in step 150 is compared in magnitude with the value obtained by multiplying the current l5CV opening S by a predetermined value B, and the larger one is set as the l5CV opening. I am trying to set it as S.

つまり、内燃機関2の加速運転時又は定電運転時には、
運転状態に応じて上記(9)式により設定されるrsc
v開度S開度、現在のl5CV開度S以上の値となるが
、内燃機関2が減速運転に入ると、吸気管圧力PM及び
回転速度NEの低下に伴い、rscv開度S開度現在の
l5CV開度Sより小さくなり、スロットルバルブ10
が全閉となる急減速時には、l5CV開度S′が前回求
めたrscv開度より著しく小さくなって、この値S′
をそのまま用いると内燃機関の出力トルクが急減するの
で、ここでは、減速運転開始後のl5CV開度Sの低下
率を所定値Bに抑えることで、l5CV20を除々に閉
弁させ、これによって内燃機関の出力トルクが急減しな
いようにしているのである。
In other words, during acceleration operation or constant current operation of the internal combustion engine 2,
rsc is set according to the above formula (9) according to the operating state.
The v opening S opening becomes a value greater than the current l5CV opening S, but when the internal combustion engine 2 enters deceleration operation, the current rscv opening S opens as the intake pipe pressure PM and rotation speed NE decrease. The l5CV opening degree S becomes smaller than the throttle valve 10.
During sudden deceleration when the rscv is fully closed, the l5CV opening S' becomes significantly smaller than the previously determined rscv opening, and this value S'
If the output torque of the internal combustion engine is used as is, the output torque of the internal combustion engine will suddenly decrease, so here, by suppressing the rate of decrease of the l5CV opening degree S after the start of deceleration operation to a predetermined value B, l5CV20 is gradually closed, and thereby the internal combustion engine This prevents the output torque from decreasing suddenly.

また次にステップ190では、上記のように求めたI 
SCV開度開度アイドル運転時の基準開度S minを
下回ったか否かを判断する。そしてSくS minであ
れは、ステップ200に移行して、■SCV開度S開度
m1nを設定した後、処理を一旦終了し、そうでなけれ
ばそのまま処理を一旦終了する。つまりこのステップ1
90及びステップ200では、内燃機関2の減速運転時
にl5CVを閉弁し過ぎ、内燃機関2がアイドル運転に
入ったときに内燃機関2が停止することのないよう、減
速運転時のl5CV開度Sの最小開度をアイドル運転時
の基準開度Sm1nとして確保しているのである。
Next, in step 190, I
Determine whether the SCV opening degree has fallen below the reference opening degree S min during idling operation. If S - S min, the process moves to step 200 and after setting the SCV opening degree S opening degree m1n, the process is once terminated; otherwise, the process is once terminated. In other words, this step 1
90 and step 200, the l5CV opening degree S during deceleration operation is determined to prevent the internal combustion engine 2 from closing too much during deceleration operation and causing the internal combustion engine 2 to stop when the internal combustion engine 2 enters idling operation. The minimum opening degree is secured as the reference opening degree Sm1n during idling operation.

以上のように構成された本実施例の内燃機関の制御装置
では、例えは第8図に示す如く、まず時点t1でス[l
ットルバルブ10が開かれ、内燃機関2がアイドル運転
から加速運転に移行すると、吸気管圧力PM、回転速度
NEの上昇に伴いトルク比例項f (PM)、回転速度
比例項g(NE)が増加し、l5CV20が上記(9)
式を用いて算出された■SC■開度S開度制御される。
In the internal combustion engine control device of this embodiment configured as described above, for example, as shown in FIG.
When the torque valve 10 is opened and the internal combustion engine 2 shifts from idling operation to acceleration operation, the torque proportional term f (PM) and the rotation speed proportional term g (NE) increase as the intake pipe pressure PM and rotation speed NE increase. , l5CV20 is the above (9)
■SC■Opening degree S calculated using the formula is controlled.

このため内燃機関2が減速運転に入った時に車体力月辰
動することのないよう、つまり減速運転開始時の車体加
減速度Gの変化量ΔGが最適値△Gcになるよう、l5
CV開度Sを當に制御しておくことができる。またこの
ときのl5CV開度は上記(9)式により、変速機の減
速比Kに応じて、減速比Kが大−きくなる程大きい値に
設定されるので、減速運転開始時の車体加減速度Gの変
化量ΔGを変速機の減速比にかかわらず常に一定に制御
することが可能となり、変速比の減速比の違いによって
車体振動が発生するとか、或は車両の減速性が低下する
といったこともない。
Therefore, when the internal combustion engine 2 starts decelerating operation, l5
The CV opening degree S can be precisely controlled. In addition, the l5CV opening degree at this time is set to a larger value according to the reduction ratio K of the transmission, as the reduction ratio K becomes larger, according to the above equation (9), so the vehicle body acceleration/deceleration at the start of deceleration operation is It is possible to control the amount of change in G ΔG to be constant regardless of the reduction ratio of the transmission, which prevents vehicle body vibration from occurring due to differences in the reduction ratio of the transmission, or deterioration of the deceleration performance of the vehicle. Nor.

次にこの加速運転時にスロットルバルブ10が全閉され
、内燃機関2が減速運転に移行した後は、吸気管圧力P
M、回転速度NEの低下に伴いトルク比例項f (PM
)、回転速度比例項g(NE)が急激に低下し、上記(
9)式を用いて算出されるl5CV開度S′も急減する
が、このときl5CV20は、8m5ec、毎に何回の
rscv開度S開度定値Bを乗じて得られるl5CV開
度Sに制御される。この結果減速運転開始後のl5CV
開度Sを、アイドル運転時の基準開度S +n i n
まで除々に低下させることができ、吸気量が急減するの
を抑制して車速をスムース電こ低下させることが可能と
なる。
Next, during this acceleration operation, the throttle valve 10 is fully closed, and after the internal combustion engine 2 shifts to deceleration operation, the intake pipe pressure P
M, torque proportional term f (PM
), the rotational speed proportional term g(NE) suddenly decreases, and the above (
9) The l5CV opening degree S' calculated using formula also decreases rapidly, but at this time, the l5CV20 is controlled to the l5CV opening degree S obtained by multiplying the rscv opening degree S by the opening constant value B every 8 m5ec. be done. As a result, l5CV after the start of deceleration operation
The opening degree S is the standard opening degree during idling operation S +n i n
This makes it possible to suppress a sudden decrease in the intake air amount and smoothly reduce the vehicle speed.

このように本実施例によれは、減速運転開始時のI S
CV開度開度、内燃機関2の運転状態及び変速機の変速
比に応じて、常に最適な減速特性が得られるように制御
することができ、内燃機関又は動力伝達系に生ずる振動
を抑制して、車体にサージ或はしゃくり等の不快な振動
が発生するのを防止することができる。また内燃機関の
振動(出力軸を中心とした回転振動)を抑制できるので
、内燃機関2のマウント系を柔らかくして、内燃機関2
の運転により生ずる振動や騒音を低下させることができ
る。
In this way, according to this embodiment, the IS at the start of deceleration operation is
Control can be performed so that optimum deceleration characteristics are always obtained depending on the CV opening degree, the operating state of the internal combustion engine 2, and the gear ratio of the transmission, and vibrations occurring in the internal combustion engine or power transmission system are suppressed. This makes it possible to prevent unpleasant vibrations such as surges and jerks from occurring in the vehicle body. In addition, since the vibration of the internal combustion engine (rotational vibration around the output shaft) can be suppressed, the mounting system of the internal combustion engine 2 can be made softer and the internal combustion engine 2 can be
The vibration and noise caused by the operation of the machine can be reduced.

ここで上記実施例では、減速運転開始時に、車体の加減
速度Gの変化量ΔGが所定値△Gcとなるように、l5
CV開度Sを制御するように構成したが、第3図に示す
減速運転開始時の車体の減速度ΔG2が所定の値になる
ようにl5CV開度Sを求め、l5CV20を制御する
ようにしても上記と同様の効果が得られる。
Here, in the above embodiment, at the start of deceleration driving, l5
Although the configuration was configured to control the CV opening degree S, the l5CV opening degree S was determined and the l5CV20 was controlled so that the deceleration ΔG2 of the vehicle body at the start of deceleration driving shown in FIG. 3 became a predetermined value. The same effect as above can be obtained.

この場合上記(7)式で記述された△G15cが次式(
8)′の如くなるようにすれはよいので、ΔG15c=
ΔG−△G c       −(8)’l5CV開度
Sを算出するための演算式としては、次式(9)′の如
くなる。
In this case, △G15c described by the above equation (7) is changed to the following equation (
8) Since the slippage is good as shown in ', ΔG15c=
ΔG−ΔG c −(8)′15The arithmetic expression for calculating the CV opening degree S is as shown in the following equation (9)′.

5OcN E (t −C/ K) 、’、5=A−NE (g(NE) −C/K)   
 ・・・(9)′[発明の効果コ 以上詳述したように本発明の内燃機関の減速運転制御装
置によれは、内燃機関減速運転開始時に、スロットルバ
ルブを迂回する吸気通路を、内燃機関M1の運転状態と
変速機の減速比に応じて制御し、変速機の変速段にかか
わらず負箭装置に一定の制動トルクを加えることができ
るようになり、内燃機関或はその動力伝達系に発生する
振動を抑制しつつ、負荷装置を所望の減速度でスムーズ
に減速できるようになる。また減速運転時に生ずる内燃
機関の振動、即ち内燃機関の出力軸を中心とした回転振
動を抑制できるので、内燃機関のマウント系を柔らかく
することができ、これによって燃料混合気の燃焼により
生ずる内燃機関の振動及び騒音を低下させることも可能
となる。
5OcNE (t -C/K),', 5=A-NE (g(NE) -C/K)
...(9)' [Effects of the Invention] As detailed above, according to the deceleration operation control device for an internal combustion engine of the present invention, at the start of deceleration operation of the internal combustion engine, the intake passage that bypasses the throttle valve is It is now possible to control according to the operating state of M1 and the reduction ratio of the transmission, and apply a constant braking torque to the brake system regardless of the gear position of the transmission, and to apply a constant braking torque to the internal combustion engine or its power transmission system. It becomes possible to smoothly decelerate the load device at a desired deceleration rate while suppressing generated vibrations. In addition, it is possible to suppress the vibrations of the internal combustion engine that occur during deceleration operation, that is, the rotational vibrations around the output shaft of the internal combustion engine, so the mounting system of the internal combustion engine can be made softer, which allows the internal combustion engine to reduce vibrations that occur due to the combustion of the fuel mixture. It also becomes possible to reduce vibration and noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を表すブロック図、第2図は実施
例の自動車用内燃機関及びその周辺装置を表わす概略構
成図、第3図は内燃機関の加減速時に車体に生ずる前後
方向の加減速度Gを表す線図、第11図は電子制御回路
で実行されるI S CV開度算出処理を表すフローチ
ャート、第5図はトルク比例項f (PM)を算出する
のに用いられるマツプを表す線図、第6図は回転速度比
例項g (NE)を算出するのに用いられるマツプを表
す線図、第7図は変速機の変速段(減速比)に応じて変
化する内燃機関の回転速度NEと車速SPDとの関係を
表す線図、第8図は実施例の動作を説明するタイムチャ
ート、である。 Ml、2・・・内燃機関 M2.10・・・スロットルバルブ M3・・・吸気通路 (4a・・・バイパス通路)M4
・・・吸気制御弁 (20・・・ISCV)M5・・・
吸気制御手段 M6・・・負荷装置M7・・・変速機 
M8・・・減速比検出手段M9・・・補正手段 16−
・・吸気圧センサ30・・・回転速度セン1ノ 35・
・・車速センサ40・・・電子制御回路 代理人  弁理士  定立 勉(ほか2名)第1図 第3図 第 図 第5図 Pへ■ 第6図 E
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a schematic configuration diagram showing an internal combustion engine for an automobile and its peripheral equipment, and FIG. A diagram showing the acceleration/deceleration G, FIG. 11 is a flowchart showing the ISCV opening calculation process executed by the electronic control circuit, and FIG. 5 is a map used to calculate the torque proportional term f (PM). Figure 6 is a diagram representing the map used to calculate the rotational speed proportional term g (NE), and Figure 7 is a diagram representing the map used to calculate the rotational speed proportional term g (NE). FIG. 8 is a diagram showing the relationship between the rotational speed NE and the vehicle speed SPD, and a time chart explaining the operation of the embodiment. Ml, 2... Internal combustion engine M2.10... Throttle valve M3... Intake passage (4a... Bypass passage) M4
...Intake control valve (20...ISCV) M5...
Intake control means M6...Load device M7...Transmission
M8... Reduction ratio detection means M9... Correction means 16-
...Intake pressure sensor 30...Rotational speed sensor 1no 35.
...Vehicle speed sensor 40...Electronic control circuit agent Tsutomu Sadatsu (and 2 others), patent attorney Go to Figure 1 Figure 3 Figure 5 Figure P ■ Figure 6 E

Claims (1)

【特許請求の範囲】  内燃機関のスロットルバルブを迂回する吸気通路に設
けられ、該吸気通路の開度を調整する吸気制御弁と、 少なくとも上記スロットルバルブが全閉となる内燃機関
の減速運転開始時に、上記吸気制御弁を内燃機関の運転
状態に応じて設定される所定開度まで開弁し、その後徐
々に閉弁させる吸気制御手段と、 を備えた内燃機関の減速運転制御装置において、内燃機
関の回転トルクを負荷装置に伝達する変速機の減速比を
検出する減速比検出手段と、該検出された減速比に応じ
て上記吸気制御手段で制御される吸気制御弁開度を補正
する補正手段と、 を備えたことを特徴とする内燃機関の減速運転制御装置
[Scope of Claims] An intake control valve that is provided in an intake passage that bypasses a throttle valve of an internal combustion engine and adjusts the opening degree of the intake passage; , an intake control means for opening the intake control valve to a predetermined opening degree set according to the operating state of the internal combustion engine, and then gradually closing the intake control valve; a reduction ratio detection means for detecting a reduction ratio of a transmission that transmits rotational torque of the transmission to a load device; and a correction means for correcting an intake control valve opening controlled by the intake control means in accordance with the detected reduction ratio. A deceleration operation control device for an internal combustion engine, comprising:
JP21134688A 1988-08-25 1988-08-25 Slow driving controller for internal combustion engine Pending JPH0261344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21134688A JPH0261344A (en) 1988-08-25 1988-08-25 Slow driving controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21134688A JPH0261344A (en) 1988-08-25 1988-08-25 Slow driving controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0261344A true JPH0261344A (en) 1990-03-01

Family

ID=16604448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21134688A Pending JPH0261344A (en) 1988-08-25 1988-08-25 Slow driving controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0261344A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643235U (en) * 1992-11-19 1994-06-07 日産ディーゼル工業株式会社 Vehicle speed reducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643235U (en) * 1992-11-19 1994-06-07 日産ディーゼル工業株式会社 Vehicle speed reducer

Similar Documents

Publication Publication Date Title
JP4597156B2 (en) Control device for torque demand type internal combustion engine
JPS6166839A (en) Overspeed limiting fuel-cut controller for internal-combustion engine
JPH0242156A (en) Fuel feed quantity control device for internal combustion engine
JPS611844A (en) Fuel injection device
JPS5923037A (en) Electronically controlled fuel injection device
JPH0261344A (en) Slow driving controller for internal combustion engine
JPS62206250A (en) Fuel controlling device for engine
JP2007113507A (en) Control device for internal combustion engine
JPS6411818B2 (en)
JPH0526138A (en) Ignition timing controller
JPS60138245A (en) Fuel injection control device of engine
JP4412233B2 (en) Control device for internal combustion engine
JPH0245631A (en) Fuel feed controller for internal combustion engine
JPS59183039A (en) Fuel control method for engine used in vehicle
JP2001248487A (en) Control device for internal combustion engine
JP2666897B2 (en) Engine throttle valve controller
JPS63219846A (en) Electronic controller of internal combustion engine
JPH0663466B2 (en) Internal combustion engine speed control device
JPS58170830A (en) Fuel supply control device for internal-combustion engine
JP2663477B2 (en) Air-fuel ratio control device for internal combustion engine
JPH05542B2 (en)
JPS58155226A (en) Control method for fuel injection of internal-combustion engine
JPS6293438A (en) Fuel feed control method for internal combustion engine in deceleration
JP2012193636A (en) Idling speed control device for internal combustion engine
JPH07243371A (en) Ignition timing control device of engine