JPH0261322A - Combustion chamber structure for two-cycle internal combustion engine - Google Patents

Combustion chamber structure for two-cycle internal combustion engine

Info

Publication number
JPH0261322A
JPH0261322A JP21240388A JP21240388A JPH0261322A JP H0261322 A JPH0261322 A JP H0261322A JP 21240388 A JP21240388 A JP 21240388A JP 21240388 A JP21240388 A JP 21240388A JP H0261322 A JPH0261322 A JP H0261322A
Authority
JP
Japan
Prior art keywords
wall
fresh air
valve
mask
air guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21240388A
Other languages
Japanese (ja)
Inventor
Masanobu Kanamaru
昌宣 金丸
Toshio Tanahashi
敏雄 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21240388A priority Critical patent/JPH0261322A/en
Priority to US07/391,786 priority patent/US4945867A/en
Priority to DE3926631A priority patent/DE3926631C2/en
Publication of JPH0261322A publication Critical patent/JPH0261322A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Abstract

PURPOSE:To feed fresh air so well as well as to secure good scavenging by installing a mask wall, closing an opening between a peripheral edge of a feed valve being situated at the exhaust valve side and a valve seat, over the whole valve opening period of the feed valve, and a fresh air guide wall higher in a level than that of the mask wall respectively. CONSTITUTION:Respective inner wall parts 3b, 3c of a cylinder head 3 are connected to each other via a peripheral wall 8 of a recess groove 5. At this time, this peripheral wall 8 is made up of a pair of mask walls 8a extending in a circular form along a peripheral edge of each feed valve 6, a fresh air guide wall 8b being situated between the feed valves 6 and a pair of fresh air guide walls 8c being situated between the peripheral edge in an inner wall surface 3a of the cylinder head 3. An opening between the peripheral edge of the feed valve 6 being situated at the side of exhaust valves 7 closes the mask wall 8a over the whole valve opening period of the feed valves 6. On the other hand, the paired fresh air guide walls 8c is made higher in level than that of the paired mask walls 8a. With this formation, fresh air is fed up to the inmost part of a combustion chamber 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2サイクル内燃機関の燃焼室構造に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a combustion chamber structure for a two-stroke internal combustion engine.

(従来の技術) 2サイクル内燃機関においてシリンダヘッド内壁面から
燃焼室に向けて延びるマスク壁を給気弁と排気弁との間
に形成してこのマスク壁により排気弁側に位置する給気
弁周縁部と弁座間の開口を給気弁の全開弁期間に亙って
閉鎖し、マスク壁の端部からシリンダヘッド内壁面の周
縁部まで給気ポート軸線に対して直角方向に延びかつ給
気弁側の燃焼室周辺部方向に向いた新気ガイド壁をシリ
ンダヘッド内壁面上に形成した2サイクル内燃機関が本
出願人により既に提案されている(特願昭63−102
659号参照)。この2サイクル内燃機関では給気弁の
全開弁期間に亙って排気弁側に位置する給気弁周縁部と
弁座間の開口がマスク壁によって覆われるために給気ポ
ートから流入した新気は排気ポート内に吹き抜けず、大
部分の新気はマスク壁と反対側の給気弁開口から燃焼室
内に流入して給気弁下方のシリンダ内壁面に沿って下降
し、次いでピストン頂面上において向きを変えてループ
状に流れる。このように大部分の新気がループ掃気のた
めに使用されるので良好なループ掃気を得ることができ
る。また、給気ポートから流入した新気の一部は新気ガ
イド壁により案内されてピストン頂面方向に向かい、次
いで上方に向きを変える。このようにこの2サイクル内
燃機関では給気ポートから流入した大部分の新気がルー
プ状に流れるので良好なループ掃気を確保することがで
きる。
(Prior Art) In a two-stroke internal combustion engine, a mask wall extending from the inner wall surface of a cylinder head toward a combustion chamber is formed between an air intake valve and an exhaust valve, and the air intake valve is positioned on the exhaust valve side by this mask wall. The opening between the peripheral edge and the valve seat is closed during the full opening period of the air supply valve, and the air supply valve extends from the end of the mask wall to the peripheral edge of the inner wall surface of the cylinder head in a direction perpendicular to the air intake port axis. The applicant has already proposed a two-stroke internal combustion engine in which a fresh air guide wall facing toward the periphery of the combustion chamber on the valve side is formed on the inner wall surface of the cylinder head (Japanese Patent Application No. 1983-102).
(See No. 659). In this two-stroke internal combustion engine, the opening between the intake valve periphery and the valve seat located on the exhaust valve side is covered by a mask wall during the full opening period of the intake valve, so fresh air flowing in from the intake port is Instead of blowing through into the exhaust port, most of the fresh air flows into the combustion chamber from the intake valve opening on the opposite side of the mask wall, descends along the inner wall of the cylinder below the intake valve, and then flows onto the top surface of the piston. It changes direction and flows in a loop. In this way, since most of the fresh air is used for loop scavenging, good loop scavenging can be obtained. Further, a part of the fresh air flowing in from the air supply port is guided by the fresh air guide wall toward the top surface of the piston, and then changes its direction upward. In this way, in this two-stroke internal combustion engine, most of the fresh air that flows in from the intake port flows in a loop, so that good loop scavenging can be ensured.

[発明が解決しようとする課題〕 ところで良好な掃気を行なうためには新気が燃焼室内の
奥深くまで流入すること、即ち新気がピストン頂面近傍
まで流入することが必要である。
[Problems to be Solved by the Invention] In order to perform good scavenging, it is necessary for fresh air to flow deep into the combustion chamber, that is, to flow close to the top surface of the piston.

しかしながら上述の2サイクル内燃機関では新気ガイド
壁とマスク壁とが同じ高さを有し、従って新気ガイド壁
の高さが低いために新気ガイド壁により案内された新気
はピストン頂面近くに達せず、燃焼室の中央部において
向きを変えて排気弁方向に向かう。従ってこの新気は掃
気作用にあまり寄与せず、斯くして新気ガイド壁によっ
て新気を案内しているにもかかわらずに燃焼室を十分に
掃気できないという問題がある。
However, in the above-mentioned two-stroke internal combustion engine, the fresh air guide wall and the mask wall have the same height. Therefore, since the height of the fresh air guide wall is low, the fresh air guided by the fresh air guide wall is directed toward the top surface of the piston. It does not reach the vicinity, but changes direction in the center of the combustion chamber and heads toward the exhaust valve. Therefore, this fresh air does not contribute much to the scavenging action, and there is a problem that the combustion chamber cannot be sufficiently scavenged even though the fresh air is guided by the fresh air guide wall.

(課題を解決するための手段〕 上記問題点を解決するために本発明によればシリンダヘ
ッド内壁面から燃焼室に向けて延びるマスク壁を給気弁
と排気弁との間に形成してこのマスク壁により排気弁側
に位置する給気弁周縁部と弁座間の開口を給気弁の全開
弁期間に亙って閉鎖し、マスク壁端部付近からシリンダ
ヘッド内壁面の周縁部まで給気ポート軸線に対して横方
向に延びかつ給気弁側の燃焼室周辺部方向を向いた新気
ガイド壁をシリンダヘッド内壁面上に形成し、新気ガイ
ド壁の高さをマスク壁の高さよりも高くしている。
(Means for Solving the Problems) In order to solve the above problems, according to the present invention, a mask wall extending from the inner wall surface of the cylinder head toward the combustion chamber is formed between the intake valve and the exhaust valve. The mask wall closes the opening between the peripheral edge of the air intake valve located on the exhaust valve side and the valve seat during the full opening period of the air intake valve, and air is supplied from near the end of the mask wall to the peripheral edge of the inner wall of the cylinder head. A fresh air guide wall that extends transversely to the port axis and faces toward the periphery of the combustion chamber on the intake valve side is formed on the inner wall surface of the cylinder head, and the height of the fresh air guide wall is lower than the height of the mask wall. It is also expensive.

〔作 用〕[For production]

新気ガイド壁の高さをマスク壁の高さよりも高くするこ
とによって新気ガイド壁により案内された新気はピスト
ン頂面付近まで、即ち燃焼室内の奥深くまで達する。
By making the height of the fresh air guide wall higher than the height of the mask wall, the fresh air guided by the fresh air guide wall reaches near the top surface of the piston, that is, deep into the combustion chamber.

〔実施例〕〔Example〕

第1図から第4図を参照すると、1はシリンダブロック
、2はシリンダブロックI内で往復動するピストン、3
はシリンダブロックl上に固定されたシリンダヘッド、
4はシリンダヘッド3の内壁面3aとピストン2の頂面
間に形成された燃焼室を夫々示す。シリンダヘッド内壁
面3a上には凹溝5が形成され、この凹溝5の底壁面を
なすシリンダヘッド内壁面部分3b上に一対の給気弁6
が配置される。一方、凹溝5を除くシリンダヘッド内壁
面部分3cはほぼ平坦をなし、このシリンダヘッド内壁
面部分3c上に一対の排気弁7が配置される。シリンダ
ヘッド内壁面部分3bとシリンダヘッド内壁面部分3c
は凹溝5の周壁8を介して互いに接続されている。この
凹溝周壁8は給気弁6の周縁部に沿って円弧状に延びる
一対のマスク壁8aと、給気弁6間に位置する新気ガイ
ド壁8hと、シリンダヘッド内壁面3aの周縁部と給気
弁6間に位置する一対の新気ガイド壁8cとにより構成
される。各マスク壁8aは第1図において破線で示す最
大リフト位置にある給気弁6よりも下方まで燃焼室4に
向けて延びており、従って排気弁7側に位置する給気弁
6周縁部と弁座9間の開口は給気弁6の開弁期間全体に
亙ってマスク壁8aにより閉鎖されることになる。また
、−対の新気ガイド壁8cはほぼ同一平面内に位置して
おり、更に新気ガイド壁3b、8cは再給気弁6の中心
を結ぶ線に対してほぼ平行に延びている。
Referring to FIGS. 1 to 4, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block I, and 3 is a cylinder block.
is the cylinder head fixed on the cylinder block l,
4 indicates a combustion chamber formed between the inner wall surface 3a of the cylinder head 3 and the top surface of the piston 2, respectively. A groove 5 is formed on the inner wall surface 3a of the cylinder head, and a pair of intake valves 6 are formed on the inner wall surface portion 3b of the cylinder head forming the bottom wall surface of the groove 5.
is placed. On the other hand, the cylinder head inner wall surface portion 3c excluding the groove 5 is substantially flat, and a pair of exhaust valves 7 are arranged on this cylinder head inner wall surface portion 3c. Cylinder head inner wall surface portion 3b and cylinder head inner wall surface portion 3c
are connected to each other via the peripheral wall 8 of the groove 5. This concave groove peripheral wall 8 includes a pair of mask walls 8a extending in an arc shape along the peripheral edge of the air supply valve 6, a fresh air guide wall 8h located between the air supply valves 6, and a peripheral edge of the cylinder head inner wall surface 3a. and a pair of fresh air guide walls 8c located between the air supply valves 6. Each mask wall 8a extends toward the combustion chamber 4 below the intake valve 6 at the maximum lift position shown by the broken line in FIG. The opening between the valve seats 9 is closed by the mask wall 8a throughout the opening period of the air supply valve 6. Furthermore, the pair of fresh air guide walls 8c are located in substantially the same plane, and the fresh air guide walls 3b and 8c extend substantially parallel to the line connecting the centers of the resupply valves 6.

点火栓10はシリンダヘッド内壁面3aの中心に位置す
るようにシリンダヘッド内壁面部分3c上に配置されて
いる。一方、排気弁7に対しては排気弁7と弁座11間
の開口を覆うマスク壁が設けられておらず、従って排気
弁7が開弁すると排気弁7と弁座11間に形成される開
口はその全体が燃焼室4内に開口することになる。
The ignition plug 10 is arranged on the cylinder head inner wall surface portion 3c so as to be located at the center of the cylinder head inner wall surface 3a. On the other hand, the exhaust valve 7 is not provided with a mask wall that covers the opening between the exhaust valve 7 and the valve seat 11. Therefore, when the exhaust valve 7 opens, a mask wall is formed between the exhaust valve 7 and the valve seat 11. The entire opening opens into the combustion chamber 4.

シリンダヘッド3内には給気弁6に対して給気ポート1
2が形成され、排気弁7に対して排気ポート13が形成
される。各給気ポート12は例えば機関によって駆動さ
れる機械式過給機14および給気ダクト15を介して図
示しないエアクリーナに接続されており、給気ダクト1
5内にはスロットル弁16が配置される。各給気ポー)
12の上壁面には燃料噴射弁17が配置され、各燃料噴
射弁17からは広がり角の小さい剛体状の燃料が給気弁
6の第3図においてハツチングで示す領域18に向けて
噴射される。この領域18は給′気ポー)12の軸線に
関して点火栓lO側に位置し、かつ両給気弁6の弁ステ
ムを結ぶ線に対して点火栓10と反対側に位置する。
In the cylinder head 3, there is an air intake port 1 for the air intake valve 6.
2 is formed, and an exhaust port 13 is formed for the exhaust valve 7. Each air supply port 12 is connected to an air cleaner (not shown) via a mechanical supercharger 14 driven by an engine and an air supply duct 15, for example.
A throttle valve 16 is disposed within the throttle valve 5 . each air supply port)
Fuel injection valves 17 are arranged on the upper wall surface of the fuel injection valve 12, and rigid fuel with a small spread angle is injected from each fuel injection valve 17 toward a region 18 of the air supply valve 6 shown by hatching in FIG. . This region 18 is located on the ignition plug lO side with respect to the axis of the air supply port 12, and on the opposite side from the ignition plug 10 with respect to a line connecting the valve stems of both the intake valves 6.

前述したように各新気ガイド壁8b、8cは両給気弁6
の中心を結ぶ線に対してほぼ平行に延びている。即ち、
言い換えると各新気ガイド壁8b8Cはマスク壁8aの
端部付近から給気ポート12の軸線に対して横方向に延
びており、第1図から第4図に示す実施例では各新気ガ
イド壁8b。
As mentioned above, each fresh air guide wall 8b, 8c is connected to both air supply valves 6.
It extends almost parallel to the line connecting the centers of That is,
In other words, each fresh air guide wall 8b8C extends transversely to the axis of the air supply port 12 from near the end of the mask wall 8a, and in the embodiment shown in FIGS. 1 to 4, each fresh air guide wall 8b.

8cはマスク壁8aの端部から給気ポート12の軸線に
対して直角方向に延びている。更にこれら新気ガイド壁
8b、8cは給気弁6側の燃焼室4周辺部方向を向いて
いる。また、第1図から第4図に示す実施例では一対の
新気ガイド壁8Cがシリンダヘッド内壁面3aの底壁面
まで延びている。
8c extends from the end of the mask wall 8a in a direction perpendicular to the axis of the air supply port 12. Furthermore, these fresh air guide walls 8b and 8c face toward the periphery of the combustion chamber 4 on the intake valve 6 side. Further, in the embodiment shown in FIGS. 1 to 4, a pair of fresh air guide walls 8C extend to the bottom wall surface of the cylinder head inner wall surface 3a.

即ち、シリンダヘッド内壁面3aの底壁面は燃焼室4内
に向けてU字状に突出する一対の底壁面部分3dを有し
、各新気ガイド壁8cはシリンダヘッド内壁面部分3b
からこの底壁面部分3dまで延びている。従って新気ガ
イド壁8Cの高さはマスク壁8aの高さよりも高くなっ
ている。一方、新気ガイド壁8C側に位置するマスク壁
8aは底壁面部分3dまで延びる延長部8dを有し、こ
の延長部8dも新気ガイド壁を形成する。第3図かられ
かるようにこの新気ガイド壁8dは湾曲しつつ新気ガイ
ド壁8cまで延びており、新気ガイド壁8dの高さは新
気ガイド壁8cに近づくに従って高くなる。一方、第1
図および第2図に示されるように新気ガイド壁8cと反
対側には既燃ガスガイド壁8eが形成される。この既燃
ガスガイド壁8eはシリンダヘッド内壁面部分3cから
底壁・面部分3dまで延びる湾曲面からなる。
That is, the bottom wall surface of the cylinder head inner wall surface 3a has a pair of bottom wall surface portions 3d that protrude into the combustion chamber 4 in a U-shape, and each fresh air guide wall 8c is connected to the cylinder head inner wall surface portion 3b.
It extends from to this bottom wall surface portion 3d. Therefore, the height of the fresh air guide wall 8C is higher than the height of the mask wall 8a. On the other hand, the mask wall 8a located on the fresh air guide wall 8C side has an extension portion 8d extending to the bottom wall surface portion 3d, and this extension portion 8d also forms a fresh air guide wall. As can be seen from FIG. 3, the fresh air guide wall 8d extends to the fresh air guide wall 8c while being curved, and the height of the fresh air guide wall 8d increases as it approaches the fresh air guide wall 8c. On the other hand, the first
As shown in the figure and FIG. 2, a burnt gas guide wall 8e is formed on the opposite side of the fresh air guide wall 8c. This burnt gas guide wall 8e consists of a curved surface extending from the cylinder head inner wall surface portion 3c to the bottom wall/surface portion 3d.

第5図は給気弁6および排気弁7の開弁期間の一例、お
よび燃料噴射期間の一例を示している。
FIG. 5 shows an example of the valve opening period of the intake valve 6 and the exhaust valve 7, and an example of the fuel injection period.

第5図に示す例においては給気弁6よりも排気弁7が先
に開弁じ、給気弁6よりも排気弁7が先に閉弁する。更
に燃料噴射期間は給気弁6の開弁後、下死点BDC前ま
での間に設定されている。
In the example shown in FIG. 5, the exhaust valve 7 opens before the intake valve 6, and the exhaust valve 7 closes before the intake valve 6. Further, the fuel injection period is set from the time when the intake valve 6 opens until before the bottom dead center BDC.

第6図は給気弁6および排気弁7の弁リフトおよび排気
ポート13内の圧力変化P 9. P 2+ Q+、 
Qzを示している。これらの圧力変化P r、 P t
、 Q+、 Qgについては後述する。
FIG. 6 shows the valve lift of the intake valve 6 and the exhaust valve 7 and the pressure change P in the exhaust port 13.9. P 2+ Q+,
It shows Qz. These pressure changes P r, P t
, Q+, and Qg will be described later.

第7図および第8図を参照して掃気作用および成層化作
用について説明する。第7図は低負荷運転時を示してお
り、第8図は高負荷運転時を示している。また、第7図
(A)および第8図(八)は給気弁6が開弁じた直後を
示しており、第7図(B)および第8図(B)はピスト
ン2がほぼ下死点にあるときを示している。
The scavenging action and stratification action will be explained with reference to FIGS. 7 and 8. FIG. 7 shows the state of low load operation, and FIG. 8 shows the state of high load operation. In addition, Fig. 7 (A) and Fig. 8 (8) show the state immediately after the air supply valve 6 is opened, and Fig. 7 (B) and Fig. 8 (B) show the piston 2 almost at the bottom. It shows when it is at a point.

まず初めに第7図を参照して機関低負荷運転時について
説明する。
First, with reference to FIG. 7, the operation during low engine load operation will be explained.

ピストン2が下降して排気弁7が開弁すると燃焼室4内
の高圧既燃ガスが排気ポート13内に流出し、その結果
第6図においてP、で示すように排気ポート13内の圧
力は一時的に正圧となる。
When the piston 2 descends and the exhaust valve 7 opens, the high-pressure burned gas in the combustion chamber 4 flows out into the exhaust port 13, and as a result, the pressure in the exhaust port 13 increases as shown by P in FIG. Temporarily becomes positive pressure.

この正圧P、は排気通路内を下流に向けて伝播し、各気
筒の排気通路の集合部において反射し、今度は負圧とな
って再び排気ポート13内に伝播してくる。従って給気
弁6が開弁すると第6図においてP2で示されるように
排気ポート13内には負圧が発生する。この負圧の発生
ずる時期は排気通路の長さに依存している。機関低負荷
運転時は燃焼圧が低く、従って排気ポート13内に発生
する正圧P I +負圧P2は比較的小さい。
This positive pressure P propagates downstream in the exhaust passage, is reflected at the gathering part of the exhaust passages of each cylinder, and then becomes negative pressure and propagates into the exhaust port 13 again. Therefore, when the air supply valve 6 is opened, negative pressure is generated within the exhaust port 13, as indicated by P2 in FIG. The timing at which this negative pressure occurs depends on the length of the exhaust passage. When the engine is operating at low load, the combustion pressure is low, and therefore the positive pressure P I + negative pressure P2 generated within the exhaust port 13 is relatively small.

給気弁6が開弁すると給気ポート12から燃焼室4内に
燃料を含んだ新気が流入するが給気弁6の開口に対して
マスク壁8aが設けられているために新気および燃料は
主にマスク壁8aと反対側の給気弁の開口部から燃焼室
4内に流入する。−方、給気弁6が開弁すると第6図に
おいてP2で示されるように排気ポート13内には負圧
が発生するので燃焼室4の上方部の既燃ガスがこの負圧
によって排気ポート13内に吸い出される。この既燃ガ
スの移動によって新気および燃料は第7図(八)におい
て矢印R7で示すように排気弁7に向けて引っばられ、
斯くして燃料が点火栓10(第2図)の周りに導かれる
。次いで第7図(B)に示すようにピストン2が下降す
ると燃料を含んだ新気はR2で示されるように給気弁6
下方のシリンダ内壁面に沿って下方に向かう。しかしな
がら機関低負荷運転時は燃焼室4内に流入する新気量が
少なくしかも流入速度が遅いために新気はピストン2の
頂面まで達せず、燃焼室4の上方部に滞留している。従
ってピストン2が上昇すると燃焼室4の上方部には混合
気が集まり、燃焼室4の下方部には残留既燃ガスが集ま
るために燃焼室4内は成層化されることになる。斯くし
て混合気が点火栓10によって確実に着火せしめられる
ことになる。
When the air intake valve 6 opens, fresh air containing fuel flows into the combustion chamber 4 from the air intake port 12, but because the mask wall 8a is provided to the opening of the air intake valve 6, fresh air and Fuel mainly flows into the combustion chamber 4 through the opening of the intake valve on the side opposite to the mask wall 8a. - On the other hand, when the intake valve 6 opens, negative pressure is generated in the exhaust port 13 as shown by P2 in FIG. It is sucked out within 13. Due to the movement of this burnt gas, fresh air and fuel are drawn toward the exhaust valve 7 as shown by arrow R7 in FIG. 7 (8).
Fuel is thus directed around the spark plug 10 (FIG. 2). Next, as shown in FIG. 7(B), when the piston 2 descends, the fresh air containing fuel flows into the air supply valve 6 as shown by R2.
It goes downward along the inner wall surface of the lower cylinder. However, when the engine is operating at low load, the amount of fresh air flowing into the combustion chamber 4 is small and the speed of the fresh air flowing into the combustion chamber 4 is slow, so that the fresh air does not reach the top surface of the piston 2 and remains in the upper part of the combustion chamber 4. Therefore, when the piston 2 rises, the air-fuel mixture gathers in the upper part of the combustion chamber 4, and residual burnt gas gathers in the lower part of the combustion chamber 4, so that the inside of the combustion chamber 4 becomes stratified. In this way, the air-fuel mixture is reliably ignited by the ignition plug 10.

一方、機関高負荷運転時には燃焼圧が高くなるために第
6図においてQ、で示されるように排気ポート13内に
発生する正圧が高くなり、またこの正圧Q1の反射波で
ある負圧Q2も大きくなる。
On the other hand, during high-load engine operation, the combustion pressure increases, so the positive pressure generated in the exhaust port 13 increases as shown by Q in FIG. 6, and the negative pressure that is the reflected wave of this positive pressure Q1 increases. Q2 also becomes larger.

また、負圧Q2のピークは負圧P2のピークよりも若干
遅れて発生する。
Further, the peak of the negative pressure Q2 occurs slightly later than the peak of the negative pressure P2.

機関高負荷運転時には燃焼室4内に流入する新気の量が
多く、しかも流入速度が速くなる。従って給気弁6が開
弁すると多聞の新気が高速度で燃焼室4内に流入する。
When the engine is operated under high load, the amount of fresh air flowing into the combustion chamber 4 is large, and the speed of the air flowing into the combustion chamber 4 is high. Therefore, when the intake valve 6 opens, a large amount of fresh air flows into the combustion chamber 4 at a high speed.

次いで排気ポート13内に発生する負圧Q2によって燃
焼室4の上方部の既燃ガスが排気ポート13内に吸い出
されると第8図(A)において矢印S I、 S zで
示されるように新気は燃焼室4の中心部の方に向きを変
える。次いで更にピストン2が下降すると第8図(B)
において33で示されるように新気は給気弁6下方のシ
リンダ内壁面に沿って下方に向かい、ピストン2の頂面
に達する。従って燃焼室4内の既燃ガスは第8図(B)
において矢印Tで示すように新気により徐々に追いやら
れて排気ポート13内に排出され、斯くして燃焼室4内
ではループ掃気が行なわれることになる。
Next, the burnt gas in the upper part of the combustion chamber 4 is sucked out into the exhaust port 13 by the negative pressure Q2 generated in the exhaust port 13, as shown by arrows S I and S z in FIG. 8(A). The fresh air is directed towards the center of the combustion chamber 4. Then, when the piston 2 further descends, Fig. 8 (B)
As shown at 33, the fresh air heads downward along the inner wall surface of the cylinder below the intake valve 6 and reaches the top surface of the piston 2. Therefore, the burnt gas in the combustion chamber 4 is as shown in Fig. 8 (B).
As shown by the arrow T, the fresh air is gradually driven away and discharged into the exhaust port 13, and thus loop scavenging is performed within the combustion chamber 4.

第1図から第4図に示す実施例ではマスク壁8aの両側
に新気ガイド壁8b、8cが形成されているので新気は
これら新気ガイド壁8 b+ 8 cにより案内されて
ピストン2の頂面に向かう。ところでこの実施例では新
気ガイド壁8cの高さがマスク壁8aよりも高く、新気
ガイド壁8cはシリンダヘッド底壁面部分3d、まで延
びているので新気ガイド壁8cにより案内されて第8図
(B)の矢印S4で示すようにピストン2の頂面近傍ま
で達する。従って新気ガイド壁8cにより案内された新
気によっても強力な掃気作用が行なわれ、斯くして良好
な掃気作用を確保することができる。また、新気ガイド
壁8dによっても新気がピストン2の頂面まで案内され
るので一層良好な掃気作用を確保することができる。
In the embodiment shown in FIGS. 1 to 4, fresh air guide walls 8b and 8c are formed on both sides of the mask wall 8a, so that the fresh air is guided by these fresh air guide walls 8b+8c and passes through the piston 2. Head to the top. By the way, in this embodiment, the height of the fresh air guide wall 8c is higher than the mask wall 8a, and the fresh air guide wall 8c extends to the bottom wall surface portion 3d of the cylinder head. It reaches near the top surface of the piston 2 as shown by arrow S4 in FIG. 2(B). Therefore, the fresh air guided by the fresh air guide wall 8c also performs a strong scavenging action, thus ensuring a good scavenging action. Further, since fresh air is guided to the top surface of the piston 2 by the fresh air guide wall 8d, even better scavenging action can be ensured.

また、各新気ガイド壁8c、8dによって新気がピスト
ン2の頂面近傍まで案内されるので新気ガイド壁8cを
排気弁7の方へ近づけても新気が排気ポート13内に吹
き抜けることはない。従って新気ガイド壁8cを排気弁
7の方に近づけることができるので給気弁6の開口面積
を増大せしめることができる。その結果、新気の流入量
を増大できるので機関出力を増大させることができる。
Furthermore, since the fresh air is guided to the vicinity of the top surface of the piston 2 by the fresh air guide walls 8c and 8d, even if the fresh air guide wall 8c is brought closer to the exhaust valve 7, the fresh air does not blow through into the exhaust port 13. There isn't. Therefore, the fresh air guide wall 8c can be moved closer to the exhaust valve 7, so that the opening area of the air supply valve 6 can be increased. As a result, the amount of fresh air flowing in can be increased, so that the engine output can be increased.

また、排気弁7が開弁じたときに既燃ガスの一部は既燃
ガスガイド壁8eにより案内されて滑らかに排気ポート
13内に流出する。その結果、既燃ガスが燃焼室4内か
ら排出されやすくなるので更に良好な掃気作用を確保す
ることができる。なお、本発明を2サイクルデイ一ゼル
機関に適用しうろことは言うまでもない。
Further, when the exhaust valve 7 is opened, a part of the burnt gas is guided by the burnt gas guide wall 8e and flows smoothly into the exhaust port 13. As a result, burned gas is more easily discharged from the combustion chamber 4, so that even better scavenging action can be ensured. It goes without saying that the present invention can also be applied to a two-stroke diesel engine.

〔発明の効果] 排気弁側に位置する給気弁周縁部と弁座間の開口を給気
弁の全開弁期間に亙ってマスク壁により覆いしかも新気
ガイド壁により案内される新気をピストン頂面近傍まで
送り込むことができるので良好な掃気作用を確保するこ
とができる。
[Effect of the invention] The opening between the peripheral edge of the air supply valve located on the exhaust valve side and the valve seat is covered by a mask wall during the full opening period of the air supply valve, and the fresh air guided by the fresh air guide wall is directed to the piston. Since the air can be sent to the vicinity of the top surface, good scavenging action can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2サイクル内燃機関の側面断面図、第2図はシ
リンダヘッド内壁面を示す図、第3図は第1図の矢印I
IIに沿ってみた図解的に示す斜視図、第4図はシリン
ダヘッドの平面断面図、第5図は排気弁の開弁期間を示
す線図、第6図は給排気弁の弁リフトおよび排気ポート
内の圧力変化を示す図、第7図は低負荷運転時の作動を
説明するための図、第8図は高負荷運転時の作動を説明
するための図である。 3・・・シリンダヘッド、   4・・・燃焼室、6・
・・給気弁、        7・・・排気弁、8a・
・・マスク壁、 8b、8c、8d・・・新気ガイド壁
、12・・・給気ポート。
Fig. 1 is a side sectional view of a two-stroke internal combustion engine, Fig. 2 is a view showing the inner wall surface of the cylinder head, and Fig. 3 is an arrow I in Fig. 1.
Fig. 4 is a plan sectional view of the cylinder head, Fig. 5 is a line diagram showing the opening period of the exhaust valve, and Fig. 6 is a diagram showing the valve lift of the supply and exhaust valve and the exhaust. FIG. 7 is a diagram showing the pressure change in the port, FIG. 7 is a diagram for explaining the operation during low load operation, and FIG. 8 is a diagram for explaining the operation during high load operation. 3... Cylinder head, 4... Combustion chamber, 6...
...Air supply valve, 7...Exhaust valve, 8a.
...Mask wall, 8b, 8c, 8d... Fresh air guide wall, 12... Air supply port.

Claims (1)

【特許請求の範囲】[Claims]  シリンダヘッド内壁面から燃焼室に向けて延びるマス
ク壁を給気弁と排気弁との間に形成して該マスク壁によ
り排気弁側に位置する給気弁周縁部と弁座間の開口を給
気弁の全開弁期間に亙って閉鎖し、上記マスク壁端部付
近からシリンダヘッド内壁面の周縁部まで給気ポート軸
線に対して横方向に延びかつ給気弁側の燃焼室周辺部方
向を向いた新気ガイド壁をシリンダヘッド内壁面上に形
成し、該新気ガイド壁の高さをマスク壁の高さよりも高
くした2サイクル内燃機関の燃焼室構造。
A mask wall extending from the inner wall surface of the cylinder head toward the combustion chamber is formed between the intake valve and the exhaust valve, and the opening between the peripheral edge of the intake valve located on the exhaust valve side and the valve seat is opened by the mask wall to supply air. The valve is closed during the full opening period of the valve, and extends transversely to the intake port axis from near the edge of the mask wall to the peripheral edge of the inner wall surface of the cylinder head, and extends toward the periphery of the combustion chamber on the intake valve side. A combustion chamber structure for a two-stroke internal combustion engine in which a facing fresh air guide wall is formed on an inner wall surface of a cylinder head, and the height of the fresh air guide wall is higher than the height of a mask wall.
JP21240388A 1988-08-12 1988-08-29 Combustion chamber structure for two-cycle internal combustion engine Pending JPH0261322A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21240388A JPH0261322A (en) 1988-08-29 1988-08-29 Combustion chamber structure for two-cycle internal combustion engine
US07/391,786 US4945867A (en) 1988-08-12 1989-08-09 Two-stroke engine
DE3926631A DE3926631C2 (en) 1988-08-12 1989-08-11 Two-stroke engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21240388A JPH0261322A (en) 1988-08-29 1988-08-29 Combustion chamber structure for two-cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0261322A true JPH0261322A (en) 1990-03-01

Family

ID=16622009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21240388A Pending JPH0261322A (en) 1988-08-12 1988-08-29 Combustion chamber structure for two-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0261322A (en)

Similar Documents

Publication Publication Date Title
JPH02153222A (en) Combustion chamber construction of two-cycle internal combustion engine
JPH0264220A (en) Combustion chamber of internal combustion engine
JPS63173813A (en) Two-cycle internal combustion engine
JPS5947128B2 (en) Internal combustion engine intake system
US4945867A (en) Two-stroke engine
US4883030A (en) Combustion chamber of a two-stroke engine
US5890466A (en) Device for injecting fuel at the exhaust port of an engine cylinder
JPH04224231A (en) Inner cylinder injection type internal combustion engine
JPH0545789Y2 (en)
JPH0261322A (en) Combustion chamber structure for two-cycle internal combustion engine
JPS5823219A (en) Spark ignition type internal combustion engine
JPH0733771B2 (en) 2-cycle internal combustion engine
JPH01280624A (en) Combustion chamber for two-cycle internal combustion engine
JPH01277619A (en) Combustion chamber of two-cycle internal combustion engine
JPH02169820A (en) Combustion chamber structure of two cycle internal combustion engine
JPH0533650A (en) Two-cycle internal combustion engine
JPH0299719A (en) Combustion chamber structure of two-cycle internal combustion engine
JPH02173316A (en) Two-cycle internal combustion engine
JPS63173814A (en) Two-cycle internal combustion engine
JPH05280344A (en) Two cycle internal combustion engine
JPH0715260B2 (en) Combustion chamber structure of two-cycle internal combustion engine
JPS6217091B2 (en)
JPH01273872A (en) Combustion chamber of two-cycle internal combustion engine
JPH0264221A (en) Two-cycle internal combustion engine
JPH0715261B2 (en) Combustion chamber structure of two-cycle internal combustion engine