JPH0261296B2 - - Google Patents

Info

Publication number
JPH0261296B2
JPH0261296B2 JP59108130A JP10813084A JPH0261296B2 JP H0261296 B2 JPH0261296 B2 JP H0261296B2 JP 59108130 A JP59108130 A JP 59108130A JP 10813084 A JP10813084 A JP 10813084A JP H0261296 B2 JPH0261296 B2 JP H0261296B2
Authority
JP
Japan
Prior art keywords
alkali metal
reaction
supported
catalyst
norbornene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59108130A
Other languages
Japanese (ja)
Other versions
JPS60251933A (en
Inventor
Katsuo Taniguchi
Tadaaki Fujimoto
Kenji Saeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP59108130A priority Critical patent/JPS60251933A/en
Priority to PCT/JP1985/000291 priority patent/WO1985005562A1/en
Priority to US06/826,489 priority patent/US4675307A/en
Priority to DE8585902648T priority patent/DE3573536D1/en
Priority to EP85902648A priority patent/EP0190352B1/en
Publication of JPS60251933A publication Critical patent/JPS60251933A/en
Publication of JPH0261296B2 publication Critical patent/JPH0261296B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、アルカリ金属担持物質りなる異性化
反応触媒に関する。更に詳しくは、触媒活性およ
び触媒調製の再現性の点ですぐれた超強塩基性触
媒を形成させるアルカリ金属担持物質よりなるオ
レフイン類の異性化反応触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an isomerization reaction catalyst comprising an alkali metal supported material. More specifically, the present invention relates to a catalyst for isomerization of olefins comprising an alkali metal supported material that forms an ultra-strongly basic catalyst with excellent catalytic activity and reproducibility of catalyst preparation.

〔従来の技術〕[Conventional technology]

オレフイン類の異性化反応などに用いられる強
塩基性触媒としては、例えば活性アルミナなどの
比表面積の大きい担体にアルカリ金属を担持させ
て調製されたアルカリ金属担持物質などが知られ
ている(特公昭45−24138号公報)。この物質は、
触媒活性は高いものの、きわめて不安定であり、
それの調製、保存、操作処理などの際に細心の注
意を払つても、なお安定した触媒性能を示すもの
を得ることができない。
As strong basic catalysts used in the isomerization reaction of olefins, there are known alkali metal-supported materials prepared by supporting an alkali metal on a carrier with a large specific surface area, such as activated alumina. 45-24138). This substance is
Although it has high catalytic activity, it is extremely unstable;
Even if great care is taken during its preparation, storage, handling, etc., it is still not possible to obtain one that exhibits stable catalytic performance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、かかる従来技術をふまえて、オ
レフイン類の異性化反応などに対して高活性でか
つ触媒調製の再現性の点で安定した性能を示す強
塩基性触媒を求めて種々検討の結果、ハイドロタ
ルサイト類縁化合物の焼成物にアルカリ金属を担
持させたものが、このような要求を十分にみたす
ものであることを見出した。
Based on such prior art, the present inventors have carried out various studies in search of a strong basic catalyst that is highly active for the isomerization reaction of olefins and exhibits stable performance in terms of reproducibility of catalyst preparation. As a result, it was found that a calcined product of hydrotalcite-related compounds supporting an alkali metal satisfactorily satisfies these requirements.

〔問題点を解決するための手段〕および〔作用〕 従つて、本発明はアルカリ金属担持物質よりな
るオレフイン類の異性化反応触媒に係り、このア
ルカリ金属担持物質は、 一般式 [Mg1-xRx(OH)2x+・[CO3x/2・mH2O]x-
〔〕 R:Al、Cr、Fe x:0<x<0.34 m:0≦m≦5 で表わされるハイドロタルサイト類縁化合物の焼
成物にアルカリ金属を担持させてなる。
[Means for Solving the Problems] and [Operation] Therefore, the present invention relates to an isomerization reaction catalyst for olefins comprising an alkali metal supported substance, and this alkali metal supported substance has the general formula [Mg 1-x Rx(OH) 2 ] x+・[CO 3x/2・mH 2 O] x-
[] R: Al, Cr, Fe x: 0<x<0.34 m: 0≦m≦5 An alkali metal is supported on a fired product of a hydrotalcite-related compound.

上記一般式〔〕で表わされるハイドロタルサ
イト類縁化合物は、更に一般的には次の 一般式 〔M1-xR′x(OH)2x+・〔Ax/o・mH2O〕x- 〔〕 M:2価の金属 R′:3価の金属 A:nが1または2あるn価のアニオン x:上記と同じ m:上記と同じ で表わされるハイドロタルサイト類縁化合物にお
いて、2価金属、3価金属およびn価のアニオン
を特定した化合物である。上記一般式〔〕にお
いては、これ以外にも2価金属としてZn、Mn、
Niなどが、またn価のアニオンとしてF-、Cl-
Br-、I-、CrO4 --、HPO4 --、NO3 -、SO4 --など
の無機アニオンおよびしゆう酸イオン、サリチル
酸アニオンなどの有機アニオンがそれぞれ例示さ
れる。
The hydrotalcite analog compound represented by the above general formula [] is more generally represented by the following general formula [M 1-x R′x(OH) 2 ] x+・[A x/o・mH 2 O] x - [] M: divalent metal R': trivalent metal A: n-valent anion where n is 1 or 2 It is a compound in which metals, trivalent metals, and n-valent anions are specified. In the above general formula [], Zn, Mn,
Ni, etc., as well as n-valent anions such as F - , Cl - ,
Examples include inorganic anions such as Br - , I - , CrO 4 -- , HPO 4 -- , NO 3 - , SO 4 --, and organic anions such as oxalate ion and salicylate anion.

前記一般式〔〕で表わされるハイドロタルサ
イト類縁化合物は、Mgを中心金属イオンとする
八面体が網目層状に結合して形成される基本層が
構造母体を形成しており、この基本層においては
Mgが一部金属Rによつて置換され、正に荷電し
ているため、電荷を中性に保たせるよう、基本層
間に交換可能なCO3アニオンが介在する層状の構
造を結晶構造としており、層間にはまた水も存在
している。
In the hydrotalcite analog compound represented by the above general formula [], a basic layer formed by combining octahedrons with Mg as a central metal ion in a network layer form forms a structural matrix, and in this basic layer,
Since Mg is partially substituted by the metal R and is positively charged, the crystal structure is a layered structure with exchangeable CO 3 anions interposed between the basic layers to keep the charge neutral. Water is also present between the layers.

具体的には、前記一般式〔〕で3価金属とし
てアルミニウムが用いられた化合物が好んで用い
られ、かかる化合物のいくつかの例が次に示され
る。
Specifically, compounds in which aluminum is used as the trivalent metal in the general formula [] are preferably used, and some examples of such compounds are shown below.

〔Mg0.75Al0.25(OH)2〕 ・〔CO31/8・0.5〜0.625H2O〕 〔Mg13/9Al13/4(OH)2〕・〔CO313/2・7/13H2O〕 〔Mg2/3Al1/3(OH)2〕・〔CO31/6・0.5H2O〕 また、3価金属としては鉄またはクロム用いら
れた化合物としては、次のようなものが例示され
る。
[Mg 0.75 Al 0.25 (OH) 2 ] ・[CO 31/8・0.5~0.625H 2 O] [Mg 13/9 Al 13/4 (OH) 2 ]・[CO 313/2・7/13H 2 O ] [Mg 2/3 Al 1/3 (OH) 2 ]・[CO 31/6・0.5H 2 O] In addition, the following are compounds using iron or chromium as trivalent metals. Illustrated.

〔Mg2/3Fe1/3(OH)2〕・〔CO31/6・mH2O〕 〔Mg2/3Cr1/3(OH)2〕・〔CO31/6・mH2O〕 以上の例示された5種類の化合物はまた、次の
式によつても示すことができる。
[Mg 2/3 Fe 1/3 (OH) 2 ]・[CO 31/6・mH 2 O] [Mg 2/3 Cr 1/3 (OH) 2 ]・[CO 31/6・mH 2 O] The five types of compounds exemplified above can also be represented by the following formula.

Mg6Al2(OH)16CO3・4〜5H2O Mg4.5Al(OH)13CO3・3.5H2O Mg4Al4(OH)12CO3・3H2O Mg4Fe(OH)12CO3・6mH2O Mg4Cr2(OH)12CO3・6mH2O これらのハイドロタルサイト類縁化合物の焼成
は、一般に約300〜700℃、好ましくは約400〜600
℃で1時間以上行われる。この焼成処理は、窒素
ガスまたは乾燥空気など、好ましくは窒素ガスの
気流中で行なうことが望ましい。得られる焼成物
については、その塩基強度の高いのが好ましく、
具体的には指示薬としてジフエニルアミンを吸着
させたときに指示薬の色が酸性色(無色)から塩
基性色(淡青色)に変化するのに十分な塩基強
度、即ちこの塩基強度(pKa)22.3よりも高いも
のを担体として使用することが望ましい。このよ
うに高塩基強度の焼成物は、前記一般式〔〕で
表わされるハイドロタルサイト類縁化合物の中で
2価金属としてマグネシウムを用いた化合物、就
中前記一般式〔〕で表わされるハイドロタルサ
イト類縁化合物を焼成することによつて得られ
る。
Mg 6 Al 2 (OH) 16 CO 3・4〜5H 2 O Mg 4.5 Al(OH) 13 CO 3・3.5H 2 O Mg 4 Al 4 (OH) 12 CO 3・3H 2 O Mg 4 Fe(OH) 12 CO 3・6mH 2 O Mg 4 Cr 2 (OH) 12 CO 3・6mH 2 O These hydrotalcite related compounds are generally calcined at about 300 to 700°C, preferably about 400 to 600°C.
℃ for more than 1 hour. This firing treatment is desirably carried out in a stream of nitrogen gas or dry air, preferably nitrogen gas. It is preferable that the obtained baked product has high base strength;
Specifically, when diphenylamine is adsorbed as an indicator, the color of the indicator changes from an acidic color (colorless) to a basic color (pale blue). It is desirable to use a high-quality carrier as a carrier. In this way, the fired product with high base strength is a compound using magnesium as a divalent metal among the hydrotalcite related compounds represented by the above general formula [], especially the hydrotalcite represented by the above general formula []. Obtained by calcining related compounds.

ハイドロタルサイト類縁化合物またはこの焼成
物は、従来から知られているアルカリ金属担持物
質の塩基性担体、例えば酸化マグネシウムの比表
面積が20m2/g程度であるのに対し、一般に100
m2/g以上という比表面積を有する。従つて、こ
の焼成物にアルカリ金属を担持させた場合には、
アルカリ金属が高度に分散して担持させるため、
高活性で安定した固体強塩基性触媒が形成され
る。特に、上記した如く、強塩基性の焼成物担体
にアルカリ金属を担持させると、きわめて高活性
な触媒が得られる。
Hydrotalcite analogues or their calcined products generally have a specific surface area of 100 m 2 /g, whereas that of conventionally known basic carriers of alkali metal supporting materials, such as magnesium oxide, is about 20 m 2 /g.
It has a specific surface area of m 2 /g or more. Therefore, when this fired product supports an alkali metal,
Because the alkali metal is highly dispersed and supported,
A highly active and stable solid strongly basic catalyst is formed. In particular, as described above, when an alkali metal is supported on a strongly basic calcined product carrier, an extremely highly active catalyst can be obtained.

焼成物担体へのアルカリ金属の担体は、例えば
塊状のアルカリ金属をそれの融点以上の温度に加
熱して、これをつふ撹拌しながら粉末状、粒状あ
るいは成形された形状の担体に加える方法、ある
いは減圧下にアルカリ金属を担体に蒸着させる方
法などによつて行われる。
The alkali metal carrier for the fired product carrier can be prepared, for example, by heating a lump of alkali metal to a temperature higher than its melting point and adding it to a powdered, granular or molded carrier while stirring; Alternatively, it may be carried out by a method of vapor depositing an alkali metal onto a carrier under reduced pressure.

担体へのアルカリ金属の担持割合が、担体重量
に対して約1〜15重量%、好ましくは約3〜10重
量%であり、これより少ない担持量では所望の触
媒活性が得られず、一方これより多く用いると、
アルカリ金属の分散状態が悪くなるばかりではな
く、水に対して発火性を示すようになり、触媒と
しての安定性も低下する。担持されるアルカリ金
属としては、リチウム、ナトリウム、カリウム、
ルビジウム、セシウムなどが挙げられるが、一般
にはナトリウムが用いられる。
The proportion of the alkali metal supported on the carrier is about 1 to 15% by weight, preferably about 3 to 10% by weight, based on the weight of the carrier. If the supported amount is less than this, the desired catalytic activity cannot be obtained; If you use more,
Not only does the dispersion state of the alkali metal deteriorate, but it also becomes flammable to water and its stability as a catalyst decreases. The supported alkali metals include lithium, sodium, potassium,
Examples include rubidium and cesium, but sodium is generally used.

このようにして得られるアルカリ金属担持物質
は、X線粉末回析分析ではアルカリ金属によるピ
ークが認められず、アルカリ金属は担体上に微分
散して担持されていることが分る。なお、従来公
知のアルミナなどの金属酸化物の場合にも、同様
に担持されたアルカリ金属についてはX線的にそ
れのピークの存在が認められていない。
In the thus obtained alkali metal-supported material, no alkali metal peak was observed in X-ray powder diffraction analysis, indicating that the alkali metal was supported on the support in a finely dispersed manner. In addition, even in the case of conventionally known metal oxides such as alumina, the existence of a peak of the supported alkali metal is not observed in X-rays.

このアルカリ金属担持物質は、固体強塩基触媒
として、例えばオレフイン類の異性化反応、脱水
素反応、水素添加反応、低重合反応、付加反応お
よび各種の縮合反応などに対し高活性を示してい
る。中でも、オレフイン類の異性化反応に対して
はすぐれた触媒作用を示し、例えばアルケニル架
橋環化合物からアルキリデン架橋環化合物への異
性化反応などに特に有効に作用する。
This alkali metal supported material exhibits high activity as a solid strong base catalyst for, for example, isomerization reactions of olefins, dehydrogenation reactions, hydrogenation reactions, low polymerization reactions, addition reactions, and various condensation reactions. Among these, it exhibits an excellent catalytic effect on the isomerization reaction of olefins, and is particularly effective in, for example, the isomerization reaction from an alkenyl bridged ring compound to an alkylidene bridged ring compound.

異性化反応に供されるオレフイン類としては、
例えばブテン、ペンテン、メチルペンテン、ジメ
チルブテン、ヘキセン、ヘプテン、オクテン、ノ
ネン、デセンなどの直鎖または分枝不飽和鎖状脂
肪族炭化水素、メチルシクロペンテン、エチルシ
クロペンテン、メチルシクロヘキセン、エチルシ
クロヘキセン、ビニルシクロヘキセンなどの不飽
和脂環式炭化水素、ビニルシクロヘキサン、アリ
ルシクロヘキサンなどのアルケニル環状炭化水
素、アルケニル環状炭化水素、アルケニルビシク
ロヘプテン類などのアルケニル架橋環化合物、ア
リルアミン、ブテニルアミン、ピロリンなどの不
飽和アミン化合物、エチルクロチルエーテル、6
−メトキシ−1−ヘキサン、3−メトキシ−1−
ブテンなどの不飽和エーテル化合物などが挙げら
れる。
As the olefins subjected to the isomerization reaction,
Straight or branched unsaturated chain aliphatic hydrocarbons such as butene, pentene, methylpentene, dimethylbutene, hexene, heptene, octene, nonene, decene, methylcyclopentene, ethylcyclopentene, methylcyclohexene, ethylcyclohexene, vinylcyclohexene unsaturated alicyclic hydrocarbons such as vinylcyclohexane, alkenyl cyclic hydrocarbons such as allylcyclohexane, alkenyl bridged ring compounds such as alkenylbicycloheptenes, unsaturated amine compounds such as allylamine, butenylamine, pyrroline, etc. , ethyl crotyl ether, 6
-methoxy-1-hexane, 3-methoxy-1-
Examples include unsaturated ether compounds such as butene.

具体的には、例えば前記不飽和鎖状脂肪族炭化
水素の異性化反応にあつては、骨格異性化反応お
よび二重結合移行反応が含まれる。例えば、ブテ
ン−1を用いた場合にはシス−ブテン−2および
トランス−ブテン−2が、4−メチル−ペンテン
−1を用いた場合にはシス−4−メチルペンテン
−2、トランス−4−メチルペンテン−2、2−
メチルペンテン−1、2−メチル−ペンテン−2
および3−メチルペンテン−2が、またオクテン
−1を用いた場合にはオクテン−2、オクテン−
3およびオクテン−4がそれぞれ異性化反応生成
物として得られる。かかる異性化反応によつて、
2種類以上の反応生成物が得られる場合には、例
えば反応温度、反応時間などを適宜選択すること
により、特定の異性化反応生成物をある程度選択
的に生成させることも可能である。この異性化反
応によつて得られる内部二重結合含有不飽和鎖状
脂肪族炭化水素は、水和反応による2級アルコー
ルの製造原料またはオレフイン不均化反応の原料
として有用である。
Specifically, for example, the isomerization reaction of the unsaturated chain aliphatic hydrocarbon includes a skeletal isomerization reaction and a double bond transfer reaction. For example, when butene-1 is used, cis-butene-2 and trans-butene-2 are used, and when 4-methyl-pentene-1 is used, cis-4-methylpentene-2, trans-4- Methylpentene-2,2-
Methylpentene-1, 2-methyl-pentene-2
and 3-methylpentene-2, and when octene-1 is used, octene-2, octene-2
3 and octene-4 are obtained as isomerization reaction products, respectively. Through such an isomerization reaction,
When two or more types of reaction products are obtained, it is also possible to selectively produce a specific isomerization reaction product to some extent by appropriately selecting the reaction temperature, reaction time, etc., for example. The internal double bond-containing unsaturated chain aliphatic hydrocarbon obtained by this isomerization reaction is useful as a raw material for producing a secondary alcohol by a hydration reaction or as a raw material for an olefin disproportionation reaction.

また、前記アルケニルビシクロヘプテン類の異
性化反応にあつては、5−ビニル−2−ノルボル
ネンからは5−エチリデン−2−ノルボルネン
が、5−プロペニル−2−ノルボルネンからは5
−プロピリデン−2−ノルボルネンが、また5−
イソプロペニル−2−ノルボルネンからは5−イ
ソプロピリデン−2−ノルボルネンがそれぞれ反
応生成物として得られる。これらの5−アルキリ
デン−2−ノルボルネンは、例えばEPDMのジ
エン成分として重要な単量体である。
In addition, in the isomerization reaction of alkenylbicycloheptene, 5-ethylidene-2-norbornene is produced from 5-vinyl-2-norbornene, and 5-ethylidene-2-norbornene is produced from 5-propenyl-2-norbornene.
-propylidene-2-norbornene is also 5-
From isopropenyl-2-norbornene, 5-isopropylidene-2-norbornene is obtained as a reaction product. These 5-alkylidene-2-norbornenes are important monomers as diene components of EPDM, for example.

これらオレフイン類の異性化反応にあつては、
アルカリ金属担持物質たる固体強塩基触媒は、一
般に原料オレフイン類1モルに対してアルカリ金
属として約0.001〜1g原子、好ましくは約0.01
〜0.1g原子の割合で用いられる。
In the isomerization reaction of these olefins,
The solid strong base catalyst as the alkali metal supporting material generally contains about 0.001 to 1 g atom of alkali metal per mole of raw material olefin, preferably about 0.01 g atom.
It is used at a rate of ~0.1 g atom.

異性化反応は、一般に溶媒の不存在下で行われ
るが、反応を阻害しない限り溶媒の存在下でも行
なうことができる。用い得る溶媒としては、例え
ばペンタン、ヘキサン、ヘプタン、オクタン、ド
デカン、シクロヘキサン、ベンゼン、トルエン、
キシレンなどの炭化水素類、ジエチルエーテル、
ジブチルエーテル、エチレングリコールジメチル
エーテル、ジエチレングリコールジメチルエーテ
ル、テトラヒドロフラン、テトラヒドロピランな
どのエーテル類などが挙げられる。
The isomerization reaction is generally carried out in the absence of a solvent, but it can also be carried out in the presence of a solvent as long as the reaction is not inhibited. Examples of solvents that can be used include pentane, hexane, heptane, octane, dodecane, cyclohexane, benzene, toluene,
Hydrocarbons such as xylene, diethyl ether,
Examples include ethers such as dibutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, and tetrahydropyran.

反応条件としては、常圧乃至加圧下に約0〜
120℃、好ましくは約20〜100℃の温度が用いら
れ、操作は回分法、半連続法あるいは連続法のい
ずれの方法においても行なうことができる。
The reaction conditions are about 0 to 0 under normal pressure to increased pressure.
Temperatures of 120 DEG C., preferably about 20 DEG to 100 DEG C. are used, and the operation can be carried out either batchwise, semi-continuously or continuously.

本発明に係るアルカリ金属担持物質は、オレフ
イン類の異性化反応触媒としてばかりではなく、
脱水素反応、水素添加反応、低重合反応、付加反
応および各種の縮合反応などの触媒としても有効
に使用することができる。
The alkali metal-supported material according to the present invention can be used not only as an isomerization reaction catalyst for olefins, but also as a catalyst for the isomerization reaction of olefins.
It can also be effectively used as a catalyst for dehydrogenation reactions, hydrogenation reactions, low polymerization reactions, addition reactions, and various condensation reactions.

例えば、脱水素反応では、2−メチル−1−ブ
テンおよび2−メチル−2−ブテンからイソプレ
ンを得る反応、2,3−ジメチル−1−ブテンお
よび2,3−ジメチル−2−ブテンから2,3−
ジメチル−1,3−ブタジエンを得る反応、ブテ
ン−1およびブテン−2からブタジエンを得る反
応、ペンテンからピペリレンを得る反応などのよ
うに、オレフイン類を脱水素してジエン化合物を
得る反応の触媒としても使用できる。
For example, dehydrogenation reactions include reactions to obtain isoprene from 2-methyl-1-butene and 2-methyl-2-butene, and reactions to obtain isoprene from 2,3-dimethyl-1-butene and 2,3-dimethyl-2-butene. 3-
As a catalyst for reactions to dehydrogenate olefins to obtain diene compounds, such as the reaction to obtain dimethyl-1,3-butadiene, the reaction to obtain butadiene from butene-1 and butene-2, and the reaction to obtain piperylene from pentene. can also be used.

また、低重合反応では、例えばブタジエンある
いはイソプレンを反応させて低次重合体を得る反
応の触媒として、更に付加反応では、アルキル基
で置換されたベンゼン、例えばトルエン、エチル
ベンゼン、キシレン、イソプロピルベンゼンなど
に炭素数2〜5の鎖状脂肪族不飽和炭化水素を付
加させる反応やジエチルアミンなどのアミノ化合
物とブタジエンなどの共役ジエンを反応させて例
えば2−ブテニルジエチルアミンを得る反応など
の触媒としても使用することができる。
In addition, in low polymerization reactions, for example, butadiene or isoprene is reacted as a catalyst to obtain low-order polymers, and in addition reactions, benzenes substituted with alkyl groups, such as toluene, ethylbenzene, xylene, isopropylbenzene, etc. It is also used as a catalyst for the reaction of adding a chain aliphatic unsaturated hydrocarbon having 2 to 5 carbon atoms, or for the reaction of reacting an amino compound such as diethylamine with a conjugated diene such as butadiene to obtain, for example, 2-butenyldiethylamine. be able to.

〔発明の効果〕〔Effect of the invention〕

本発明のアルカリ金属担持物質は、オレフイン
類の異性化反応に触媒として用いられたとき、き
わめて高い触媒活性を示し、例えばアルケニルビ
シクロヘプテン類の異性化反応にそれを用いたと
きには、定量的にアルキリデンビシクロヘプテン
類を生成させる。このように、このアルカリ金属
担持物質は、高触媒活性を示す。
The alkali metal-supported material of the present invention exhibits extremely high catalytic activity when used as a catalyst in the isomerization reaction of olefins. For example, when it is used in the isomerization reaction of alkenylbicycloheptenes, it exhibits quantitative Generates alkylidene bicycloheptenes. Thus, this alkali metal supported material exhibits high catalytic activity.

また、このアルカリ金属担持物質は、担体とし
て使用したハイドロタルサイト類縁化合物の焼成
物の比表面積が大きく、アルカリ金属の分散性が
すぐれているため、従来の触媒と比較して、触媒
調製の再現性の点でもすぐれている。
In addition, this alkali metal-supported material has a large specific surface area of the calcined hydrotalcite-related compound used as a support, and has excellent alkali metal dispersibility, making it easier to reproduce catalyst preparation than conventional catalysts. They are also excellent in terms of sex.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例 1 ハイドロタルサイト類縁化合物として協和化学
製品キヨーワード#1000mg4.5Al2(OH)13CO3
3.5H2Oが用いられ、これらの500gを空気中500
℃で3時間焼成した。得られた焼成物の比表面積
を、カウンタクローム社製カウンタソルブ比表面
積測定装置を用い、B.E.T.一点法で測定したと
ころ、174m2/gの値が得られ、焼成前の値121
m3/gと比較してその値が著しく増大していた。
また、この焼成物の塩基強度を指示薬測定法によ
つて測定すると、pKa26.5の4−クロルアニリン
が無色から桃色に変化し、高塩基性を示した。
Example 1 Kyowa Kagaku Kyoward #1000mg 4.5 Al 2 (OH) 13 CO 3 as a hydrotalcite related compound
3.5H 2 O is used and 500g of these are
It was baked at ℃ for 3 hours. When the specific surface area of the obtained fired product was measured by the BET single point method using a Countersolve specific surface area measuring device manufactured by Counterchrome Co., Ltd., a value of 174 m 2 /g was obtained, which was lower than the value before firing of 121
The value was significantly increased compared to m 3 /g.
Furthermore, when the basic strength of this baked product was measured by an indicator measurement method, 4-chloroaniline with a pKa of 26.5 changed from colorless to pink, indicating high basicity.

この焼成物粉末100gをフラスコにとり、窒素
ガス雰囲気下に250℃に加熱し、よく撹拌しなが
ら、金属ナトリウム8.7gを少量宛約20分間の間
に加えた後、そのまま約2時間撹拌を続けること
により、金属ナトリウムをハイドロタルサイト類
縁化合物焼成物粉末に、8.0重量%の担持量で担
持させた。この物質の塩基強度を指示薬摘定法に
より測定すると、pKa35.0のトリフエニルメタン
が無色から黄色に変化し、超強塩基性を示した。
Place 100 g of this fired product powder in a flask, heat it to 250°C under a nitrogen gas atmosphere, add 8.7 g of metallic sodium in small amounts over a period of about 20 minutes while stirring well, and continue stirring for about 2 hours. In this way, metallic sodium was supported on the hydrotalcite related compound fired product powder in an amount of 8.0% by weight. When the basic strength of this substance was measured by the indicator extraction method, triphenylmethane with a pKa of 35.0 changed from colorless to yellow, indicating ultra-strong basicity.

このようにした得られた金属ナトリウム担持物
質2gを、5−ビニル−2−ノルボルネン250g
を仕込んだフラスコ中に投入し、80℃で60分間撹
拌し続けた。反応液を、ガスクロマトグラフイー
(PEG20M、3m)で分析したところ、上記5−
ビニル化合物の全量が5−エチリデン−2−ノル
ボルネンに変化しており、他の副生成物の存在を
認めなかつた。
2 g of the metal sodium support material obtained in this way was mixed with 250 g of 5-vinyl-2-norbornene.
was added to the flask containing the mixture, and continued stirring at 80°C for 60 minutes. When the reaction solution was analyzed by gas chromatography (PEG20M, 3m), the above 5-
The entire amount of the vinyl compound was changed to 5-ethylidene-2-norbornene, and no other by-products were observed.

実施例 2 実施例1において、ハイドロタルサイト類縁化
合物として協和化学製品キヨーワード
#500Mg6Al2(OH)16CO3・4H2Oの同量を用い、
また金属ナトリウムの量を9.8gに変更して同様
の処を行ない(ただし、焼成温度は550℃)、金属
ナトリウムを9.0重量%の担持量で担持した物質
を得た。
Example 2 In Example 1, the same amount of Kyowa Kagaku Kyoward #500Mg 6 Al 2 (OH) 16 CO 3 4H 2 O was used as the hydrotalcite related compound,
In addition, the same process was carried out with the amount of metallic sodium changed to 9.8 g (however, the firing temperature was 550° C.) to obtain a material in which metallic sodium was supported in an amount of 9.0% by weight.

用いられたハイドロタルサイト類縁化合物の焼
成後の比表面積を実施例1の方法によつて測定す
ると、163m2/gの値が得られた。また、この焼
成物の塩基強度を測定すると、最高塩基強度は、
指示薬測定法によるpKa値で表示して26.5と27.0
との間にあつた。更に、得られた金属ナトリウム
担持物質は、実施例1の場合と同様にpKa35.0の
トリフエニルメタンが無色から桃色に変化し、超
強塩基性を示した。
When the specific surface area of the hydrotalcite analog compound used after firing was measured by the method of Example 1, a value of 163 m 2 /g was obtained. Also, when the base strength of this baked product was measured, the highest base strength was:
26.5 and 27.0 expressed in pKa value using indicator measurement method
It was between. Furthermore, in the obtained metallic sodium-supported material, triphenylmethane with pKa of 35.0 changed from colorless to pink, indicating ultra-strong basicity, as in Example 1.

このようにして得られた金属ナトリウム担持物
質2gを、5−ビニル−2−ノルボルネン150g
を仕込んだフラスコ中に投入し、80℃で60分間撹
判し続けると、実施例1と同様に、反応液は全量
−5−エチリデン−2−ノルボルネンに変化して
おり、他の副生成物の存在を認めなかつた。
2 g of the metal sodium support material thus obtained was mixed with 150 g of 5-vinyl-2-norbornene.
When the reaction solution was poured into a flask containing 5-ethylidene-2-norbornene and continued stirring at 80°C for 60 minutes, the entire amount of the reaction solution was changed to -5-ethylidene-2-norbornene, and other by-products were did not acknowledge the existence of

実施例 3 実施例1において、金属ナトリウムの代りに金
属カリウム9.2gを用い、金属カリウムを8.4重量
%の担持量で担持させた焼成物粉末を得た。得ら
れた金属カリウム担持物質の塩基強度を指示薬測
定法により測定すると、pKa35.0で無色から黄色
に変色するトリフエニルメタンの吸着により黄色
に変色し、pKa35.0以上の超強塩基性であること
を示した。
Example 3 In Example 1, 9.2 g of metallic potassium was used instead of metallic sodium to obtain a fired product powder in which metallic potassium was supported in an amount of 8.4% by weight. When the basic strength of the resulting metallic potassium-supported material was measured using an indicator measurement method, it turned from colorless to yellow at pKa 35.0.It turned yellow due to the adsorption of triphenylmethane, and it was found to be extremely basic with a pKa of 35.0 or higher. It was shown that

この金属カリウム担持物質を用い、実施例1と
同様にして(ただし、撹拌条件は90℃、90分間)、
5−ビニル−2−ノルボルネンの異性化反応を行
なうと、その全量が5−エチリデン−2−ノルボ
ルネンに変化していることが確認された。
Using this metallic potassium supporting material, the same procedure as in Example 1 was carried out (however, stirring conditions were 90°C for 90 minutes).
When the isomerization reaction of 5-vinyl-2-norbornene was carried out, it was confirmed that the entire amount was changed to 5-ethylidene-2-norbornene.

実施例 4 実施例2で得られた金属ナトリウム担持物質2
gを、窒素ガス雰囲気下のフラスコにとり、60℃
に加熱して撹拌しながら、4−メチルペンテン−
1を15g加えた。30分間経過後に、ガスクロマト
グラフイー(Ucon LB−550、90m)で分析した
ところ、下記の如く4−メチルペンテン−1のす
べてが変化していた。
Example 4 Metallic sodium supported material 2 obtained in Example 2
g in a flask under nitrogen gas atmosphere and heated at 60℃.
While heating and stirring, 4-methylpentene-
15g of 1 was added. After 30 minutes, analysis by gas chromatography (Ucon LB-550, 90m) revealed that all of the 4-methylpentene-1 had changed as shown below.

シス−4−メチルペンテン−2 12.1% トランス−4−メチルペテン−2 12.0% 2−メチルペンテン−2 75.5% その他 0.4% 比較例 1 アルミナ(日揮化学製品N−613N)100gを、
空気中400℃で4時間処理し、得られた粉末(比
表面積140m2/g、最高塩基強度は指示薬滴定法
によるpKa値で表示して15.0と17.2との間にある)
40gを容量100mlのフラスコにとり、やはり窒素
ガス雰囲気下で250℃に加熱して撹拌しながら、
金属ナトリウム4.5gを少量宛約20分間の間に加
えた後、そのまま2時間撹拌した。
Cis-4-methylpentene-2 12.1% Trans-4-methylpentene-2 12.0% 2-methylpentene-2 75.5% Others 0.4% Comparative Example 1 100 g of alumina (JGC Chemicals N-613N) was
Powder obtained after treatment at 400°C in air for 4 hours (specific surface area 140 m 2 /g, maximum base strength is between 15.0 and 17.2 expressed as pKa value by indicator titration)
Place 40g in a 100ml flask, heat to 250℃ under nitrogen gas atmosphere, and stir while stirring.
After adding 4.5 g of metallic sodium in small portions over a period of about 20 minutes, the mixture was stirred as it was for 2 hours.

このようにして得られた金属ナトリウム担持物
質2gを、5−ビニル−2−ノルボンネン150g
を仕込んだフラスコ中に投入し、80℃で60分間撹
拌し続けた。反応後を、ガスクロマトグラフイー
で分析したところ、5−ビニル−2−ノルボルネ
ンの37.7%が5−エチリデン−2−ノルボルネン
に変化しただけで、残りは未反応の5−ビニル−
2−ノルボルネンとして回収された。
2 g of the metal sodium support material thus obtained was mixed with 150 g of 5-vinyl-2-norbonene.
was added to the flask containing the mixture, and continued stirring at 80°C for 60 minutes. After the reaction was analyzed by gas chromatography, only 37.7% of 5-vinyl-2-norbornene was changed to 5-ethylidene-2-norbornene, and the rest was unreacted 5-vinyl-2-norbornene.
It was recovered as 2-norbornene.

比較例 2 実施例4において、金属ナトリウム担持物質と
して、比較例1で用いられたものが用いられた。
30分間経過後の分析の結果、4−メチルペンテン
−1の47%が次の組成比で変化しており、残りは
未反応物として回収された。
Comparative Example 2 In Example 4, the material used in Comparative Example 1 was used as the metallic sodium supporting material.
Analysis after 30 minutes revealed that 47% of 4-methylpentene-1 had changed to the following composition ratio, and the rest was recovered as unreacted material.

シス−4−メチルペンテン−2 23.2% トランス−4−メチルペンテン−2 20.5% 2−メチルペンテン−2 56.7% 実施例 5 実施例1で得られた金属ナトリウム担持物質2
gを、窒素ガス雰囲気下で、30mlのn−デカンを
仕込んである容量100mlのオートクレープに仕込
み、更にこれにジエチルアミン7.0gおよびブタ
ジエン14.5gを仕込んで、100℃で2時間反応さ
せた。
Cis-4-methylpentene-2 23.2% Trans-4-methylpentene-2 20.5% 2-methylpentene-2 56.7% Example 5 Metallic sodium supported material 2 obtained in Example 1
g was charged into a 100 ml autoclave containing 30 ml of n-decane under a nitrogen gas atmosphere, and 7.0 g of diethylamine and 14.5 g of butadiene were further charged thereto and reacted at 100°C for 2 hours.

反応物を、ガスクロマトグラフイー(PEG−
20M、2m)で分析すると、ジエチルアミンの転
化率は75%で、その生成物はジエチルアミンに対
するブタジエンのモノ付加体である2−ブテニル
ジエチルアミンがそれの73%、またジ付加体が18
%であつた。
The reaction product was analyzed by gas chromatography (PEG-
When analyzed at 20M, 2m), the conversion of diethylamine was 75%, and the product was 2-butenyldiethylamine, a monoadduct of butadiene to diethylamine, at 73%, and the di-adduct at 18%.
It was %.

比較例 3 市販試薬の酸化カルシウムを、窒素ガス雰囲気
下に850℃で4時間焼成して得られた粉末(比表
面積20m2/g、最高塩基強度は指示薬滴定法によ
るpKa値で示して26.5と27.0との間にあつた)2
gを用い、実施例5と同様にジエチルアミンに対
するブダジエンの付加反応を行なつたが、生成物
は認められなかつた。
Comparative Example 3 A powder obtained by calcining commercially available reagent calcium oxide at 850°C for 4 hours in a nitrogen gas atmosphere (specific surface area 20 m 2 /g, maximum base strength 26.5 as indicated by pKa value determined by indicator titration method). 27.0)2
Although the addition reaction of butadiene to diethylamine was carried out in the same manner as in Example 5, no product was observed.

実施例 6 実施例1で得られた金属ナトリウム担持物質2
gを、30mlのn−デカンを仕込んである容量100
mlのオートクレープに仕込み、更にプタジエン
8.5gを仕込んで、50℃で4時間反応させたとこ
ろ、ブタジエンのほぼ全量が重合し、ゴム状の重
合体が得られた。
Example 6 Metallic sodium supported material 2 obtained in Example 1
A capacity of 100 g is charged with 30 ml of n-decane.
ml autoclave, and add ptadiene.
When 8.5 g was charged and reacted at 50°C for 4 hours, almost the entire amount of butadiene was polymerized and a rubbery polymer was obtained.

実施例 7 実施例1で得られた金属ナトリウム担持物質2
gを、窒素ガス雰囲気下のフラスコにとり、そこ
に3−メチル−1−ペンテン400mlを加えた。フ
ラスコ内の温度を50〜55℃に制御しながら15分間
反応させ、反応終了後混合物をガスクロマトグラ
フイーに(Ucon LB−550、90m)で分析したと
ころ、下記の如く3−メチル−1−ペンテンのす
べてが変化していた。
Example 7 Sodium metal supported material 2 obtained in Example 1
g was placed in a flask under a nitrogen gas atmosphere, and 400 ml of 3-methyl-1-pentene was added thereto. The reaction was carried out for 15 minutes while controlling the temperature inside the flask at 50-55℃, and after the reaction was completed, the mixture was analyzed by gas chromatography (Ucon LB-550, 90m). As shown below, 3-methyl-1-pentene was detected. everything was changing.

トランス−3−メチル−2−ペンテン 31.5% シス−3−メチル−2−ペンテン 65.1% 他のC6−オレフイン類 2.7% その他 0.7%Trans-3-methyl-2-pentene 31.5% Cis-3-methyl-2-pentene 65.1% Other C6 -olefins 2.7% Others 0.7%

Claims (1)

【特許請求の範囲】 1 一般式 [Mg1-xRx(OH)2x+ ・[CO3x/2・mH2O]x- [] R:Al、Cr、Fe x:0<x<0.34 m:0≦m≦5 で表わされるハイドロタルサイト類縁化合物の焼
成物にアルカリ金属を担持させてなるアルカリ金
属担持物質よりなるオレフイン類の異性化反応触
媒。
[Claims] 1 General formula [Mg 1-x Rx(OH) 2 ] x+・[CO 3x/2・mH 2 O] x- [] R: Al, Cr, Fe x: 0<x<0.34 An isomerization reaction catalyst for olefins comprising an alkali metal-supporting material, which is obtained by supporting an alkali metal on a calcined product of a hydrotalcite-related compound represented by m: 0≦m≦5.
JP59108130A 1984-05-28 1984-05-28 Alkali metal carrying substance and isomerization reaction catalyst comprising said substance Granted JPS60251933A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59108130A JPS60251933A (en) 1984-05-28 1984-05-28 Alkali metal carrying substance and isomerization reaction catalyst comprising said substance
PCT/JP1985/000291 WO1985005562A1 (en) 1984-05-28 1985-05-28 Alkali metal-carrying substance, and its use as catalyst
US06/826,489 US4675307A (en) 1984-05-28 1985-05-28 Alkali metal-supported catalyst
DE8585902648T DE3573536D1 (en) 1984-05-28 1985-05-28 Alkali metal-carrying substance, and its use as catalyst
EP85902648A EP0190352B1 (en) 1984-05-28 1985-05-28 Alkali metal-carrying substance, and its use as catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59108130A JPS60251933A (en) 1984-05-28 1984-05-28 Alkali metal carrying substance and isomerization reaction catalyst comprising said substance

Publications (2)

Publication Number Publication Date
JPS60251933A JPS60251933A (en) 1985-12-12
JPH0261296B2 true JPH0261296B2 (en) 1990-12-19

Family

ID=14476691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59108130A Granted JPS60251933A (en) 1984-05-28 1984-05-28 Alkali metal carrying substance and isomerization reaction catalyst comprising said substance

Country Status (1)

Country Link
JP (1) JPS60251933A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992612A (en) * 1988-08-12 1991-02-12 Sumitomo Chemical Company, Limited Solid base, process for producing the same and process of preparing internal olefins
JPH02104536A (en) * 1988-10-12 1990-04-17 Mitsui Petrochem Ind Ltd Production of cyclohexenes and hydrogenation catalyst therefor
MY153121A (en) * 2008-04-29 2014-12-31 Akzo Nobel Nv Paper sizing additives, their preparation process, and their use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493760A (en) * 1972-04-30 1974-01-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493760A (en) * 1972-04-30 1974-01-14

Also Published As

Publication number Publication date
JPS60251933A (en) 1985-12-12

Similar Documents

Publication Publication Date Title
US4675307A (en) Alkali metal-supported catalyst
US4423281A (en) Process for producing conjugated diolefins
EP0057971B1 (en) Process for preparing 4-methyl-1-pentene
US4336409A (en) Process for producing conjugated diolefins
EP0416304B1 (en) Chromium compounds and uses thereof
US3931348A (en) Process for preparing dimethyl naphthalene
US4436671A (en) Process for producing unsaturated aliphatic dinitriles
US3527834A (en) Conversion of butene-2 to butene-1
US3389190A (en) Catalyst and polymerisation process using said catalyst
JPH0261296B2 (en)
US2401246A (en) Supported oxide catalysts
US3291752A (en) Process for preparing a sodium-potassium carbonate polymerization catalyst
US4000176A (en) Process for simultaneously producing methacrylo-nitrile and butadiene by vapor-phase catalytic oxidation of mixed butenes
JPH0148819B2 (en)
US4524235A (en) Olefin disproportionation and catalyst therefor
US4570025A (en) Preparation of alkenes and cycloalkenes
EP0587716B1 (en) Catalyst and its use for the isomerisation of olefins
US2916531A (en) Dehydrogenation of hydrocarbons
US2927087A (en) Method of catalyst manufacture
US2377083A (en) Catalytic dehydrogenation
US3426089A (en) Polymerization process
JPH10309460A (en) Catalyst and method for side chain alkylation by using the same
US3255272A (en) Olefin dimerization
US3867472A (en) Dehydrogenation process
US5811611A (en) Method for producing monoalkenyl benzene