JPH0260955B2 - - Google Patents

Info

Publication number
JPH0260955B2
JPH0260955B2 JP62147209A JP14720987A JPH0260955B2 JP H0260955 B2 JPH0260955 B2 JP H0260955B2 JP 62147209 A JP62147209 A JP 62147209A JP 14720987 A JP14720987 A JP 14720987A JP H0260955 B2 JPH0260955 B2 JP H0260955B2
Authority
JP
Japan
Prior art keywords
repair
phenolic resin
parts
weight
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62147209A
Other languages
Japanese (ja)
Other versions
JPS63311083A (en
Inventor
Takashi Minanami
Naoharu Kokaki
Akira Watanabe
Satoshi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kyushu Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd, Nippon Steel Corp filed Critical Kyushu Refractories Co Ltd
Priority to JP14720987A priority Critical patent/JPS63311083A/en
Publication of JPS63311083A publication Critical patent/JPS63311083A/en
Publication of JPH0260955B2 publication Critical patent/JPH0260955B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は溶融金属容器などの管状部分、例えば
転炉出鋼孔やRH、DHの浸漬管など、あるいは
ランスなどの補修に使用する圧着補修用成形体、
特に、熱間で施工を行なうに好適な熱間補修用成
形体に関するものである。 〔従来の技術とその問題点〕 従来、溶融金属容器などの管状部分のうち、転
炉出鋼孔を補修する方法としては孔径の拡大部に
補修材をスタンプで圧着したり、損耗した出鋼孔
を掘削してスリーブれんがを装入し、炉壁との間
隙を吹付けや流込みによつて補修用耐火材を充填
する方法が行なわれている。また、浸漬管におい
ては損傷部にパイプを挿入して圧入材を圧入して
補修するか、吹付けによる補修が主として行なわ
れている。しかし、いずれの場合も従来の方法は
転炉や取鍋の操業のタイミングに合わせて能率よ
く熱間で補修を行なうには不都合である。 熱間で短時間に出鋼孔を補修する方法として、
例えば特開昭57−169012号公報のように、ヘツド
を備えたパイプを出鋼孔に装入し、掘削と同時に
補修材をパイプの穴から圧力をかけて吐出させ補
修する方法が提案されている。浸漬管の補修にお
いても、ほゞ同様の方法で補修が行なわれてい
る。しかし、この方法による施工体はどうしても
気孔率の大きいものとなり耐用上問題があり、成
形体を用いる方法が望ましい。 成形体を用いる方法として、本出願人らは特開
昭61−41883号公報で提案しているが、この方法
は、金属パイプ、膨脹材層、補修用耐火物層及び
薄金属板よりなる補修用構造体を補修部位に装着
し、炉壁より受熱した膨脹材層の膨脹により耐火
物層を被補修面に圧着させる方法である。しか
し、この補修方法は膨脹材の膨脹による圧着力を
利用するため、その施工可能な温度範囲が限られ
る欠点がある。 この他、特開昭61−110711号公報にみられるよ
うに、拡張自在な管状芯材による機械的な圧着方
法もある。この方法の補修材は所定厚みに成形さ
れたものが管状芯材の拡張に従つて変形せねばな
らず、該公報にはこの方法に適した補修材の具体
的な記載はない。 本発明者らはこのような補修方法に最適な補修
材として、先にフエノール樹脂とピツチとを適度
に使用することにより、熱によるフエノール樹脂
とピツチの軟化流動と圧着による変形を利用した
熱間補修用成形体に関する特許を出願した(特開
昭63−311083号)。 しかし、この補修用成形体は一般炉壁の小部分
の補修には非常に威力を発揮するが、これを管状
に成形して転炉出鋼孔の補修に適用したところ、
以下のような問題点をが生じた。即ち、フエノー
ル樹脂とピツチの使用量が少ない場合は、圧着機
による拡径時に1カ所ないし2〜3カ所に集中的
に亀裂が生じ、以後の加熱によつても一体化しな
い場合があつた。また、フエノール樹脂とピツチ
の量が多い場合は、拡径圧着施工後、炉壁に接す
る部分は硬化を始めるが、補修用成形体の内側は
まだ流動性を保つているため、管状補修用成形体
の上部内側が重力により下方に力が働き、補修用
成形体内部に円周方向の亀裂が生じることも認め
られた。 〔問題点を解決するための手段〕 上述の欠点を解決するため、種々検討をした結
果、特開昭63−311083号に開示された配合に金属
繊維を添加することにより、問題点を解決するこ
とに成功したものである。 この方法に適用される補修材は炉熱により軟化
変形し、管状芯材の拡張に従つて変形して炉壁と
強固な結合をする必要がある。そのため本発明は
耐火骨材100重量部に対して、直径0.1〜1mm、長
さ10〜40mmの金属繊維0.5〜5重量部と、粒径0.1
〜1mmの粒状フエノール樹脂3〜12重量部及び粒
径0.1〜1mmの粒状ピツチ5〜18重量部より構成
され、成形体中に前記粒状フエノール樹脂又は粒
状ピツチの少なくとも一部が粒状のまゝ存在して
なることを特徴とする熱間補修用成形体である。 本発明の補修用成形体は主として耐火骨材と金
属繊維、粒状フエノール樹脂及び粒状ピツチとで
構成されるが、耐火骨材として特に限定はしない
が、転炉の材質から塩基性のものが好ましい。更
に、グラフアイト、コークス等の炭素源も添加可
能であり、酸化防止と熱間強度の向上を目的とし
てAl,Si,Mg等の金属粉末を添加することも可
能である。 金属繊維はステンレス繊維または鋼繊維が望ま
しく、その直径は0.1〜1mm、長さ10〜40mmのも
の、即ちアスベクト比約10〜400のものを耐火骨
材100重量部に対して0.5〜5重量部添加する。直
径が0.1mmより細いもの、長さが10mmより短いも
の、あるいは添加量0.5重量部以下ではいずれも
添加効果に乏しく、逆に長さが40mm以上のものは
均一な混練がしにくゝなり、直径が1mmよりも太
いものは施工体の耐食性が低下し、添加量が5重
量部以上では混練が困難となると共に耐食性の低
下がみられ、いずれの場合も好ましくない。特開
昭60−86078号には、熱間補修用吹付材において
耐火骨材中に金属繊維や金属粉を添加することが
試みられているが、これらは吹付材による施工体
の耐スポーリング性及び耐摩耗性の付与、亀裂進
展防止効果を求めるよりはむしろ、伝熱をよくし
て炭素質樹脂の炭化反応の促進を目的とするもの
である。したがつて、金属粉でもよいものである
が、本発明では上記条件を満足する金属繊維でな
ければならない。 使用するフエノール樹脂はその粒径が0.1〜1
mmの範囲にあればよく、レゾール型、ノボラツク
型いずれのフエノール樹脂も使用可能であり、更
に、前記フエノール樹脂の各種変性樹脂も使用可
能である。その添加量は耐火骨材100重量部に対
して3〜12重量部であり、3重量部より少ないと
補修後の施工体は強度の劣るものとなり好ましく
ない。また、12重量部以上のの添加は、本発明の
補修用成形体を熱間で施工する場合に、過度の流
動性を示し、目的部位への補修効率が低下するの
で好ましくない。 次に、ピツチもその粒径が0.1〜1mmの範囲に
あれば、石油系、石炭系いずれのピツチも使用可
能である。その添加量は耐火骨材100重量部に対
して5〜18重量部であり、5重量部より少ない場
合は熱間で圧力を加えた際の見掛気孔率の低下な
どの物性の向上が顕著には認められない。また、
18重量部以上添加した場合には、熱間での保形性
が十分でなく、得られる施工体の物性も低下する
ので好ましくない。 また、使用するフエノール樹脂及びピツチの粒
径は0.1〜1mmとするが、これを0.1mm以下の微粉
として使用すると、熱間での保形性が低下するの
で好ましくない。また、1mm以上のフエノール樹
脂やピツチを使用すると、施工時に加圧しない場
合にフエノール樹脂やピツチの存在していた部位
が空孔となり、物性の低下原因となる。更に、フ
エノール樹脂及びピツチの合計添加量は耐火骨材
100重量部に対して22重量部以下であることが必
要である。22重量部以上添加すると、本発明の特
徴である熱間での保形性が失われる。 成形体の製造時に使用する有機溶媒は、使用す
るフエノール樹脂を溶解し、かつその沸点が使用
するフエノール樹脂及びピツチの軟化点よりも低
いものであればよく、各種アルコール類、各種エ
ーテル類などが使用可能である。またその使用量
は成形方法に合わせて調製すればよく、例えばプ
レス成形の場合には2〜5%が、手打ち成形を行
なう場合には4〜8%が適当である。このように
有機溶媒を使用するのは、成形時に粒状で加えた
フエノール樹脂の表面を一部溶解させ、得られる
補修用成形体に一定の強度を発現させるためであ
る。また、有機溶媒の沸点が使用するフエノール
樹脂及びピツチの軟化点よりも低いものを使用す
るのは、成形後の溶媒の揮発を速くして強度を速
やかに発現させるためである。 更に、成形後に加熱処理をして成形体中の有機
溶媒はその全部または大部分が揮発除去される。
この場合に、その温度をフエノール樹脂及びピツ
チの軟化点のうち低い軟化点の温度付近で行なう
のが好ましい。即ち、本発明の成形体中には前記
粒状フエノール樹脂又は粒状ピツチの少なくとも
一部、好ましくは補修用成形体の保形性が保たれ
る範囲でなるべく大部分が粒状で存在するように
配慮する。軟化点付近よりかなり高い温度で処理
すると、成形体中でフエノール樹脂またはピツチ
の粒子が軟化流動してフエノール樹脂及び/又は
ピツチの連続相を形成して上記構成の成形体とは
ならず、従つて、熱間での保形性が失われ好まし
くないためである。 本発明の熱間補修用成形体は原料配合を混練後
プレスまたは手打ちにより管状に成形されるが、
金属繊維を添加するので、プレス成形の方が好ま
しい。 〔作用〕 本発明の熱間補修用成形体においても、通常の
焼付補修材と同様に、その施工は主として600℃
以上の熱間であり、炉壁の保有熱により焼付硬化
して炉壁に接着する。この場合、フエノール樹脂
とピツチは炉壁からの受熱で軟化流動するが、本
発明においてはフエノール樹脂とピツチの少なく
とも一部、好ましくは大部分が粒状で成形体中に
存在している状態であるため、個々には軟化し、
耐火骨材の粒子間を流下するが、補修用成形体と
しては熱のみでは軟化変形はしない。しかし、わ
ずかの加圧によつて変形する特性を発現する。こ
の加圧によりフエノール樹脂とピツチは補修用成
形体内に均一に分散し強固なカーボン・ボンドを
形成するばかりでなく、気孔率の低い物性の優れ
た施工体となる。また、加圧時に補修材より押し
出されたフエノール樹脂とピツチは補修材と被補
修面に集中するため施工体の接着強度も向上す
る。 しかし、上述のようにフエノール樹脂とピツチ
の使用量が少ない場合は圧着機による拡径時に1
カ所ないし2〜3カ所に集中的に亀裂が生じ、以
後の加熱によつても一体化しなかつたり、逆にフ
エノール樹脂とピツチの量が多い場合は拡径圧着
施工後、補修用成形体内部に円周方向の亀裂が生
じることがある。これを防止するため金属繊維を
添加する。金属繊維の添加により、上述のいずれ
の亀裂の発生も防止され、フエノール樹脂とピツ
チの使用量が耐火材の種類、配合に応じて広範囲
に変え得るようになる。更に、金属繊維の添加に
より補修用成形体が運搬中に破損する危険も少な
くなる。 〔実施例〕 以下、実施例により、本発明を更に詳細に説明
するが、本発明はこれら実施例に限定されるもの
ではない。 実施例1〜4、比較例1〜2 第1表に示す配合をニーダーで混練後内径200
mm、外径250mm、長さ300mmの円筒形状に圧力100
Kg/cm2で成形し、30℃で10時間かけて有機溶媒と
して使用したエタノールを揮発させて補修用成形
体を得た。 この補修用成形体の5本1組を圧着機にセツト
し、内壁温度1000℃の模擬出鋼孔(内径270mm)
に装入、圧力2Kg/cm2で圧着施工して、その状態
の観察および物性値を測定した。 実施例1、2は流動性の低い補修材であるが、
拡径時の亀裂の集中は見られず、施工後の補修体
[Industrial Application Field] The present invention relates to a molded article for crimping repair used for repairing tubular parts of molten metal containers, such as converter tapping holes, RH and DH dip pipes, and lances;
In particular, the present invention relates to a molded article for hot repair that is suitable for hot construction. [Conventional techniques and their problems] Conventionally, methods for repairing converter tapping holes in tubular parts such as molten metal vessels include crimping repair material to the enlarged hole portion with a stamp, or repairing worn tap holes. A method is used in which a hole is excavated, sleeve bricks are inserted, and the gap between the hole and the furnace wall is filled with repair refractory material by spraying or pouring. In addition, immersion pipes are mainly repaired by inserting the pipe into the damaged part and press-fitting a press-fitting material, or by spraying. However, in any case, the conventional methods are inconvenient for efficient hot repair in accordance with the timing of operation of the converter or ladle. As a method to repair tapping holes in a short time while hot,
For example, as in Japanese Patent Application Laid-Open No. 57-169012, a method has been proposed in which a pipe equipped with a head is inserted into a tapping hole, and repair material is discharged under pressure from the hole in the pipe at the same time as drilling. There is. Repairs to immersion pipes are also carried out using almost the same method. However, the constructed body produced by this method inevitably has a large porosity, which poses a problem in terms of durability, so a method using a molded body is preferable. The present applicant has proposed a method using a molded body in Japanese Patent Application Laid-Open No. 61-41883, but this method is a method for repairing a metal pipe, an expandable material layer, a repair refractory layer, and a thin metal plate. In this method, a refractory structure is attached to the repaired area, and the refractory layer is pressed onto the repaired surface by the expansion of the expandable material layer that receives heat from the furnace wall. However, since this repair method utilizes the pressure bonding force generated by the expansion of the expandable material, it has the disadvantage that the temperature range in which it can be performed is limited. In addition, there is also a mechanical crimping method using an expandable tubular core material, as disclosed in Japanese Patent Application Laid-Open No. 110711/1983. The repair material used in this method must be molded to a predetermined thickness and deform as the tubular core material expands, and the publication does not specifically describe a repair material suitable for this method. The present inventors found that the most suitable repair material for such a repair method was to use phenolic resin and pitch in an appropriate amount, and to conduct a hot repair process that takes advantage of the softening flow of the phenolic resin and pitch caused by heat and the deformation caused by compression. A patent was filed for a molded article for repair (Japanese Patent Application Laid-open No. 311083/1983). However, although this repair molded body is very effective for repairing small parts of general furnace walls, when it was formed into a tube shape and applied to the repair of converter tap holes,
The following problems arose. That is, when the amount of phenolic resin and pitch used is small, cracks occur intensively in one or two to three places when the diameter is expanded by a crimping machine, and there are cases where the product is not integrated even after subsequent heating. In addition, if the amount of phenolic resin and pitch is large, after the diameter expansion crimping process, the part in contact with the furnace wall will begin to harden, but the inside of the repair molding will still maintain its fluidity, so the tubular repair molding will It was also observed that a downward force was exerted on the inside of the upper part of the body due to gravity, causing circumferential cracks to occur inside the repair molded body. [Means for solving the problem] In order to solve the above-mentioned drawbacks, as a result of various studies, the problem was solved by adding metal fiber to the formulation disclosed in JP-A No. 63-311083. It was extremely successful. The repair material applied to this method must be softened and deformed by the furnace heat, deformed as the tubular core expands, and firmly bonded to the furnace wall. Therefore, the present invention uses 0.5 to 5 parts by weight of metal fibers with a diameter of 0.1 to 1 mm and a length of 10 to 40 mm, and a particle size of 0.1 to 100 parts by weight of the refractory aggregate.
It is composed of 3 to 12 parts by weight of a granular phenolic resin of ~1 mm and 5 to 18 parts by weight of granular pitches of 0.1 to 1 mm in diameter, and at least a part of the granular phenolic resin or granular pitches is present in the form of granules in the molded article. This is a molded article for hot repair characterized by: The repair molded article of the present invention is mainly composed of refractory aggregate, metal fibers, granular phenolic resin, and granular pitch, but the refractory aggregate is not particularly limited, but is preferably basic based on the material of the converter. . Furthermore, carbon sources such as graphite and coke can be added, and metal powders such as Al, Si, and Mg can also be added for the purpose of preventing oxidation and improving hot strength. The metal fibers are preferably stainless steel fibers or steel fibers, with a diameter of 0.1 to 1 mm and a length of 10 to 40 mm, that is, an aspect ratio of approximately 10 to 400, in an amount of 0.5 to 5 parts by weight per 100 parts by weight of the refractory aggregate. Added. If the diameter is thinner than 0.1 mm, the length is shorter than 10 mm, or the amount added is less than 0.5 parts by weight, the addition effect will be poor, and if the length is 40 mm or more, uniform kneading will be difficult. If the diameter is thicker than 1 mm, the corrosion resistance of the constructed body will decrease, and if the amount added is 5 parts by weight or more, kneading becomes difficult and corrosion resistance decreases, which is not preferable in either case. JP-A No. 60-86078 attempts to add metal fibers and metal powder to fire-resistant aggregate in spraying materials for hot repairs, but these do not improve the spalling resistance of the sprayed material. The objective is to improve heat transfer and promote the carbonization reaction of the carbonaceous resin, rather than to impart wear resistance or prevent crack growth. Therefore, metal powder may be used, but in the present invention, it must be a metal fiber that satisfies the above conditions. The particle size of the phenolic resin used is 0.1 to 1.
It is sufficient that the phenolic resin is within the range of mm, and both resol type and novolac type phenolic resins can be used, and various modified resins of the above-mentioned phenolic resins can also be used. The amount added is 3 to 12 parts by weight per 100 parts by weight of the refractory aggregate, and if it is less than 3 parts by weight, the strength of the repaired construction will be poor, which is not preferable. Furthermore, addition of 12 parts by weight or more is not preferable because when the repair molded article of the present invention is applied hot, it exhibits excessive fluidity and the efficiency of repairing the target area decreases. Next, as long as the pitch is in the range of 0.1 to 1 mm, either petroleum-based or coal-based pitch can be used. The amount added is 5 to 18 parts by weight per 100 parts by weight of the refractory aggregate, and if it is less than 5 parts by weight, physical properties such as a decrease in apparent porosity when hot pressure is applied are noticeable. is not accepted. Also,
If it is added in an amount of 18 parts by weight or more, the hot shape retention will not be sufficient and the physical properties of the resulting construction product will deteriorate, which is not preferable. Further, the particle size of the phenolic resin and pitch used is 0.1 to 1 mm, but if it is used as a fine powder of 0.1 mm or less, it is not preferable because the shape retention under hot conditions deteriorates. Furthermore, if a phenolic resin or pitch of 1 mm or more is used, if no pressure is applied during construction, the area where the phenolic resin or pitch was present becomes a void, which causes a decline in physical properties. Furthermore, the total amount of phenolic resin and pitch added is
It is necessary that the amount is 22 parts by weight or less per 100 parts by weight. If 22 parts by weight or more is added, the hot shape retention characteristic of the present invention will be lost. The organic solvent used in the production of the molded article may be one that dissolves the phenolic resin used and has a boiling point lower than the softening point of the phenolic resin and pitch, and various alcohols, various ethers, etc. Available for use. The amount used may be adjusted depending on the molding method; for example, in the case of press molding, 2 to 5% is appropriate, and in the case of hand molding, 4 to 8% is appropriate. The reason why the organic solvent is used in this way is to partially dissolve the surface of the phenolic resin added in the form of particles during molding, and to make the resulting repair molded product develop a certain level of strength. Furthermore, the reason for using an organic solvent whose boiling point is lower than the softening point of the phenolic resin and pitch used is to speed up the volatilization of the solvent after molding and to quickly develop strength. Furthermore, by heat treatment after molding, all or most of the organic solvent in the molded product is removed by volatilization.
In this case, it is preferable that the temperature be around the lower softening point of the phenolic resin and the pitch. That is, care is taken to ensure that at least a portion of the granular phenolic resin or granular pitches, preferably a large portion of the granular phenolic resin, is present in the molded article of the present invention in the form of granules as long as the shape retention of the repair molded article is maintained. . If the treatment is carried out at a temperature considerably higher than the softening point, the particles of phenolic resin or pitch will soften and flow in the molded article, forming a continuous phase of phenolic resin and/or pitch, and the molded article having the above structure will not be obtained. This is because the shape retention property under hot conditions is lost, which is undesirable. The molded article for hot repair of the present invention is formed into a tubular shape by kneading the raw materials and then pressing or hand punching.
Press molding is preferable because metal fibers are added. [Function] The molded article for hot repair of the present invention is mainly applied at 600°C, as is the case with ordinary baking repair materials.
During the above-mentioned hot process, the heat retained in the furnace wall causes baking hardening and adhesion to the furnace wall. In this case, the phenolic resin and pitch soften and flow due to heat received from the furnace wall, but in the present invention, at least a portion, preferably a majority, of the phenolic resin and pitch are present in the molded product in the form of particles. Therefore, it softens individually,
Although it flows down between the particles of refractory aggregate, it does not soften and deform when heated only as a repair molded body. However, it exhibits the characteristic of being deformed by slight pressure. This pressurization allows the phenolic resin and pitch to be uniformly dispersed within the repair molded body, forming a strong carbon bond, and also resulting in a constructed body with low porosity and excellent physical properties. In addition, the phenolic resin and pitch extruded from the repair material during pressurization concentrate on the repair material and the surface to be repaired, thereby improving the adhesive strength of the construction body. However, as mentioned above, if the amount of phenolic resin and pitch used is small, when expanding the diameter with a crimping machine, 1
If cracks occur intensively in one or two or three places and do not integrate even with subsequent heating, or if there is a large amount of phenol resin and pitch, the inside of the repair molded product may be damaged after the diameter expansion crimping process. Circumferential cracks may occur. To prevent this, metal fibers are added. The addition of metal fibers prevents the occurrence of any of the above-mentioned cracks, and the amounts of phenolic resin and pitch can be varied over a wide range depending on the type and composition of the refractory material. Furthermore, the addition of metal fibers reduces the risk that the repair molded body will be damaged during transportation. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Examples 1 to 4, Comparative Examples 1 to 2 After kneading the formulations shown in Table 1 in a kneader, the inner diameter was 200 mm.
mm, outer diameter 250mm, length 300mm cylindrical shape with pressure 100
Kg/cm 2 , and the ethanol used as an organic solvent was evaporated at 30° C. for 10 hours to obtain a repair molded article. A set of five of these repair molded bodies was set in a crimping machine, and a simulated tapping hole (inner diameter 270 mm) with an inner wall temperature of 1000°C was prepared.
The material was charged into a container and crimped at a pressure of 2 Kg/cm 2 , and its condition was observed and the physical properties were measured. Examples 1 and 2 are repair materials with low fluidity,
No concentration of cracks was observed during diameter expansion, and the repaired body after construction

【表】 も一体化していた。また、実施例3、4は流動性
の高い材料であるが、施工後の補修体には円周方
向の亀裂は見られなかつた。 これに対し、金属繊維を添加していない比較例
1では拡径時の亀裂が施工後の補修体にそのまゝ
残り一体化しなかつた。また、比較例2の試料で
は拡径時の亀裂は1カ所に集中したが、流動性が
高いため、加圧圧着により一体化した。しかし、
施工後の補修体の上側には円周方向の亀裂が生じ
ており、その部分の物性は低下していた。 実施例5、比較例3、4 第2表に示す組成を持つ配合を実施例1と同様
の方法により、内径200mm、外径250mmで、長さが
200mmおよび300mmの円筒形状圧着補修用成形体を
得た。長さ300mmの成形体を5本、長さ200mmのも
のを1本(総長さ1700mm)を圧着機にセツトし、
250t転炉の出鋼孔内壁に圧着補修した。なお、施
工前の出鋼孔内径は270〜280mmであつた。施工後
の補修体は一体化しており良好で、25回の出鋼回
数の耐用があつた。
[Table] was also integrated. Furthermore, although Examples 3 and 4 were made of highly fluid materials, no cracks in the circumferential direction were observed in the repaired bodies after construction. On the other hand, in Comparative Example 1 in which metal fibers were not added, the cracks caused by the diameter expansion remained in the repaired body after construction and were not integrated. In addition, in the sample of Comparative Example 2, cracks were concentrated in one place during diameter expansion, but because of the high fluidity, they were integrated by pressure bonding. but,
A circumferential crack had formed on the upper side of the repaired body after construction, and the physical properties of that part had deteriorated. Example 5, Comparative Examples 3 and 4 The compositions shown in Table 2 were prepared in the same manner as in Example 1, with an inner diameter of 200 mm, an outer diameter of 250 mm, and a length of
Cylindrical crimped repair moldings of 200 mm and 300 mm were obtained. Set five molded bodies with a length of 300 mm and one molded body with a length of 200 mm (total length 1700 mm) into the crimping machine,
The inner wall of the tapping hole of a 250t converter was repaired by crimping. The inner diameter of the tapping hole before construction was 270 to 280 mm. The repaired body after construction was integrated and in good condition, and was able to withstand 25 tapping cycles.

【表】【table】

【表】 これに対して金属繊維を添加していない比較例
3では施工後数カ所に亀裂が入つており、耐用は
16回と低いものであつた。これは数カ所の亀裂よ
り補修体がめくれるように損耗していつたためで
あつた。また、粒状フエノール樹脂と粒状ピツチ
の合計添加量が18%で流動性のよい比較例4では
施工後の亀裂は見られなかつたが、耐用は12回し
かなかつた。特に補修時に上部となつた部位は12
回出鋼後には残存はなく、これは円周方向の亀裂
による剥離が原因と思われる。 実施例6、比較例5、6 第3表に示す配合を実施例1と同様な方法によ
り内径500mm、外径680mm、高さ300mmの円筒形状
圧着補修用成形体を得た。この成形体3本をRH
加工管側の浸漬管の内面に圧着機にセツトして圧
着補修を実施した。なお、施工時の浸漬管内面の
温度は800〜1000℃であつた。 その結果を、鋼製繊維を添加しない場合(比較
例5)、従来の水練りアルミナ系圧入補修材(比
較例6)の結果と共に第3表に示した。
[Table] On the other hand, in Comparative Example 3, in which no metal fibers were added, cracks appeared in several places after construction, and the durability was shortened.
It was a low 16 times. This was due to wear and tear on the repair parts due to cracks in several places. In addition, in Comparative Example 4, in which the total amount of granular phenolic resin and granular pitch added was 18% and had good fluidity, no cracks were observed after application, but the service life was only 12 times. Especially the part that became the upper part during repair is 12
There was no residue left after the unrolled steel, and this seems to be due to peeling due to cracks in the circumferential direction. Example 6, Comparative Examples 5 and 6 A cylindrical crimped repair molded article having an inner diameter of 500 mm, an outer diameter of 680 mm, and a height of 300 mm was obtained using the formulations shown in Table 3 in the same manner as in Example 1. RH these three molded bodies.
A crimping machine was used to repair the inner surface of the immersion tube on the processed pipe side. The temperature of the inner surface of the immersion tube during construction was 800 to 1000°C. The results are shown in Table 3 together with the results for the case where steel fibers were not added (Comparative Example 5) and the conventional water-mixed alumina press-in repair material (Comparative Example 6).

〔発明の効果〕〔Effect of the invention〕

本発明の熱間補修用成形体は、以上のような構
成・作用の結果、熱間での保形性がが良好で、か
つわずかな加圧で変形密着し気孔率の低い成形体
となり、金属繊維が亀裂の発生を防止し、著しい
耐用の増加と施工時間の短縮が達成できた。ま
た、成形体運搬中の破損も軽減された。
As a result of the above-described structure and function, the molded article for hot repair of the present invention has good shape retention in hot conditions, deforms and adheres tightly under slight pressure, and becomes a molded article with low porosity. The metal fibers prevented the occurrence of cracks, significantly increasing durability and shortening construction time. Furthermore, damage during transportation of the molded product was reduced.

Claims (1)

【特許請求の範囲】[Claims] 1 耐火骨材100重量部に対し、直径0.1〜1mm、
長さ10〜40mmの金属繊維0.5〜5重量部と、粒径
0.1〜1mmの粒状フエノール樹脂3〜12重量部及
び粒径0.1〜1mmの粒状ピツチ5〜18重量部より
構成され、成形体中に前記粒状フエノール樹脂又
は粒状ピツチの少なくとも一部が粒状のまゝ存在
してなることを特徴とする熱間補修用成形体。
1. Diameter 0.1 to 1 mm for 100 parts by weight of refractory aggregate,
0.5 to 5 parts by weight of metal fibers with a length of 10 to 40 mm and particle size
It is composed of 3 to 12 parts by weight of granular phenolic resin with a particle size of 0.1 to 1 mm and 5 to 18 parts by weight of granular pitches with a particle size of 0.1 to 1 mm, and at least a part of the granular phenolic resin or granular pitches remains granular in the molded article. A molded article for hot repair characterized by the fact that it exists.
JP14720987A 1987-06-13 1987-06-13 Molded form for hot repair Granted JPS63311083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14720987A JPS63311083A (en) 1987-06-13 1987-06-13 Molded form for hot repair

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14720987A JPS63311083A (en) 1987-06-13 1987-06-13 Molded form for hot repair

Publications (2)

Publication Number Publication Date
JPS63311083A JPS63311083A (en) 1988-12-19
JPH0260955B2 true JPH0260955B2 (en) 1990-12-18

Family

ID=15425032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14720987A Granted JPS63311083A (en) 1987-06-13 1987-06-13 Molded form for hot repair

Country Status (1)

Country Link
JP (1) JPS63311083A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375492A (en) * 1989-05-16 1991-03-29 Nippon Steel Corp Repair of cylindrical refractory material
US5189310A (en) * 1989-12-05 1993-02-23 Hewlett-Packard Company BICMOS logic gate circuit and structures
JPH0740955Y2 (en) * 1989-12-18 1995-09-20 新日本製鐵株式会社 Cylindrical refractory material repair plug

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558464A (en) * 1978-07-05 1980-01-22 Shinagawa Refract Co Ltd Basic spray material for hot repairing work
JPS6086078A (en) * 1983-10-14 1985-05-15 播磨耐火煉瓦株式会社 Spray material for thermal repairment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558464A (en) * 1978-07-05 1980-01-22 Shinagawa Refract Co Ltd Basic spray material for hot repairing work
JPS6086078A (en) * 1983-10-14 1985-05-15 播磨耐火煉瓦株式会社 Spray material for thermal repairment

Also Published As

Publication number Publication date
JPS63311083A (en) 1988-12-19

Similar Documents

Publication Publication Date Title
JPH0260955B2 (en)
WO1996027568A1 (en) Unshaped refractories and gunning refractories prepared therefrom
TWI516463B (en) Baking repair materials
JP4023577B2 (en) Press-fitting material for blast furnace furnace wall gap filling
US4436678A (en) Method for hot repairing the inside of a furnace
JP2636023B2 (en) Cylindrical compact for hot repair
JPS62238316A (en) Hot repairing method for converter tapping hole
CN109796213A (en) A kind of magnesia carbon brick production method
JPH08169773A (en) Packing material in blast-furnace tap hole
JPS5826080A (en) Refractory mixture for dry thermal repairment
JPS63139068A (en) Formed body for thermal repair
JPH08239274A (en) Spray repairing material
JPH05209213A (en) Method for repairing bottom-blowing tuyere
JP6340131B1 (en) Hot repair spray material
JPH04349173A (en) Molded cylinder for repairing inside of cylindrical refractory
JPS6086205A (en) Reparing method of bottom of converter
JPH09278556A (en) Molded product for joint
JPH07300368A (en) First-setting high-durable stoving repair material
JPH1171619A (en) Manufacture of carbon-incorporated pellet and reduced iron
JPS6249560B2 (en)
JPS6383220A (en) Method for repairing snorkel part of vacuum degassing device
JPS6124879Y2 (en)
JPS58224109A (en) Wall construction of converter
JPH07106947B2 (en) Amorphous refractory for powder type dry hot repair
JPS6120509B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees