JPH0260747B2 - - Google Patents

Info

Publication number
JPH0260747B2
JPH0260747B2 JP15036182A JP15036182A JPH0260747B2 JP H0260747 B2 JPH0260747 B2 JP H0260747B2 JP 15036182 A JP15036182 A JP 15036182A JP 15036182 A JP15036182 A JP 15036182A JP H0260747 B2 JPH0260747 B2 JP H0260747B2
Authority
JP
Japan
Prior art keywords
atomic
type
intermetallic compound
less
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15036182A
Other languages
Japanese (ja)
Other versions
JPS5941431A (en
Inventor
Takeshi Masumoto
Akihisa Inoe
Hiroyuki Tomioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNICHIKA KK
Original Assignee
YUNICHIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNICHIKA KK filed Critical YUNICHIKA KK
Priority to JP15036182A priority Critical patent/JPS5941431A/en
Priority to CA000422679A priority patent/CA1222893A/en
Priority to EP83301155A priority patent/EP0093487B1/en
Priority to DE8383301155T priority patent/DE3380525D1/en
Priority to US06/473,301 priority patent/US4642145A/en
Publication of JPS5941431A publication Critical patent/JPS5941431A/en
Publication of JPH0260747B2 publication Critical patent/JPH0260747B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、強度に優れ、高延性を有するNi基
合金に関するものである。 (従来の技術) 従来、Ni基合金、特にL12型金属間化合物を有
するNi基合金はよく知られている。例えば、従
来のNi−Al二元合金は、平衡状態図によれば、
室温において、Alが約23〜28原子%の範囲で
Ni3AlとNiの共存で、約8原子%以下ではAlを
固溶したNi固溶体である。このL12型金属間化合
物を有するNi基合金の中でも、Ni3Ge、Ni3Si、
Ni3Al等の化合物を有するものは、Trans、JIM、
20(1979)634、Trans、JIM、21(1980)273に記
載されているごとく、室温での強さよりも高温で
の強さが高くなるという特徴を有し、高温での有
用性が注目されている。 (発明が解決しようとする課題) しかし、従来L12型金属間化合物Ni基合金は、
融点近傍まで結晶構造が規則化しているため、常
温では脆く、一般の、例えば、圧延あるいは伸線
等の金属加工法で加工することは不可能であつ
た。 このため、鋳造法以外では成型できないNi基
L12型金属間化合物を有するNi基合金に常温での
延性を付与する研究が盛んに行われているが、日
本金属学会誌43(1979)358、1190に記載されてい
るごとく、L12型金属間化合物Ni3AlにBを添加
して常温での延性を改善した報告があるだけであ
る。この方法によると、脆かつたL12型Ni3Al金
属間化合物が、Bの添加により高延性を有し、破
断強度及び伸びも改良される。しかし、この機械
的特性はさほど優れているとはいえず、実用性に
乏しいものであつた。 一方、B−2型金属間化合物についても、単結
晶を用いた基礎研究が行われているが、L12型金
属間化合物と同様に脆く、塑性加工が不可能なた
め、現在はアルニコ磁石等に脆いままの状態で使
用されているにすぎない。また、最近では、Fe
−Cr−Al−Nb系合金において、液体急冷法によ
り急冷凝固することにより、ねばさを有し、電気
抵抗の高いB−2型金属間化合物が得られたとい
う報告がある(日本金属学会春季学会、1982概要
集P249)だけである。 (課題を解決するための手段) 本発明者らは、先に液体急冷法を用いることに
より高強度、高延性を有するL12型Ni3Al非平衡
金属間化合物が得られることを見出し、特許出願
(特願昭57−36226号)したが、引き続き、さらに
高い強度、良好な延性を有し、経済性、耐酸化
性、耐蝕性及び電磁特性等にも優れたNi基合金
を開発すべく鋭意検討を重ねた結果、特定の組成
よりなるNi基合金の溶湯を急冷固化すると、B
−2型非平衡金属間化合物とL12型Ni3Al非平衡
金属間化合物との混在した組織を有し、L12
Ni3Al非平衡金属間化合物単相合金よりもさらに
高強度、高延性を有するNi基合金が得られるこ
とを見出し、本発明を完成した。 すなわち、本発明は、Alが8原子%以上、30
原子%未満であり、Fe及びCoの少なくとも1種
が25原子%より多く、70原子%以下(Feが30原
子%以上、70原子%以下で、Coが25原子%より
多く、70原子%以下である)で、残部が実質的に
Niよりなり、かつ組織がB−2型非平衡金属間
化合物とL12型Ni3Al非平衡金属間化合物との混
在した組織よりなる高強度及び高延性Ni基合金
及びAlが8原子%以上、30原子%未満であり、
Fe及びCoの少なくとも1種が25原子%より多く、
70原子%以下(Feが30原子%以上、70原子%以
下で、Coが25原子%より多く、70原子%以下で
ある)であり、Nb、Ta、Mo、V、Ti、Mn、
Cr、Zr、W、Si、Y及びCuからなる群より選ば
れた1種又は2種以上の元素が合計で2.0原子%
以下で、残部が実質的にNiよりなり、かつ組織
がB−2型非平衡金属間化合物とL12型Ni3Al非
平衡金属間化合物との混在した組織よりなる高強
度及び高延性Ni基合金を要旨とするものである。 本発明の合金は低Al、高Fe、高Co量領域であ
るため、B−2型非平衡金属間化合物の結晶粒と
L12型Ni3Al非平衡金属間化合物の結晶粒との混
在した組織となり、その結晶粒径も1μm以下とさ
らに微細になり、L12型Ni3Al非平衡金属間化合
物単相合金よりも高強力を有する。 本発明合金の組織について説明すると、Alが
8原子%以上、30原子%未満であることが必要で
あり、Alが8原子%より少ない場合には、Alを
固溶したNi固溶体となり、B−2型非平衡金属
間化合物は得られず、Alが30原子%より多い場
合にはB−2型金属間化合物単相になるか又はB
−2型金属間化合物の粒界にL12型Ni3Al金属間
化合物が析出した組織となり、脆くなつて実用性
に乏しくなる。 次にFeとCoに関しては、Fe及びCoの少なくと
も1種が25原子%より多く、70原子%以下(Fe
が30原子%より多く、70原子%以下で、Coが25
原子%より多く、70原子%以下である)であるこ
とが必要であり、Feが30原子%以下、Coが25原
子%以下では、L12型Ni3Al非平衡金属間化合物
単相組織となり、強度は改良されない。また、
Feが70原子%より多い場合は、FeAl、Fe3Alが
析出し、Coが70原子%より多い場合には、粒界
にL12型Ni3Al金属間化合物が析出したB−2型
金属間化合物となり、双方とも脆くなる。 特に本発明の合金中、例えば、Ni−Al−Fe三
元合金では、Al16〜29原子%、Fe30〜40原子%、
Ni−Al−Co三元合金では、Al16〜29原子%、
Co30〜60原子%で、残部が実質的にNiからなる
合金が、強度的にみてL12型Ni3Al非平衡金属間
化合物単相合金と比較してかなり高強度となるの
で好ましい。 本発明の合金にNb、Ta、Mo、V、Ti、Mn、
Cr、Zr、W、Si、Y及びCuからなる群より選ば
れた1種又は2種以上の元素を合計で2.0原子%
以下で加えると、延性を低下させずに強度をさら
に向上させることができる。また、通常の工業材
料中に存在する程度の不純物、例えば、B、P、
As、S等が少量含まれていても、本発明を達成
するのに何ら支障をきたすものではない。 次に、本発明の合金を得るには、上述のごとく
調整した組成の合金を、雰囲気中もしくは真空中
で加熱溶融し、溶融後の液体状態から急冷凝固す
ることが望まれ、その方法として、例えば、冷却
速度が約104〜106℃/secである液体急冷法が有
用である。しかも、得られる合金の形状が偏平な
リボン状を必要とするときは、金属からなる回転
ロールを用いた片ロール法、双ロール法もしくは
遠心急冷法のいずれかを用いることが望ましく、
また、円形断面を有する細線状の合金を得るに
は、回転している冷却液体中に直接溶湯を噴出し
て急冷凝固させる方法が望ましい。特に高品質の
円形断面を有する合金を製造するには、回転円筒
体内に形成された回転冷却液体中に溶融金属を紡
糸ノズルより噴出して急冷凝固する、いわゆる回
転液中紡糸法(特開昭55−69948号公報参照)が
工業的により好ましい。 本発明の合金は、先に述べたように、常温での
加工性に優れ、冷間圧延、冷間線引きが可能で、
特に細線状の合金は、通常のダイスを使用し、断
面減少率(圧下率)80%以上に連続して冷間線引
きすることができ、引張強度も飛躍的に向上させ
ることができる。 (実施例) 次に、本発明を実施例により具体的に説明す
る。 実施例1〜10、比較例1〜6 各種組成からなるNi−Al−Fe及びNi−Al−
Co系合金を、アルゴン雰囲気中で溶融後、孔径
0.3mmφのルビー製ノズルを用い、アルゴン噴出
圧2.0Kg/cm2で回転する200mmφの綱鉄ロール
(3500rpm)表面に噴出して、厚さ50μm前後、幅
約2mmのリボンを作成した。この試料を、インス
トロン型引張試験機を用い、常温にて歪速度4.17
×10-4/secの条件下で、破断強度及び延性の評
価として180゜密着曲げ性について測定すると同時
に、X線回折及び透過電顕観察によつて結晶組織
を同定し、その結果を表−1にまとめて示す。
(Industrial Application Field) The present invention relates to a Ni-based alloy having excellent strength and high ductility. (Prior Art) Ni-based alloys, particularly Ni-based alloys having L1 2 type intermetallic compounds, are well known. For example, according to the equilibrium phase diagram of the conventional Ni-Al binary alloy,
At room temperature, Al in the range of about 23 to 28 at%
When Ni 3 Al and Ni coexist, at less than about 8 atomic %, it is a Ni solid solution containing Al as a solid solution. Among the Ni-based alloys having this L1 type 2 intermetallic compound, Ni 3 Ge, Ni 3 Si,
Those containing compounds such as Ni 3 Al are Trans, JIM,
20 (1979) 634, Trans, JIM, 21 (1980) 273, it has the characteristic that its strength at high temperatures is higher than that at room temperature, and its usefulness at high temperatures has attracted attention. ing. (Problem to be solved by the invention) However, conventional L1 type 2 intermetallic compound Ni-based alloys
Since the crystal structure is ordered close to the melting point, it is brittle at room temperature and cannot be processed using general metal processing methods such as rolling or wire drawing. For this reason, Ni-based materials cannot be formed using methods other than casting.
Although much research is being conducted on imparting ductility at room temperature to Ni-based alloys containing L1 2 type intermetallic compounds, as described in Journal of the Japan Institute of Metals 43 (1979) 358, 1190, L1 2 type intermetallic compounds There is only a report on improving the ductility at room temperature by adding B to the intermetallic compound Ni 3 Al. According to this method, the brittle L1 2 type Ni 3 Al intermetallic compound has high ductility due to the addition of B, and its breaking strength and elongation are also improved. However, this mechanical property was not very good, and it was not practical. On the other hand, basic research using single crystals is also being conducted on B-2 type intermetallic compounds, but like the L1 2 type intermetallic compounds, they are brittle and cannot be plastically worked, so they are currently used in alnico magnets, etc. It is simply used in its fragile state. Also, recently, Fe
- There is a report that a B-2 type intermetallic compound with stickiness and high electrical resistance was obtained by rapidly solidifying Cr-Al-Nb alloys using the liquid quenching method (Japan Institute of Metals Spring Academic Society, 1982 Summary Collection P249). (Means for Solving the Problems) The present inventors first discovered that an L1 2 type Ni 3 Al non-equilibrium intermetallic compound having high strength and high ductility could be obtained by using a liquid quenching method, and the patent Although the application was filed (Japanese Patent Application No. 57-36226), we continued to develop Ni-based alloys with even higher strength, good ductility, and excellent economic efficiency, oxidation resistance, corrosion resistance, and electromagnetic properties. As a result of extensive research, we found that when a molten Ni-based alloy with a specific composition is rapidly solidified, B
- It has a mixed structure of type 2 non-equilibrium intermetallic compound and L1 2 type Ni 3 Al nonequilibrium intermetallic compound, and L1 2 type
The present invention was completed based on the discovery that a Ni-based alloy having even higher strength and ductility than the Ni 3 Al non-equilibrium intermetallic compound single-phase alloy can be obtained. That is, in the present invention, Al is 8 atomic % or more, 30
less than atomic %, and at least one of Fe and Co is more than 25 atomic % and 70 atomic % or less (Fe is 30 atomic % or more and 70 atomic % or less, Co is more than 25 atomic % and 70 atomic % or less) ), and the remainder is essentially
High strength and high ductility Ni-based alloy consisting of Ni and having a mixed structure of B-2 type non-equilibrium intermetallic compound and L1 2 type Ni 3 Al non-equilibrium intermetallic compound, and Al content of 8 at% or more , less than 30 atom%,
At least one of Fe and Co is more than 25 atomic %,
70 atomic% or less (Fe is 30 atomic% or more and 70 atomic% or less, Co is more than 25 atomic% and 70 atomic% or less), Nb, Ta, Mo, V, Ti, Mn,
A total of 2.0 at% of one or more elements selected from the group consisting of Cr, Zr, W, Si, Y, and Cu
In the following, a high-strength and high-ductility Ni base with the remainder essentially consisting of Ni and a structure consisting of a mixed structure of a B-2 type non-equilibrium intermetallic compound and a L1 2 type Ni 3 Al non-equilibrium intermetallic compound will be described. The main focus is on alloys. Since the alloy of the present invention is in the low Al, high Fe, and high Co content regions,
The structure is a mixture of L1 2 type Ni 3 Al non-equilibrium intermetallic compound crystal grains, and the crystal grain size is even finer, less than 1 μm, compared to the L1 2 type Ni 3 Al non-equilibrium intermetallic compound single phase alloy. Has high strength. To explain the structure of the alloy of the present invention, it is necessary that the Al content is 8 atomic % or more and less than 30 atomic %. If the Al content is less than 8 atomic %, it becomes a Ni solid solution containing Al as a solid solution, and B- A type 2 non-equilibrium intermetallic compound cannot be obtained, and if Al is more than 30 at%, a single phase B-2 type intermetallic compound or a B-2 type intermetallic compound is obtained.
-The structure becomes brittle and impractical because the L1 2 type Ni 3 Al intermetallic compound is precipitated at the grain boundaries of the type 2 intermetallic compound. Next, regarding Fe and Co, at least one of Fe and Co is more than 25 at% and 70 at% or less (Fe
is more than 30 atom% and less than 70 atom%, and Co is 25
If Fe is 30 atomic % or less and Co is 25 atomic % or less, L1 2 type Ni 3 Al non-equilibrium intermetallic compound single phase structure will be formed. , strength is not improved. Also,
When Fe is more than 70 atomic%, FeAl and Fe 3 Al are precipitated, and when Co is more than 70 atomic%, L1 2 type Ni 3 Al intermetallic compound is precipitated at the grain boundaries. They form a compound between the two, and both become brittle. In particular, in the alloy of the present invention, for example, in the Ni-Al-Fe ternary alloy, Al16-29 at%, Fe30-40 at%,
In the Ni-Al-Co ternary alloy, Al16-29 atomic%,
An alloy consisting of 30 to 60 atomic % of Co and the balance substantially of Ni is preferable because it has significantly higher strength than the L1 2 type Ni 3 Al non-equilibrium intermetallic compound single phase alloy. The alloy of the present invention includes Nb, Ta, Mo, V, Ti, Mn,
A total of 2.0 at% of one or more elements selected from the group consisting of Cr, Zr, W, Si, Y, and Cu
If added below, strength can be further improved without reducing ductility. In addition, impurities present in ordinary industrial materials, such as B, P,
Even if As, S, etc. are contained in small amounts, this does not pose any problem in achieving the present invention. Next, in order to obtain the alloy of the present invention, it is desirable to melt the alloy having the composition adjusted as described above by heating in an atmosphere or in a vacuum, and rapidly solidify the melted liquid state. For example, a liquid quenching method with a cooling rate of about 10 4 -10 6 °C/sec is useful. Moreover, when the shape of the obtained alloy requires a flat ribbon shape, it is desirable to use one of the single roll method, twin roll method, or centrifugal quenching method using rotating rolls made of metal.
Further, in order to obtain a thin wire-shaped alloy having a circular cross section, it is desirable to directly jet the molten metal into a rotating cooling liquid and rapidly solidify it. In order to manufacture alloys with particularly high-quality circular cross sections, molten metal is jetted from a spinning nozzle into a rotating cooling liquid formed in a rotating cylinder and rapidly solidified, which is the so-called rotating liquid spinning method (Japanese Patent Application Laid-open No. 55-69948) is industrially more preferred. As mentioned above, the alloy of the present invention has excellent workability at room temperature and can be cold rolled and cold drawn.
In particular, thin wire-shaped alloys can be continuously cold-drawn using a regular die to achieve a reduction in area (reduction ratio) of 80% or more, and the tensile strength can also be dramatically improved. (Example) Next, the present invention will be specifically explained using examples. Examples 1 to 10, Comparative Examples 1 to 6 Ni-Al-Fe and Ni-Al- consisting of various compositions
After melting the Co-based alloy in an argon atmosphere, the pore size
Using a ruby nozzle with a diameter of 0.3 mm, argon was jetted onto the surface of a 200 mm diameter steel roll (3500 rpm) rotating at an argon jet pressure of 2.0 Kg/cm 2 to create a ribbon approximately 50 μm thick and approximately 2 mm wide. This sample was tested using an Instron tensile tester at a strain rate of 4.17 at room temperature.
×10 -4 /sec, 180° close bendability was measured as an evaluation of breaking strength and ductility, and at the same time, the crystal structure was identified by X-ray diffraction and transmission electron microscopy, and the results are shown in Table- They are summarized in 1.

【表】【table】

【表】 表−1より、実験No.2〜3、7〜9、12〜13は
本発明の合金で、0.1〜3μmの微細結晶粒径を有
し、B−2型非平衡金属間化合物とL12型Ni3Al
非平衡金属間化合物の混在相組織であつた。特に
実験No.2においては、化合物粒径が0.2μm以下と
微細であり、高強度、高延性を有していた。実験
No.10は、Al量が少ないため、Niの固溶体となり、
破断強度は低かつた。また、実験No.1、4、6、
11は、それぞれAl、Fe、Co量が多いため、結晶
組織が粒界にL12型Ni3Al金属間化合物が析出し
たB−2型金属間化合物相であつたり、また、規
則度の高いFeAlの析出を伴つたりして、延性は
ほとんどなくなり、実用性に乏しいものであつ
た。実験No.5は、Fe量が少ないため、L12
Ni3Al非平衡金属間化合物単相となり、本発明合
金と比較して強度は低かつた。 実施例 8(実験No.14) Ni45Al20Fe35合金をアルゴン雰囲気中で溶融し
た後、アルゴンガス噴出圧3.8Kg/cm2で、孔径
0.12mmφのルビー製紡糸ノズルにより300rpmで
回転している内径500mmφの円筒ドラム内に形成
された温度4℃、深さ2cmの回転冷却水中に噴出
して急冷凝固させ、均一な120μm直径を有する
連続細線を得た。 このとき、紡糸ノズルと回転冷却液面との距離
は1mmに保持し、紡糸ノズルより噴出された溶融
金属流とその回転冷却液面とのなす角度は70゜で
あつた。 得られた金属細線の破断強度は128Kg/mm2、伸
び10%で、180゜密着曲げが可能であつた。 次に、この細線を、市販されているダイヤモン
ドダイスを用い、中間焼なましをせずに連続して
冷間線引きを行い、細線の直径100μmのときに
は(圧下率31%)、破断強度150Kg/mm2、伸び3
%、また、さらに伸線を行い、細線の直径38μm
のときには(圧下率90%)、破断強度234Kg/mm2
伸び2.5%と飛躍的に強度を向上させることがで
きた。また、この細線の組織をX線回折、光顕及
び透過電顕にて観察すると、化合物粒径が1〜
2μmのB−2型非平衡金属間化合物とL12
Ni3Al非平衡金属間化合物の混在相組織であつ
た。 実施例 9〜16 各種組成からなるNi−Al−Fe−M及びNi−Al
−Co−M(M=Nb、Ta、Mo、V、Ti、Mn、
Cr、Zr、W、Si、Y及びCuの添加元素を表す)
系合金を、実施例1と同様にしてリボンを作成し
た。 次に、得られたリボンを実施例1と同様にして
破断強度及び180゜密着曲げ性について測定すると
同時に結晶組織についても同定した。 その結果を表−2にまとめ示す。 表−2より、実験No.15〜22は、本発明の合金で
あり、X線回析及び透過電顕観察からB−2型非
平衡金属間化合物をL12型Ni3Al非平衡金属間化
合物の混在相組織であつた。また、結晶粒径は、
0.3〜2μmの微細なものであつた。さらに表−2
より明らかなように、Nb、Ta、Mo、V、Ti、
Mn、Cr、Zr、W、Si、Y及びCuを添加すること
により、より高強度な材料を得ることができた。
[Table] From Table-1, Experiment Nos. 2 to 3, 7 to 9, and 12 to 13 are alloys of the present invention, which have a fine grain size of 0.1 to 3 μm, and are B-2 type non-equilibrium intermetallic compounds. and L1 type 2 Ni 3 Al
It was a mixed phase structure of non-equilibrium intermetallic compounds. In particular, in Experiment No. 2, the compound particle size was as fine as 0.2 μm or less, and it had high strength and high ductility. experiment
No.10 has a small amount of Al, so it becomes a solid solution of Ni,
The breaking strength was low. Also, experiment No. 1, 4, 6,
11 has a large amount of Al, Fe, and Co, respectively, so the crystal structure is a B-2 type intermetallic compound phase with L1 2 type Ni 3 Al intermetallic compound precipitated at the grain boundaries, and the crystal structure is a B-2 type intermetallic compound phase with a high degree of order. Due to the precipitation of FeAl, the ductility was almost completely lost, making it impractical. Experiment No. 5 is L1 type 2 due to the small amount of Fe.
A single phase of Ni 3 Al non-equilibrium intermetallic compound was obtained, and the strength was lower than that of the alloy of the present invention. Example 8 (Experiment No. 14) After melting Ni 45 Al 20 Fe 35 alloy in an argon atmosphere, the pore diameter was
A continuous yarn with a uniform diameter of 120 μm is spouted into rotating cooling water with a temperature of 4°C and a depth of 2 cm formed in a cylindrical drum with an inner diameter of 500 mmφ rotating at 300 rpm by a 0.12 mmφ ruby spinning nozzle, and rapidly solidified. Got a thin line. At this time, the distance between the spinning nozzle and the rotating cooling liquid level was maintained at 1 mm, and the angle between the molten metal flow jetted from the spinning nozzle and the rotating cooling liquid level was 70°. The resulting thin metal wire had a breaking strength of 128 Kg/mm 2 , an elongation of 10%, and was capable of close bending at 180°. Next, this thin wire was continuously cold drawn using a commercially available diamond die without intermediate annealing, and when the diameter of the thin wire was 100 μm (reduction ratio 31%), the breaking strength was 150 kg/ mm 2 , elongation 3
%, and further wire drawing to obtain a fine wire diameter of 38 μm.
When (rolling reduction rate is 90%), the breaking strength is 234Kg/mm 2 ,
We were able to dramatically improve the strength with an elongation of 2.5%. In addition, when the structure of this fine line is observed using X-ray diffraction, light microscopy, and transmission electron microscopy, the particle size of the compound is 1 to 1.
2 μm B-2 type nonequilibrium intermetallic compound and L1 2 type
It was a mixed phase structure of Ni 3 Al non-equilibrium intermetallic compound. Examples 9 to 16 Ni-Al-Fe-M and Ni-Al with various compositions
-Co-M (M=Nb, Ta, Mo, V, Ti, Mn,
(Represents additional elements of Cr, Zr, W, Si, Y and Cu)
A ribbon was prepared using the alloy in the same manner as in Example 1. Next, the obtained ribbon was measured for breaking strength and 180° close bendability in the same manner as in Example 1, and at the same time, the crystal structure was also identified. The results are summarized in Table 2. From Table 2, experiments Nos. 15 to 22 are alloys of the present invention, and from X-ray diffraction and transmission electron microscopy observations, B-2 type non-equilibrium intermetallic compounds were detected as L1 2 type Ni 3 Al non-equilibrium intermetallic compounds. It had a mixed phase structure of compounds. In addition, the crystal grain size is
They were fine particles of 0.3 to 2 μm. Furthermore, Table-2
As is clearer, Nb, Ta, Mo, V, Ti,
By adding Mn, Cr, Zr, W, Si, Y, and Cu, a material with higher strength could be obtained.

【表】 (発明の効果) 本発明のNi基合金は、B−2型非平衡金属間
化合物とL12型Ni3Al非平衡金属間化合物との混
在した組織であるため、L12型Ni3Al非平衡金属
間化合物単相合金よりもさらに高強度、高延性を
有する。 また、本発明の合金は、プラスチツク、コンク
リート等の複合材としての補強用あるいはフアイ
ンメツシユフイルター等の種々の工業用材料とし
て有用である。
[Table] (Effects of the invention) The Ni-based alloy of the present invention has a mixed structure of a B-2 type nonequilibrium intermetallic compound and an L1 2 type Ni 3 Al nonequilibrium intermetallic compound. 3 It has even higher strength and ductility than single-phase aluminum non-equilibrium intermetallic compound alloys. Further, the alloy of the present invention is useful for reinforcing composite materials such as plastics and concrete, and as various industrial materials such as fine mesh filters.

Claims (1)

【特許請求の範囲】 1 Aが8原子%以上、30原子%未満であり、
Fe及びCoの少なくとも1種が25原子%より多く、
70原子%以下(Feが30原子%以上、70原子%以
下で、Coが25原子%より多く、70原子%以下で
ある)で、残部が実質的にNiよりなり、かつ組
織がB−2型非平衡金属間化合物とL12型Ni3Al
非平衡金属間化合物との混在した組織よりなる高
強度及び高延性Ni基合金。 2 Alが8原子%以上、30原子%未満であり、
Fe及びCoの少なくとも1種が25原子%より多く、
70原子%以下(Feが30原子%以上、70原子%以
下で、Coが25原子%より多く、70原子%以下で
ある)であり、Nb、Ta、Mo、V、Ti、Mn、
Cr、Zr、W、Si、Y及びCuからなる群より選ば
れた1種又は2種以上の元素が合計で2.0原子%
以下で、残部が実質的にNiよりなり、かつ組織
がB−2型非平衡金属間化合物とL12型Ni3Al非
平衡金属間化合物との混在した組織よりなる高強
度及び高延性Ni基合金。
[Claims] 1 A is 8 atomic % or more and less than 30 atomic %,
At least one of Fe and Co is more than 25 atomic %,
70 atomic % or less (Fe is 30 atomic % or more and 70 atomic % or less, Co is more than 25 atomic % and 70 atomic % or less), the balance is essentially Ni, and the structure is B-2. Type nonequilibrium intermetallic compound and L1 2 type Ni 3 Al
A high strength and high ductility Ni-based alloy consisting of a mixed structure with non-equilibrium intermetallic compounds. 2 Al is 8 at% or more and less than 30 at%,
At least one of Fe and Co is more than 25 atomic %,
70 atomic% or less (Fe is 30 atomic% or more and 70 atomic% or less, Co is more than 25 atomic% and 70 atomic% or less), Nb, Ta, Mo, V, Ti, Mn,
A total of 2.0 at% of one or more elements selected from the group consisting of Cr, Zr, W, Si, Y, and Cu
In the following, a high-strength and high-ductility Ni base with the remainder essentially consisting of Ni and a structure consisting of a mixed structure of a B-2 type non-equilibrium intermetallic compound and a L1 2 type Ni 3 Al non-equilibrium intermetallic compound will be described. alloy.
JP15036182A 1982-03-08 1982-08-30 Ni-based alloy Granted JPS5941431A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15036182A JPS5941431A (en) 1982-08-30 1982-08-30 Ni-based alloy
CA000422679A CA1222893A (en) 1982-03-08 1983-03-02 Nickel-based alloy
EP83301155A EP0093487B1 (en) 1982-03-08 1983-03-04 Nickel-based alloy
DE8383301155T DE3380525D1 (en) 1982-03-08 1983-03-04 Nickel-based alloy
US06/473,301 US4642145A (en) 1982-03-08 1983-03-08 Nickel alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15036182A JPS5941431A (en) 1982-08-30 1982-08-30 Ni-based alloy

Publications (2)

Publication Number Publication Date
JPS5941431A JPS5941431A (en) 1984-03-07
JPH0260747B2 true JPH0260747B2 (en) 1990-12-18

Family

ID=15495306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15036182A Granted JPS5941431A (en) 1982-03-08 1982-08-30 Ni-based alloy

Country Status (1)

Country Link
JP (1) JPS5941431A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988488A (en) * 1989-10-19 1991-01-29 Air Products And Chemicals, Inc. Iron aluminides and nickel aluminides as materials for chemical air separation
CN115124287B (en) * 2022-07-08 2022-12-06 中国矿业大学 Multifunctional concrete and preparation method thereof

Also Published As

Publication number Publication date
JPS5941431A (en) 1984-03-07

Similar Documents

Publication Publication Date Title
US4478791A (en) Method for imparting strength and ductility to intermetallic phases
JP2911673B2 (en) High strength aluminum alloy
JP2799642B2 (en) High strength aluminum alloy
JPH0637696B2 (en) Method for manufacturing high-strength, heat-resistant aluminum-based alloy material
JPH0336243A (en) Amorphous alloy excellent in mechanical strength, corrosion resistance, and workability
JPH03257133A (en) High strength heat resistant aluminum-based alloy
EP0093487B1 (en) Nickel-based alloy
JP3302031B2 (en) Manufacturing method of high toughness and high strength amorphous alloy material
EP0540055B1 (en) High-strength and high-toughness aluminum-based alloy
JPH09263915A (en) High strength and high ductility aluminum base alloy
JPH05222491A (en) High strength rapidly solidified alloy
JPH06264200A (en) Ti series amorphous alloy
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
JPH0748646A (en) High strength magnesium base alloy and production thereof
JPH0260747B2 (en)
CA2273648C (en) Strontium master alloy composition having a reduced solidus temperature and method of manufacturing the same
JPS6411704B2 (en)
JPH0147540B2 (en)
JPH07252561A (en) Ti-zr alloy
JPH0892680A (en) High strength aluminum-based alloy
JP3485961B2 (en) High strength aluminum base alloy
EP0540054B1 (en) High-strength and high-toughness aluminum-based alloy
US4415529A (en) Mn-Based alloy of nonequilibrium austenite phase
JPH05311359A (en) High strength aluminum base alloy and its composite solidified material
JPH05331584A (en) Aluminum alloy with high elasticity and high strength