JPH0260738A - Al base electrodeposition alloy laminated material - Google Patents

Al base electrodeposition alloy laminated material

Info

Publication number
JPH0260738A
JPH0260738A JP21157788A JP21157788A JPH0260738A JP H0260738 A JPH0260738 A JP H0260738A JP 21157788 A JP21157788 A JP 21157788A JP 21157788 A JP21157788 A JP 21157788A JP H0260738 A JPH0260738 A JP H0260738A
Authority
JP
Japan
Prior art keywords
alloy
electrodeposited
base
weight
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21157788A
Other languages
Japanese (ja)
Inventor
Yakichirou Shiozaki
塩崎 弥吉郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21157788A priority Critical patent/JPH0260738A/en
Publication of JPH0260738A publication Critical patent/JPH0260738A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance heat resistance and hot processing moldability by laminating a plurality of plates to be electrodeposited, which are composed of a metal selected from Ti, Zr, Mo, V, Nb and Ta or an alloy of said metals, each having an Al base electrodeposition alloy layer wherein respective components of Al, Ti and B or Al, Zr and B are specified formed on the surface thereof. CONSTITUTION:Electroless plating of Ti-Al or Zr-Al is applied to an alphaTi plate being a base material 1 to form an Al base electrodeposition alloy layer 2 and a film having a thickness of 100-200mum is formed to both surfaces thereof to obtain a plate 3 to be electrodeposited. Molded alphaTi plates are received in a sheath in a superposed state to be sealed under vacuum and applied to a hot static pressure press for 5hr at 1200 deg.C under pressure of 1500atm. to be subjected to diffusion bonding to obtain an Al base electrodeposition alloy laminated material 4. The Al base electrodeposition alloy layer 2 has a composition consisting of 30-70wt.% of Al, 30-70wt.% of ti and 0.01-0.1wt.% of B or 40-80wt.% of Al, 20-60wt.% of Zr and 0.01-0.1wt.% of B.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高温下における強度を要求される構造材用の
A1基電看合金積層材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an A1-based electrically conductive alloy laminate for structural materials requiring strength at high temperatures.

従来の技術 従来、800℃以上の高温に耐える構造材には、モリブ
デン(MO)合金、ニオブ(Nb )合金等の耐火合金
が用いられていたが、このような合金は、材料の歩留り
が悪く、コストが著しく高い。
Conventional technology Conventionally, refractory alloys such as molybdenum (MO) alloys and niobium (Nb) alloys have been used for structural materials that can withstand high temperatures of 800°C or higher, but such alloys have poor material yields. , the cost is significantly high.

また、高温耐蝕性が使用中に低下し、これを防止するた
めには表面被覆を必要とし、このため限られた使用分野
にしか適用できなかった。
In addition, high-temperature corrosion resistance deteriorates during use, and a surface coating is required to prevent this, so that it can only be applied to limited fields of use.

また、たとえば航空機用ジェット・エンジンにおけるノ
ズル」−ン、ミ駐す−などの温度にさらされる構造部に
は、ニッケル基超耐熱合金が用いられているが、耐熱性
、軽a化1強度の要求に対して、T 1−A1合金の使
用が試みられるようになった。このものtま確かに高温
下の強度に対しては実用に供されるものの、塑性加工性
が全くないものであるのみならず、製造上、合金組織の
不均一化を避ける口とができない欠点があった。
In addition, nickel-based superalloys are used for structural parts exposed to temperature, such as the nozzles and parking areas of aircraft jet engines, but they have excellent heat resistance, light aluminium, and strength. In response to this demand, attempts have been made to use the T 1-A1 alloy. Although this material is certainly useful for strength under high temperatures, it not only has no plastic workability at all, but also has the disadvantage that it is impossible to avoid non-uniformity of the alloy structure during manufacturing. was there.

発明が解決しようとする問題点 本発明は、上記の欠点を解消し、圧延板の製造が可能で
あって、ある程度の加熱による曲げ加工をはかることが
でき、機械加工性が発揮され、しかし得られた積層板は
圧延微細組織をもって材質的にすぐれ、密着による酸素
の排除と、清浄な接合面とを得ることができ、靭性があ
って高温強さが大きく、コストが低く、種々の分野に使
用可能であり、材質的に従来の耐熱合金に劣らないAi
基電着合金積層材を提供す ることを技術的課題とする。
Problems to be Solved by the Invention The present invention solves the above-mentioned drawbacks, makes it possible to manufacture a rolled plate, allows bending by heating to a certain extent, exhibits machinability, and provides advantages. The rolled laminate has an excellent material quality due to its rolled microstructure, can eliminate oxygen through close adhesion, and has a clean bonding surface.It has toughness, high high-temperature strength, and low cost, making it suitable for various fields. Ai can be used and is comparable in material to conventional heat-resistant alloys.
The technical problem is to provide a base electrodeposited alloy laminate.

問題点を解決するための手段 本発明のA1基電着合金積層材は、アルミニウム30〜
70重量%、チタン30〜70重量%、硼素0.01〜
0.11弓%、又は、アルミニウム40〜80重間%、
ジルコニウム20〜60重番%、硼素0.01〜0.1
重量%の組成を有するA1基電着合金積層を表面に形成
したチタン。
Means for Solving the Problems The A1-based electrodeposited alloy laminate of the present invention has aluminum 30 to
70% by weight, titanium 30~70% by weight, boron 0.01~
0.11% bow, or 40-80% aluminum,
Zirconium 20-60%, boron 0.01-0.1
Titanium on which a laminated layer of A1-based electrodeposited alloy having a composition of % by weight is formed.

ジルコニウム、モリブデン、バナジウム、ニオブ。Zirconium, molybdenum, vanadium, niobium.

タンタルのうちから選ばれた金属又はこれらの金属の合
金よりなる被電着板を複数枚積層成形して構成する。
It is constructed by laminating and molding a plurality of electrodeposited plates made of a metal selected from tantalum or an alloy of these metals.

アルミニウムはαTi、αZr中に多量に固溶する性質
があり、等量組成のものも、500’C以上において表
面活性化を図るテルミット反応によりBmを発して融合
する。そのためアルミニウム(AI)とチタン(Ti)
、アルミニウム(Aj! )とジルコニウム(Zr )
との溶解は組成が不均一となる。
Aluminum has the property of forming a large amount of solid solution in αTi and αZr, and even those having the same composition emit Bm and fuse due to thermite reaction for surface activation at temperatures above 500'C. Therefore, aluminum (AI) and titanium (Ti)
, aluminum (Aj!) and zirconium (Zr)
The composition will be non-uniform when dissolved.

アルミニウムとチタンとの合金の第2相であるTi3A
j!はアルミニウムが7重量%を越えると大ぎく出現す
るようになりアルミニウム30〜70重量%では大部分
が第2相とTiAfの第3相であり、これは、均一組成
であれば、700℃で50 kof/am2以上の高強
度を示す。
Ti3A, the second phase of an alloy of aluminum and titanium
j! When the aluminum content exceeds 7% by weight, most of the 2nd phase and the 3rd phase of TiAf appear. Shows high strength of 50 kof/am2 or more.

そこで、1Mにより化学的に均一組成を保たせたAj!
i4合金を積層加工時に拡散によってチタン。
Therefore, Aj! has a chemically uniform composition with 1M!
Titanium is produced by diffusion during lamination processing of i4 alloy.

ジルコニウム、モリブデン、バナジウム、ニオブ。Zirconium, molybdenum, vanadium, niobium.

タンタルのうちから選ばれた金属又はこれらの合金より
なる素材に接合する。上記の拡散した層には部分的不均
一組成、すなわち塊の出現はない。
Bonded to a material made of a metal selected from tantalum or an alloy thereof. In the above-mentioned diffused layer there is no local heterogeneous composition, ie no appearance of lumps.

その際、高温強さを保持させるために、アルミニウムの
含有率が30〜70重間%(チタンを組成成分とする場
合)、40〜80重量%(ジルコニウムを組成成分とす
る場合)に定める。
At this time, in order to maintain high-temperature strength, the aluminum content is set at 30 to 70% by weight (when titanium is a component) and 40 to 80% by weight (when zirconium is a component).

チタン(Ti)、ジルコニウム(Zr )は高融点を有
する遷移金属であって、溶融点が653℃であるアルミ
ニウム(Ai)基に耐高温性を与えている。
Titanium (Ti) and zirconium (Zr) are transition metals having a high melting point, and provide high temperature resistance to the aluminum (Ai) base, which has a melting point of 653°C.

A77M着合金を電着させる素材としては、上記のよう
に、チタン(Ti)、ジルコニウム(Zi、モリブデン
(MO) 、バナジウム(V)、ニオブ(Nb)、タン
タル(Ta )等の遷移金属、またはこれらの合金が好
適である。
As mentioned above, materials for electrodepositing the A77M alloy include transition metals such as titanium (Ti), zirconium (Zi), molybdenum (MO), vanadium (V), niobium (Nb), and tantalum (Ta), or These alloys are preferred.

そして、このような素材に、前記のようなA1塁電看合
金層を電着させた被電着板を、熱間静水圧プレスによっ
て多数積層した後に圧延し、圧延素形材として本発明の
A1基電着合金積層材を得る。
Then, a large number of electrodeposited plates having the above-mentioned A1-base electric conductor alloy layer electrodeposited on such a material are laminated by hot isostatic pressing and then rolled to obtain the rolled material of the present invention. An A1-based electrodeposited alloy laminate is obtained.

つぎに、この発明の積層板における成分組成範囲を説明
する。
Next, the range of component composition in the laminate of the present invention will be explained.

(a)  Aj AIの聞は溶解材ならばT i AJ 。(a) Aj For AI, if it is a melting material, it is T i AJ.

AI、Tiの組成に入る配合量である。積層基板である
αTi中にT 1−AI混合組成の電着物質が拡散した
層は、耐熱性を向上させる作用をもつが、熱間静水圧プ
レス加工によってαTi中にα 相(Ti3A1)が大
きく出現し、このα2相とα相の濃度の平衝作用によっ
てT1板厚さ中心部での靭性劣化をとめる役割をおこな
わしめる。第3相であるY相を接合層に薄膜状に残すよ
うにして、この層の厚さを調整する。
This is the amount included in the composition of AI and Ti. A layer in which an electrodeposited material with a T 1-AI mixed composition is diffused into αTi, which is a laminated substrate, has the effect of improving heat resistance. The balance between the concentrations of the α2 phase and the α phase plays a role in stopping the deterioration of toughness at the center of the thickness of the T1 plate. The thickness of this layer is adjusted so that the third phase, Y phase, remains in the bonding layer in the form of a thin film.

(b)Ti又はZr T1は熱間静水圧プレス強加工時にAIを固溶させ本発
明の組成のとき、すなわち王1−AJ混合化合物が拡散
固溶する際に活性化を著しく生じさせる元素であって、
αTiへの拡散侵入を著しく高める作用を持っているか
ら、αTiとα2相、Y相のそれらの反応を促進し、所
望の高温強度の向上をはかることができる。
(b) Ti or Zr T1 is an element that causes AI to form a solid solution during intense hot isostatic press processing and causes significant activation when the composition of the present invention is used, that is, when the King 1-AJ mixed compound is diffused into a solid solution. There it is,
Since it has the effect of significantly increasing the diffusion and penetration into αTi, it can promote the reaction between αTi, α2 phase, and Y phase, and can improve the desired high temperature strength.

ZrはαT1と全域固溶の性質があるから、圧延がし易
くまた拡散固溶する際、zrA1混合物は■1−A1混
合物と同じように活性化が著しく、αTiとZrβ相の
反応接合面でのZ r−AJ!層が所望の高温強度の向
上をはかることができる。
Since Zr has the property of being a solid solution with αT1 over the entire area, it is easy to roll, and when it is diffused into a solid solution, the zrA1 mixture is markedly activated like the 1-A1 mixture, and at the reaction interface between αTi and Zrβ phases. Z r-AJ! The layer can provide the desired high temperature strength enhancement.

(c)  B Bは積層板の高温強度、靭性等の低下を防ぐ作用をもつ
が、その効果が0.02%未満では所望の効果は得られ
ず、一方、0.1%を越えて含有させると、靭性および
高温強度が低下するようになる。
(c) B B has the effect of preventing the high-temperature strength, toughness, etc. of the laminate from deteriorating, but if the effect is less than 0.02%, the desired effect cannot be obtained; on the other hand, if the content exceeds 0.1%, If this happens, the toughness and high temperature strength will decrease.

なお、この発明の積層板におけるB含有量は、電着法に
おいて無電解析出をはかるための薬剤から環元反応のお
りに入るものであり、工程中に薬剤混液を調整すること
によって所望の伯とすることができるものである。
The B content in the laminate of the present invention is determined by the amount of B that enters the ring element reaction from the chemical for electroless deposition in the electrodeposition method, and can be adjusted to the desired content by adjusting the chemical mixture during the process. This is something that can be done.

実施例 図面に示すように、素材1としてのαTi板にTi−A
j!、Zr−AJ!等の無電解メツレを施してΔi基電
着合金層2とし、100〜200ミクロンの厚さの被膜
を両面に形成させて被電着板3を得る。成形したαTi
板をシース中に重ねて入れ、真空封入する。引続いて、
温度1.200℃。
As shown in the example drawings, Ti-A is applied to αTi plate as material 1.
j! , Zr-AJ! A Δi-based electrodeposited alloy layer 2 is obtained by electroless etching, and a coating having a thickness of 100 to 200 microns is formed on both surfaces to obtain an electrodeposited plate 3. Molded αTi
The plates are stacked in the sheath and sealed under vacuum. Subsequently,
Temperature 1.200℃.

圧力1500気圧、5時間保持の条件で熱間静水圧プレ
スにかけることによって拡散接合し、AJ!基電電着金
積層材4とする。この場合板と板の間に第3金属の箔ま
たはメツキ層を設けることにより接合し易くするととも
に所定配合の合金とする。
The AJ! A base electrodeposited gold laminate material 4 is prepared. In this case, a third metal foil or plating layer is provided between the plates to facilitate joining and to form an alloy of a predetermined composition.

熱間静水圧プレスした板は、シースのまま1.200℃
以上で圧延する。
The hot isostatically pressed plate is kept in its sheath at 1.200℃.
Rolling is performed above.

表に示すように、比較のために本発明積層板1〜4およ
び比較Ti −Aj!合金5〜6をそれぞれ製造した。
As shown in the table, for comparison, the laminates 1 to 4 of the present invention and the comparison Ti-Aj! Alloys 5 and 6 were produced respectively.

表において、本発明積層板1.3は、熱間静水圧プレス
のままのTi−AJ!電’4処理のαTi7IJ板で、
本発明積層板2.4は、熱間静水圧プレスののち圧延し
たT +−Aj2及びZr−Aj!電着処理のαT1薄
板であり、比較焼結合金は65%Ti−35%A1組成
の原料を調整し、粉砕した原料粉を熱間静水圧プレスに
かけたものである。
In the table, inventive laminate 1.3 is Ti-AJ! as hot isostatically pressed. With αTi7IJ board treated with Den'4,
The laminates 2.4 of the present invention are T+-Aj2 and Zr-Aj! rolled after hot isostatic pressing. This is an αT1 thin plate subjected to electrodeposition treatment, and the comparative sintered alloy is obtained by preparing a raw material having a composition of 65% Ti-35% A1, and applying the pulverized raw material powder to hot isostatic pressing.

また、表は、上記本発明積層板1〜4および比較焼結合
金について、温度1000℃、10時間保持後空冷処理
した後の室温、700℃下の抗張力、耐力及び伸びを示
すものである。
The table also shows the tensile strength, yield strength, and elongation of the laminates 1 to 4 of the present invention and the comparative sintered alloy at room temperature and 700° C. after being held at a temperature of 1000° C. for 10 hours and then air-cooled.

表に示されるように、本発明積層板1.3はやや脆弱で
あるが、2.4はいずれも高強度と靭性が改良された性
質をもつものである。これに対して、比較焼結合金は強
度、靭性共に劣化したものになっている。またA11定
着層のAIが、発明の間開から低い方に外れた積層板は
、高温強度が著しく低い。又高い方に外れたものは、こ
れも同様に強度、靭性がきわめて低い。Ti、zrは、
発明の範囲から低い方に外れたものは、接合面の状態が
悪く、又高い方に外れたものは、高温強度の低下をもた
らし、実用にならないものである。
As shown in the table, laminates 1.3 of the present invention are somewhat brittle, while laminates 2.4 both have high strength and improved toughness. In contrast, the comparative sintered alloy has deteriorated both in strength and toughness. Furthermore, laminates in which the AI of the A11 fixing layer deviates from the spacing of the invention to the lower side have significantly low high temperature strength. Also, those that are on the high side also have extremely low strength and toughness. Ti, zr is
If the range is lower than the scope of the invention, the joint surface will be in poor condition, and if it is higher than the range, the high-temperature strength will be reduced, making it impractical.

発明の効果 A1基電着合金積層によるため、固溶体のような部分的
不均一がなく、チタン、ジルコニウム。
Effects of the Invention Since A1 base electrodeposited alloy is laminated, there is no local non-uniformity like in solid solution, and titanium and zirconium.

モリブデン、バナジウム、ニオブ、タンタルのうちから
選ばれた金属又はこれらの金属の合金が高温強さを受は
持つと共にΔj!基電電着が高温靭性を受は持って著し
く材質が向上する。さらに、高温使用時において、耐蝕
性を有する被電着板及びこれらに拡散成長されたA1基
電着合金がAIM電着合金層を保護する。
A metal selected from molybdenum, vanadium, niobium, tantalum or an alloy of these metals has high temperature strength and Δj! Substrate electrodeposition provides high-temperature toughness and significantly improves material quality. Furthermore, during high-temperature use, the electrodeposited plates having corrosion resistance and the A1-base electrodeposited alloy diffused and grown on these plates protect the AIM electrodeposited alloy layer.

以上のように、この発明のA1基電着合金積層板はすぐ
れた耐熱性および熱間加■成形を有するほか、きわめて
高い強度、靭性の改良がなされているので、これらの特
性が要求される、例えば航空機の高温静止部材全般に亘
る広い分野での適用が可能であり、しかも介在物や、酸
素、窒素の汚染が全くなく、電着時に入るl素が拡散を
円滑に進める作用と、αTi基板又はZrの作用などに
より圧延を容易に行うことができ、安いコストでの製造
が可能であるなどの工業上有用な特性を有するbのであ
る。
As described above, the A1-based electrodeposited alloy laminate of the present invention has excellent heat resistance and hot formability, and has extremely high strength and toughness improvements, so these properties are required. , for example, can be applied in a wide range of fields including high-temperature stationary parts of aircraft, and is completely free of inclusions, oxygen, and nitrogen contamination, and has the effect of smoothly promoting diffusion of the l element that enters during electrodeposition, and αTi. It has industrially useful properties such as being easily rolled due to the action of the substrate or Zr and being able to be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明のA1基電着合金積層材の横断面図を示す
ものである。 1・・・素材、2・・・A、i!基電着合金層、3・・
・被電着板、 4・・・Ai基電着合金tIti層材。
The figure shows a cross-sectional view of the A1-based electrodeposited alloy laminate of the present invention. 1...Material, 2...A, i! Base electrodeposited alloy layer, 3...
- Electrodeposited plate, 4...Ai-based electrodeposited alloy tIti layer material.

Claims (1)

【特許請求の範囲】[Claims] アルミニウム30〜70重量%、チタン30〜70重量
、硼素0.01〜0.1重量%又は、アルミニウム40
〜80重量%、ジルコニウム20〜60重量%、硼素0
.01〜0.1重量%の組成を有するAl基電着合金積
層を表面に形成したチタン、ジルコニウム、モリブデン
、バナジウム、ニオブ、タンタルのうちから選ばれた金
属又はこれらの金属の合金よりなる被電着板を複数枚積
層成形したことを特徴とするAl基電着合金積層材。
30-70% by weight of aluminum, 30-70% by weight of titanium, 0.01-0.1% by weight of boron, or 40% by weight of aluminum
~80% by weight, 20-60% by weight of zirconium, 0 boron
.. An electrified material made of a metal selected from titanium, zirconium, molybdenum, vanadium, niobium, and tantalum, or an alloy of these metals, on the surface of which an Al-based electrodeposited alloy laminated layer having a composition of 0.01 to 0.1% by weight is formed. An Al-based electrodeposited alloy laminate material characterized by laminating and molding a plurality of deposited plates.
JP21157788A 1988-08-27 1988-08-27 Al base electrodeposition alloy laminated material Pending JPH0260738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21157788A JPH0260738A (en) 1988-08-27 1988-08-27 Al base electrodeposition alloy laminated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21157788A JPH0260738A (en) 1988-08-27 1988-08-27 Al base electrodeposition alloy laminated material

Publications (1)

Publication Number Publication Date
JPH0260738A true JPH0260738A (en) 1990-03-01

Family

ID=16608071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21157788A Pending JPH0260738A (en) 1988-08-27 1988-08-27 Al base electrodeposition alloy laminated material

Country Status (1)

Country Link
JP (1) JPH0260738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672436A (en) * 1990-05-31 1997-09-30 Grumman Aerospace Corporation Oxidation protection method for titanium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672436A (en) * 1990-05-31 1997-09-30 Grumman Aerospace Corporation Oxidation protection method for titanium
US5776266A (en) * 1990-05-31 1998-07-07 Northrop Grumman Corporation Oxidation protection method for titanium

Similar Documents

Publication Publication Date Title
US5372298A (en) Transient liquid phase ceramic bonding
KR101054462B1 (en) High strength dissimilar metal joining method between a steel-based alloy using an intermediate layer and a titanium or titanium-based alloy having a joint strength exceeding the strength of the base metal
US5234152A (en) Transient liquid phase ceramic bonding
US7776454B2 (en) Ti brazing strips or foils
WO2006068948A1 (en) Titanium braze foil with a zirconium layer
KR101693514B1 (en) Fe-Ni-P ALLOY MULTILAYER STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
US20120270070A1 (en) Hybrid copper alloy realizing simultaneously high strength, high elastic modulus, high corrosion-resistance, wear resistance, and high conductivity and manufacturing method thereof
JP4343431B2 (en) Joining dissimilar metals
CN112644108B (en) Fe-Al intermetallic compound micro-laminated composite material and preparation method thereof
US6286750B1 (en) Method of manufacturing beryllium-copper alloy hot isostatic press (HIP) bonded body and hip-bonded body
JPH0260738A (en) Al base electrodeposition alloy laminated material
US11845700B2 (en) Method for producing a semi-finished metal product, method for producing a metal-ceramic substrate, and metal-ceramic substrate
TW200301783A (en) Metal strip for epitaxial coating and method for production thereof
US6789723B2 (en) Welding process for Ti material and Cu material, and a backing plate for a sputtering target
JP2651847B2 (en) Aluminum alloy for ceramic joining
JP3017236B2 (en) Method for producing Fe-Al alloy soft magnetic sheet having excellent magnetic properties
KR100954097B1 (en) Method of joining of pure Ti/Ti-base alloy and Fe-base steel alloy using Ag-based inserted material and Ag diffusion control layer
KR100470146B1 (en) Fabrication of titanium/steel clad plate
JPS60221548A (en) Fiber reinforced composite metallic body and its production
JP2001032032A (en) Aluminum alloy material to be coated with resin, and its manufacture
JPS6141760A (en) Heat and corrosion resisting covered steel and its formation
JPH0754068A (en) Production of niti intermetallic compound
JPH03221445A (en) Metal plate coated with precious metal for vessel and decoration, and manufacture thereof
JPS6147705B2 (en)
JPH0455783B2 (en)