JPH0260255B2 - - Google Patents

Info

Publication number
JPH0260255B2
JPH0260255B2 JP15154584A JP15154584A JPH0260255B2 JP H0260255 B2 JPH0260255 B2 JP H0260255B2 JP 15154584 A JP15154584 A JP 15154584A JP 15154584 A JP15154584 A JP 15154584A JP H0260255 B2 JPH0260255 B2 JP H0260255B2
Authority
JP
Japan
Prior art keywords
gas
piston
pressure
permeate gas
semipermeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15154584A
Other languages
Japanese (ja)
Other versions
JPS6129736A (en
Inventor
Masaharu Matsuda
Choji Kanzawa
Kenji Haratani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15154584A priority Critical patent/JPS6129736A/en
Publication of JPS6129736A publication Critical patent/JPS6129736A/en
Publication of JPH0260255B2 publication Critical patent/JPH0260255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は多成分混合気体に含まれている有用な
気体成分を半透膜によつて分離濃縮する際に用い
る半透膜の性能試験を行う半透膜の性能試験装置
に関するものであり、特に現在色々と開発が進め
られている各種半透膜の性能を迅速に、かつ正確
に判定して、従来の半透膜の改良及び新規な半透
膜の開発に寄与するためのものである。 〔従来技術〕 従来の気体分離用の半透膜の性能試験装置は、
主として減圧法によるものであり、大気圧との圧
力差によつて膜を透過する気体の量を測定すると
いうのが一般的手法である。 したがつて、このような方法では半透膜の両側
における気体の圧力差は一気圧以上に設定するこ
とはできないという制約があるために、気体透過
流速の小さい膜の性能測定には極めて長時間を要
するという欠点があつた。 また、気体透過流速の大きい膜の性能を測定す
る際には、減圧側のガス溜用の容器を大容量のも
のにしなければ測定に必要な圧力差を保持するこ
とができないという欠点がある。 さらに、膜性能の判定には減圧側の容器内に流
入する気体によつて圧力が刻々変化するため、そ
の変化量を記録して解析するという手段が必要不
可欠であり、いわゆる非定常の状態下での測定値
を定常状態の値に換算するという煩雑さは避け得
ないという欠点があつた。 〔発明の目的〕 そこで、本発明は前記従来の欠点を解消するた
めになされたものであり、半透膜の片側を大気圧
とし、その反対側の気体を加圧することによつ
て、膜両側における圧力差を常に一定に保持しつ
つ膜の気体透過性能を測定することにより、極め
て有効適切な半透膜の性能試験装置を提供するこ
とを目的としたものである。 〔発明の構成〕 即ち、本発明の半透膜の性能試験装置は、ピス
トンを摺動自在に内蔵した耐圧シリンダの該ピス
トンの前部に標準透過ガスを充填可能な透過ガス
室を有し、かつその透過ガス室と更にその前方の
透過ガス取り出し口との間に被試験用の半透膜を
配設すると共に、該ピストンの後部を加圧流体で
一定圧で押圧しながら該ピストンの移動量を測定
可能にすることにより構成される。 〔実施例〕 以下図面を参照して本発明の実施例を説明する
が、図面はその一実施例における半透膜の性能試
験装置の概略側断面図である。 まず、ピストン7をその軸方向に摺動自在に内
蔵した耐圧シリンダ6の前端部に透過膜2を固定
するためのセル3取付用のフランジ4が設けてあ
り、このフランジ4とセル3の背面はOリングを
介して接合固定できるようになつている。 また、耐圧シリンダ6のフランジ4近傍に圧力
検出器取付具5及びガス注入口5′、さらにガス
排出口5″が設けてあり、透過ガス室15を構成
し、そこに所望の標準透過ガスをすみやかに注入
して充填し、そして排出することができるように
なつている。 ピストン7の外周面には少なくとも1箇以上の
Oリング7′が嵌合されており、ピストン7が耐
圧シリンダ6内周面を軸方向に容易に摺動可能な
らしめ、かつ耐圧シリンダ6後部への標準透過ガ
スの漏洩を防止している。 ピストン7の軸後部には、ねじ10が施してあ
り、このねじ10に嵌合して圧力制御用ハンドル
13が設置されており、この圧力制御用ハンドル
13の位置を調節することによつて耐圧シリンダ
6の前部の透過ガス室15に任意の圧力を生ぜし
めることができる。 また、耐圧シリンダ6の後部には加圧空気、ま
たは加圧水あるいは加圧油などの加圧流体を注入
するガス注入口8及びガス排出口8′が設けられ
てあり、測定中はここから注入された空気、また
は水あるいは油の加圧流体によつて耐圧シリンダ
6の前部の透気ガス室15内の標準透過ガスの圧
力が一定に保持される。 ピストン7の軸中央部には、副尺目盛板11が
設けてあり、これと装置固定用の架台14に設け
た目盛板11′との組合せによりピストン7の移
動量、つまりガスの膜透過量を読みとることによ
り正確に測定可能となつている。 ピストン7の軸の固定方法は、耐圧シリンダ6
後部に接合した高圧ガスシール用蓋9の内周面に
嵌合されたOリング及び架台14に接合されたピ
ストン軸受け12によつてなされ、このピストン
軸受け12には図示されていない回り止め金具が
設けてあつて、ピストン7が軸方向には容易に移
動できるが、横方向には回転できないようになつ
ている。 透過膜固定用のセル3の端部には、透過ガス取
出し用の蓋16があり、例えばガスクロマトグラ
フイーのごとき分析装置にこれを連結することに
より、標準透過ガスの成分組成を定量分析するこ
とができ、また、この蓋16の背面には透過ガス
取出し口1に連通せる細い溝が施してあり、この
面を利用して不織布、または紙あるいはポーラ
スな金属板を介して半透膜2を押圧してセル3に
固定することができる。 上記の実施例における性能試験装置を用いて酸
素と窒素との分離に用いるシリコンゴム及び複合
膜の基本用の膜として使用される半透膜、例えば
ポリスルフオン膜のガス透過性能を測定した結果
を下記の表に示しており、従来の高真空法による
測定装置では、測定開始前の予備操作に少なくと
も数10分間を要するため、本発明の装置を用いれ
ば、従来の方法よりはるかに短時間で測定できる
ことが判る。
[Industrial Application Field] The present invention is a semipermeable membrane performance test that performs a performance test of a semipermeable membrane used when separating and concentrating useful gas components contained in a multicomponent mixed gas using a semipermeable membrane. It is related to equipment, and in particular, it can quickly and accurately determine the performance of various semipermeable membranes that are currently being developed, contributing to the improvement of conventional semipermeable membranes and the development of new semipermeable membranes. It is for the purpose of [Prior art] Conventional performance testing equipment for semipermeable membranes for gas separation is
This method is mainly based on a reduced pressure method, and the common method is to measure the amount of gas that permeates through the membrane based on the pressure difference with atmospheric pressure. Therefore, with this method, there is a restriction that the gas pressure difference on both sides of the semipermeable membrane cannot be set to more than one atmosphere, so it takes an extremely long time to measure the performance of a membrane with a low gas permeation flow rate. The disadvantage was that it required Furthermore, when measuring the performance of a membrane with a high gas permeation flow rate, there is a drawback that the pressure difference required for measurement cannot be maintained unless the container for the gas reservoir on the reduced pressure side has a large capacity. Furthermore, in order to judge membrane performance, the pressure changes every moment due to the gas flowing into the container on the reduced pressure side, so it is essential to record and analyze the amount of change. The drawback was that the complicated process of converting the measured values to steady-state values was unavoidable. [Object of the Invention] Therefore, the present invention has been made to solve the above-mentioned conventional drawbacks, and by setting one side of the semipermeable membrane to atmospheric pressure and pressurizing the gas on the other side, both sides of the membrane can be The purpose of this invention is to provide an extremely effective and suitable semipermeable membrane performance testing device by measuring the gas permeation performance of the membrane while always keeping the pressure difference constant. [Structure of the Invention] That is, the semipermeable membrane performance testing device of the present invention has a pressure-resistant cylinder in which a piston is slidably built in, and a permeation gas chamber that can be filled with a standard permeation gas in the front part of the piston. A semipermeable membrane to be tested is disposed between the permeated gas chamber and the permeated gas outlet in front of the permeated gas chamber, and the piston is moved while pressing the rear part of the piston at a constant pressure with pressurized fluid. It consists of making a quantity measurable. [Example] Examples of the present invention will be described below with reference to the drawings, which are schematic side sectional views of a semipermeable membrane performance testing apparatus in one example. First, a flange 4 for mounting a cell 3 for fixing the permeable membrane 2 is provided at the front end of a pressure cylinder 6 in which a piston 7 is slidably built in in the axial direction. can be joined and fixed via an O-ring. Further, a pressure detector fitting 5, a gas inlet 5', and a gas outlet 5'' are provided near the flange 4 of the pressure cylinder 6, forming a permeate gas chamber 15, into which a desired standard permeate gas is introduced. The piston 7 can be quickly injected, filled, and discharged. At least one O-ring 7' is fitted on the outer circumferential surface of the piston 7, and the piston 7 is inserted into the pressure-resistant cylinder 6. The circumferential surface is made to be easily slidable in the axial direction, and leakage of the standard permeable gas to the rear of the pressure cylinder 6 is prevented.A screw 10 is provided at the rear of the shaft of the piston 7, and this screw 10 A pressure control handle 13 is fitted to the pressure control handle 13, and by adjusting the position of the pressure control handle 13, an arbitrary pressure can be generated in the permeation gas chamber 15 at the front of the pressure cylinder 6. In addition, a gas inlet 8 and a gas outlet 8' are provided at the rear of the pressure cylinder 6 to inject pressurized fluid such as pressurized air, pressurized water, or pressurized oil. The pressure of the standard permeable gas in the permeable gas chamber 15 at the front of the pressure cylinder 6 is maintained constant by the pressurized fluid of air, water, or oil injected from the piston 7. is equipped with a vernier scale plate 11, which is used in combination with a scale plate 11' provided on a mount 14 for fixing the device to accurately measure the amount of movement of the piston 7, that is, the amount of gas permeating through the membrane. The method of fixing the shaft of the piston 7 is to use a pressure-resistant cylinder 6.
This is achieved by an O-ring fitted to the inner circumferential surface of the high-pressure gas seal lid 9 joined to the rear part and a piston bearing 12 joined to the pedestal 14, and this piston bearing 12 has a detent fitting (not shown). The piston 7 is provided in such a way that the piston 7 can be easily moved in the axial direction, but cannot be rotated laterally. At the end of the cell 3 for fixing the permeable membrane, there is a lid 16 for taking out the permeated gas, and by connecting this to an analyzer such as a gas chromatography, the component composition of the standard permeated gas can be quantitatively analyzed. In addition, the back of the lid 16 has a thin groove that communicates with the permeated gas outlet 1, and this surface can be used to insert the semipermeable membrane 2 through a nonwoven fabric, paper, or porous metal plate. It can be fixed to the cell 3 by pressing. The results of measuring the gas permeation performance of semipermeable membranes, such as polysulfon membranes, used as basic membranes for silicone rubber and composite membranes used to separate oxygen and nitrogen using the performance test equipment in the above examples are shown below. As shown in the table below, conventional measurement equipment using the high vacuum method requires at least several tens of minutes for preliminary operations before starting measurement, but with the equipment of the present invention, measurements can be made in a much shorter time than with conventional methods. I see that it is possible.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上の構成からなる本発明の半透膜の性能試験
装置では、被試験用の半透膜の両側に任意の圧力
差を容易に設定することができ、気体透過流速の
大きい膜試料から小さい膜試料までその性能を短
時間に判定できるという利点がある。 また、本発明の装置は上記加圧側の圧力が常に
一定に保持されていることから、単位時間に加圧
側から大気側に移動した気体量がそのまま試料膜
の気体透過量として把握でき、従来法のごとき圧
力変化を量変化に換算し、さらに非定常の状態下
で得られたデーターを解析して定常状態の値にも
どすという煩雑な処理を全く必要とせず、個人差
なく測定できるという利点がある。 さらに、この装置の構造要素の一部である気体
加圧部は、ピストンによつて構成されており、測
定開始時のそのピストンの位置と測定終了時の位
置とを確認するだけの機械的な単純操作で、極め
て容易に、かつ正確に気体の透過量を判定するこ
とができるので、その操作が簡単であり、加えて
標準試料として使用する気体の容量は前記耐圧シ
リンダ内に一回充填するだけで済み、極めて経済
的に有利なものである。
With the semipermeable membrane performance testing apparatus of the present invention having the above configuration, it is possible to easily set an arbitrary pressure difference on both sides of the semipermeable membrane to be tested, and it is possible to easily set an arbitrary pressure difference on both sides of the semipermeable membrane to be tested. It has the advantage of being able to judge the performance of a sample in a short time. In addition, since the pressure on the pressurizing side is always maintained constant in the device of the present invention, the amount of gas that moves from the pressurizing side to the atmosphere side per unit time can be directly determined as the amount of gas permeated through the sample membrane. The advantage of this method is that it does not require any complicated processing such as converting pressure changes into volume changes, then analyzing data obtained under unsteady conditions to return to steady state values, and can be measured without individual differences. be. In addition, the gas pressurization part, which is part of the structural element of this device, consists of a piston, and the mechanical The operation is simple because the amount of gas permeation can be determined extremely easily and accurately with a simple operation, and in addition, the volume of gas used as a standard sample is filled in the pressure cylinder once. This is extremely economically advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例における半透膜の性能
試験装置の概略側断面図である。 1……透過ガス取出し口、2……透過膜、6…
…耐圧シリンダ、7……ピストン、8……ガス注
入口、8′……ガス排出口、11……副尺目盛、
11′……目盛板、15……透過ガス室。
The drawing is a schematic side sectional view of a semipermeable membrane performance testing apparatus in an embodiment of the present invention. 1... Permeated gas outlet, 2... Permeable membrane, 6...
...Pressure cylinder, 7...Piston, 8...Gas inlet, 8'...Gas exhaust port, 11...Vernier scale,
11'... Dial plate, 15... Permeation gas chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 ピストンを摺動自在に内蔵した耐圧シリンダ
の該ピストンの前部に標準透過ガスを充填可能な
透過ガス室を有し、かつその透過ガス室と更にそ
の前方の透過ガス取り出し口との間に被試験用の
半透膜を配設すると共に、該ピストンの後部を加
圧流体で一定圧で押圧しながら該ピストンの移動
量を測定可能にしたことを特徴とする半透膜の性
能試験装置。
1 A pressure cylinder with a slidably built-in piston has a permeate gas chamber capable of being filled with a standard permeate gas in the front part of the piston, and a permeate gas chamber that can be filled with a standard permeate gas, and a permeate gas outlet further in front of the permeate gas chamber. A performance testing device for a semipermeable membrane, characterized in that a semipermeable membrane to be tested is provided, and the amount of movement of the piston can be measured while pressing the rear part of the piston with a pressurized fluid at a constant pressure. .
JP15154584A 1984-07-20 1984-07-20 Testing device for performance of semipermeable film Granted JPS6129736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15154584A JPS6129736A (en) 1984-07-20 1984-07-20 Testing device for performance of semipermeable film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15154584A JPS6129736A (en) 1984-07-20 1984-07-20 Testing device for performance of semipermeable film

Publications (2)

Publication Number Publication Date
JPS6129736A JPS6129736A (en) 1986-02-10
JPH0260255B2 true JPH0260255B2 (en) 1990-12-14

Family

ID=15520852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15154584A Granted JPS6129736A (en) 1984-07-20 1984-07-20 Testing device for performance of semipermeable film

Country Status (1)

Country Link
JP (1) JPS6129736A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199053U (en) * 1987-06-13 1988-12-21
FR2845771A1 (en) * 2002-10-09 2004-04-16 Ncv Ind Apparatus characterizing vehicle airbag textiles, comprises piston-cylinder arrangement with instrumentation measuring porosity and rupture strength under applied pressures
CN104524982B (en) * 2014-12-16 2017-01-11 中国科学院上海应用物理研究所 Device for accurately measuring micro flux of filter membrane
CN113230896B (en) * 2021-03-31 2024-04-19 重庆中烟工业有限责任公司 Filtering membrane damage detection device for needle filter

Also Published As

Publication number Publication date
JPS6129736A (en) 1986-02-10

Similar Documents

Publication Publication Date Title
Stern et al. Performance of a versatile variable‐volume permeability cell. Comparison of gas permeability measurements by the variable‐volume and variable‐pressure methods
DE58902950D1 (en) METHOD AND DEVICE FOR DETERMINING THE CONTENT OF SUBSTANCES SOLVED IN A SOLVENT BY MEANS OF AN OSMOMETER.
US5786528A (en) Water intrusion test for filters
CA1103053A (en) Gas concentration analysis method and systems
Pye et al. Measurement of gas permeability of polymers. II. Apparatus for determination of permeabilities of mixed gases and vapors
US4555934A (en) Method and apparatus for nonsteady state testing of permeability
US5361625A (en) Method and device for the measurement of barrier properties of films against gases
Robbins et al. Experimental study of the independence of diffusion and hydrodynamic permeability coefficients in collodion membranes
US4464927A (en) Apparatus for measuring gas transmission through films
US20100268488A1 (en) Methods and Apparatus for Determining the Permeability and Diffusivity of a Porous Solid
US2755660A (en) Permeability tester
US4815316A (en) Diffusion measurement
Ettre et al. Investigation of the linearity of a stream splitter for capillary gas chromatography
JPH0260255B2 (en)
US6845651B2 (en) Quick BET method and apparatus for determining surface area and pore distribution of a sample
JPH0467905B2 (en)
JPH01227045A (en) Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas
JPS5460994A (en) Measuring method of gas permeability of porous substances
Park Aids for the Analyst-Semimicro Gas Permeability Apparatus for Sheet Material
US3783678A (en) Vacuum gauge calibrator
JPH08254523A (en) Measuring device and method for measuring oxygen permeability of sample
Huldy Gas permeability apparatus for films and sheets
JPS5622952A (en) Measuring instrument for hydrogen isotope
SU1520435A2 (en) Apparatus for sampling and introducing samples of steam phase to gas chromatograph
RU2186364C2 (en) Method determining minimal diameter of pores of specimen

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term