JPH0260026A - Formation of light absorbing film - Google Patents

Formation of light absorbing film

Info

Publication number
JPH0260026A
JPH0260026A JP20999888A JP20999888A JPH0260026A JP H0260026 A JPH0260026 A JP H0260026A JP 20999888 A JP20999888 A JP 20999888A JP 20999888 A JP20999888 A JP 20999888A JP H0260026 A JPH0260026 A JP H0260026A
Authority
JP
Japan
Prior art keywords
cleaning
temperature
pure water
light
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20999888A
Other languages
Japanese (ja)
Inventor
Kotoji Fujiwara
藤原 琴二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20999888A priority Critical patent/JPH0260026A/en
Publication of JPH0260026A publication Critical patent/JPH0260026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

PURPOSE:To improve a production yield by automatically measuring the temperature of a panel thrown into a production process and controlling the applicable amount of a cleaning chemical and pure water at each cleaning position, depending upon the result of the measurement. CONSTITUTION:Each type of cleaning chemicals or pure water is classified into two constituting a cleaning chemical or pure water having a relatively high temperature and a cleaning chemical or pure water having a relatively low temperature for setting the temperature thereof in relation to characteristics and purposes. In the operation of a cleaning system, therefore, the cleaning amount of high and low temperature glass panels is made variable within an allowable range due to the application time and flowrate of the aforesaid chemical or pure water. A temperature difference between the aforesaid panels in a production line is thereby made small via the heat transfer of the aforesaid chemical and pure water, and finally a panel temperature is lowered to a level free from a problem at the time of exposure. According to the aforesaid construction, it becomes possible to reduce the irregularity of a product and improve a production yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はカラー受像管の螢光面の光吸収膜形成方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a method for forming a light absorption film on the fluorescent surface of a color picture tube.

〔従来の技術〕[Conventional technology]

現在、カラー受像管の螢光面は、螢光体の発光面積を光
吸収性物質、たとえばグラファイト膜で限定し、螢光面
のコントラストを画期的に向上させた、いわゆる、ブラ
ックマトリックス化されたものに変わってきている。
Currently, the fluorescent surface of color picture tubes is made of a so-called black matrix, which limits the light-emitting area of the phosphor with a light-absorbing material, such as a graphite film, and dramatically improves the contrast of the fluorescent surface. It's starting to change.

次に、−船釣なカラー受像管のブラックマトリックス化
螢光面の製造方法を説明する。
Next, a method for manufacturing a black matrix-formed fluorescent surface of a color picture tube will be explained.

まず、第2図の螢光面を形成するガラスパネル1内面を
、苛性ソーダ弗化アンモニウムそして純水を使用して洗
浄し乾燥する。時により、この乾燥前にごく薄いPVA
の溶液を吹きつけ乾燥するプレコート膜の形成を行うこ
とがある。次に、ホトレジスト、たとえば、ポリビニー
ルアルコールと重クロム酸塩を主成分とするレジスト溶
液を回転塗布法により塗布してレジスト膜2を形成する
First, the inner surface of the glass panel 1 forming the fluorescent surface shown in FIG. 2 is washed using ammonium fluoride of caustic soda and pure water and dried. Sometimes, a very thin layer of PVA is applied before drying.
A pre-coat film may be formed by spraying and drying a solution of Next, a resist film 2 is formed by applying a photoresist, for example, a resist solution containing polyvinyl alcohol and dichromate as main components, by a spin coating method.

次に、上記レジスト膜2は充分乾燥され露光工程に入る
。露光工程では、露光装置によりレジスト膜2に潜像を
形成する。すなわち、ガラスパネルlに色選択電橋とし
てのシャドウマスク3を装着し、補正レンズ4、光量調
整フィルタ5類を介して水銀ランプ6で一定時間、シャ
ッタ7の開閉によって、シャドウマスク3の1つの開孔
部に対しレジスト膜2の発光させる位置を順次露光して
、レジスト膜2に潜像を形成する。
Next, the resist film 2 is sufficiently dried and begins an exposure process. In the exposure process, a latent image is formed on the resist film 2 by an exposure device. That is, a shadow mask 3 as a color selection electric bridge is attached to a glass panel l, and one of the shadow masks 3 is illuminated by a mercury lamp 6 through a correction lens 4 and a light amount adjustment filter 5 for a certain period of time by opening and closing a shutter 7. A latent image is formed on the resist film 2 by sequentially exposing the light emitting positions of the resist film 2 to the openings.

次に、現像処理して上記螢光体を被着すべき位置に、第
3図に示すように、レジスト膜パターンであるレジスト
ドツトまたはレジストストライプ2a(以下「レジスト
ストライプ」と総称する。)を形成する。ついで、レジ
ストストライプ2aを乾燥した後、光吸収性物質、例え
ばグラファイト溶液をレジストストライプ2aの上に噴
霧または流しかけて塗布し乾燥させてグラファイト膜9
を形成する。
Next, as shown in FIG. 3, resist dots or resist stripes 2a (hereinafter collectively referred to as "resist stripes"), which are a resist film pattern, are formed at the positions where the phosphor is to be applied by development. Form. Next, after drying the resist stripe 2a, a light-absorbing substance such as a graphite solution is applied by spraying or pouring onto the resist stripe 2a and dried to form a graphite film 9.
form.

次に、グラファイト膜9を充分乾燥、加熱した後、酸化
剤、たとえば、10%過酸化水素水をガラスパネルl内
面に注入して上記レジストストライプ2aに作用させ、
これを化学的に分解する。
Next, after sufficiently drying and heating the graphite film 9, an oxidizing agent, for example, 10% hydrogen peroxide solution, is injected into the inner surface of the glass panel l to act on the resist stripe 2a,
This is chemically decomposed.

化学的に分解されたレジストストライプ2aおよびこの
上に塗布されたグラファイト膜9はつぎの強力な現像工
程でガラスパネル1よりはがれる。
The chemically decomposed resist stripe 2a and the graphite film 9 coated thereon are peeled off from the glass panel 1 in the next strong development process.

その結果、第4図のように、螢光体を被着発光させる位
置以外に上記グラファイト膜9が残ることになり、残っ
たグラファイト膜9が光吸収膜としてのブラックストラ
イプ9aとなる。さらにガラスパネル1のスカート部に
被着、された、不必要な領域のグラファイト膜9は、フ
ン化アンモニウムの水溶液でガラス面をエツチングする
ことによって除去整形され、最後に水洗、乾燥を行って
ブラックマトリックスの形成を完了する。この後、上記
レジストストライプ2aの形成と同じように、3原色す
なわち緑、青、赤の各螢光体スラリーについて塗布、露
光、現像の工程を繰り返し行って、第5図に示すように
、3原色螢光体ストライプ10の被着を完了した螢光面
を形成する。
As a result, as shown in FIG. 4, the graphite film 9 remains at a position other than the position where the phosphor is attached and emits light, and the remaining graphite film 9 becomes a black stripe 9a as a light absorption film. Furthermore, the graphite film 9 in unnecessary areas adhered to the skirt portion of the glass panel 1 is removed and shaped by etching the glass surface with an aqueous solution of ammonium fluoride, and finally washed with water and dried to make it black. Complete matrix formation. Thereafter, in the same manner as in the formation of the resist stripes 2a, the steps of coating, exposing, and developing the phosphor slurries of the three primary colors, that is, green, blue, and red, are repeated to form the three primary colors, as shown in FIG. A phosphor surface is formed on which the primary color phosphor stripes 10 have been deposited.

通常、ブラックマトリックス化螢光面は、ガラスパネル
1を固定したキャリアーを、ループ状にライン化した製
造工程に、所定のサイクルタイムで順次移動させて形成
する、いわゆる、自動機によって製造されている。第6
図に示す洗浄工程は上記自動機のサイクルタイム(以下
インデックスと呼ぶ)にもよるが、通常10ポジション
程度で構成されている。−船釣には先ず熱苛性ソーダな
どのアルカリ洗浄60による脱脂、有機成分の除去を行
い、後の酸洗浄をより効果的にする。次にアルカリ成分
を洗い去るためのすすぎ洗い61を行った後、フン酸あ
るいは酸性フン化アンモニウムなどガラスを溶解する成
分による酸洗浄62を2〜3ボジシツンに分けて行う0
次に酸成分を除去する循環水洗浄63を行った後、純水
洗浄64により完全に洗い上げている。この後は、高速
回転による水分の振り切り除去、ヒーター乾燥、レジス
ト注入へと進んでいく。
Usually, a black matrix fluorescent surface is manufactured using a so-called automatic machine, in which a carrier to which the glass panel 1 is fixed is sequentially moved through a loop-shaped production line at a predetermined cycle time. . 6th
The cleaning process shown in the figure usually consists of about 10 positions, although it depends on the cycle time (hereinafter referred to as index) of the automatic machine. - For boat fishing, first degrease and remove organic components by alkaline cleaning 60 such as hot caustic soda to make subsequent acid cleaning more effective. Next, after rinsing 61 to wash away alkaline components, acid cleaning 62 with a component that dissolves glass, such as hydronic acid or acidic ammonium fluoride, is performed in 2 to 3 steps.
Next, circulating water cleaning 63 for removing acid components is performed, followed by pure water cleaning 64 for complete cleaning. After this, the process moves on to shaking off moisture using high-speed rotation, drying with a heater, and injecting resist.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上説明した製造工程により、光吸収膜を形成する場合
、通常、発光面積、即ちストライプ巾にバラツキを生じ
る。このバラツキの原因として、前記レジスト液の悪魔
変動および膜圧変化、露光時におけるシャドウマスクス
ロット巾のバラツキ、光源の明るさ変化、更に露光終了
より現像までの時間等々各種の変動要素が挙げられる。
When a light-absorbing film is formed through the manufacturing process described above, variations usually occur in the light-emitting area, that is, the stripe width. The causes of this variation include various variable factors such as fluctuations in the resist solution and changes in film pressure, variations in the width of the shadow mask slot during exposure, changes in the brightness of the light source, and the time from the end of exposure to development.

発明者はこれらの変動項目に対し、各々その影響度と制
御の方法につき検討、改善を行ってきたが、ここに更に
大きな変動要素としてガラスパネルの温度変動が明らか
になった。即ち昨今の製造ラインの自動化により、8M
ラインへのパネルの投入も自動化され、熱処理工程を経
たかなり高温のパネル、8M工程で不良となった比較的
低温のパネル、螢光体被着(S C)工程で不良となっ
た比較的高温のパネル、そして仕掛り品として投入され
る室温程度の最も低い温度のパネルなど、無差別に投入
されるを得ない状況となったことによるものである。確
認によればこれらパネル温度の変動によるストライプ巾
の変化は20μm以上に達しく規格中のバラツキ±10
μmをオーバーする)、製造工程の歩留や製品品質のバ
ラツキを生じ非常に好ましくないものであった。この問
題の解決策としては従来の人手による投入によれば手に
触れる温感により選別できたものであるが、先に説明し
た如くこの方法は自動化により採用不可となっている。
The inventor has studied and improved the degree of influence and control method for each of these variable items, and now the temperature fluctuation of the glass panel has become clear as an even larger variable factor. In other words, with recent automation of production lines, 8M
The feeding of panels into the line has also been automated, and panels that have gone through the heat treatment process at a fairly high temperature, relatively low temperature panels that were defective in the 8M process, and relatively high temperature panels that were defective in the phosphor coating (SC) process. This was due to an unavoidable situation in which panels such as panels with the lowest temperature, about room temperature, were thrown in as work-in-progress and were thrown in indiscriminately. According to confirmation, the variation in stripe width due to panel temperature fluctuations reaches 20 μm or more, and the variation within the standard is ±10
(exceeding .mu.m), which is extremely undesirable as it causes variations in yield and product quality in the manufacturing process. As a solution to this problem, the conventional method of manually introducing the materials has been able to select the materials based on the sense of warmth to the touch, but as explained earlier, this method cannot be adopted due to automation.

従って、本質的には投入パネルの温度を自動的にあらか
じめ均一化することが考えられる。しかしながらこの方
法は装置的に相当なものとなり、設備的にもコスト的に
も問題であることは明白である。
Therefore, it is essentially possible to automatically equalize the temperature of the input panel in advance. However, this method requires a considerable amount of equipment and is obviously problematic in terms of equipment and cost.

従ってこの発明は上記のような問題点を解決するために
なされたもので、従来通りのライン構成で対処できると
ともに、パネル温度もほぼ均一化できる光吸収膜の形成
方法を提供することを目的とする。
Therefore, this invention was made to solve the above-mentioned problems, and its purpose is to provide a method for forming a light-absorbing film that can be solved with a conventional line configuration and also can make the panel temperature almost uniform. do.

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかる光吸収膜形成方法は、ガラスパネルの
洗浄工程における薬液、洗浄水の適用時間を、投入時の
ガラスパネルの温度によって制御し、洗浄工程における
薬液、洗浄水の温度を有効に利用し、投入時低温域にあ
るガラスパネルの温度を上昇させ、一方投入時高温域に
あるガラスパネルの温度を下げるようにしたものである
In the light-absorbing film forming method according to the present invention, the application time of the chemical solution and cleaning water in the glass panel cleaning process is controlled by the temperature of the glass panel at the time of input, and the temperature of the chemical solution and cleaning water in the cleaning process is effectively utilized. However, the temperature of the glass panel which is in the low temperature range at the time of charging is increased, while the temperature of the glass panel which is in the high temperature range at the time of charging is lowered.

〔作用〕[Effect]

この発明においては、各種洗浄用薬液あるいは洗浄用純
水は各々に対し特性や目的から温度設定上で比較的高温
の洗浄用薬液又は洗浄用純水と、比較的低温の洗浄用薬
液又は洗浄用純水に2分されるから、洗浄系の動作にお
いて、高温パネル、低温パネルに対し、洗浄用薬液又は
洗浄用純水の適用時間もしくは流量による洗浄量を可能
な範囲で可変させることにより、薬液又は洗浄水の熱伝
達によって投入ガラスパネルの温度差をより少なくし、
最終的には露光時のパネル温度差を問題ないレベルにま
で少なくして、製品のバラツキを少なくするとともに製
造歩留を向上させることができる。
In this invention, various types of cleaning chemicals or cleaning pure water are used, depending on their characteristics and purpose, such as relatively high temperature cleaning chemicals or cleaning water, and relatively low temperature cleaning chemicals or cleaning water. Since the cleaning system is divided into two parts, it is possible to change the cleaning amount by varying the application time or flow rate of cleaning chemicals or purified water to high temperature panels and low temperature panels within the possible range. Or, the temperature difference between the input glass panels can be further reduced by heat transfer of the cleaning water.
Ultimately, it is possible to reduce the panel temperature difference during exposure to a level that does not cause any problems, thereby reducing product variations and improving manufacturing yield.

〔実施例〕〔Example〕

以下この発明の実施例を図により更に詳しく説明する。 Hereinafter, embodiments of the present invention will be explained in more detail with reference to the drawings.

大施炭上 第1図はこの発明の第1の実施例による光吸収膜形成方
法の洗浄工程を示すブロック図である。
FIG. 1 is a block diagram showing a cleaning step of a method for forming a light absorbing film according to a first embodiment of the present invention.

従来と異なる点は、投入前の非接触型パネルの温度を赤
外線により測定する温度測定装置1)、測定結果の判断
、記憶、命令の制御を行う制御装置12、洗浄液のパネ
ルへの適用量(時間もしくは流量)を変化させる電磁バ
ルブ13、および調圧弁14を設けた点である。
The points that differ from the conventional ones are a temperature measuring device 1) that measures the temperature of a non-contact panel using infrared rays before inputting the panel, a control device 12 that judges, stores, and controls the measurement results, and controls the amount of cleaning liquid applied to the panel ( An electromagnetic valve 13 for changing the time or flow rate) and a pressure regulating valve 14 are provided.

本箱1の実施例においては、インデックスタイム18秒
(これは3〜4秒の移動時間を含み、実際稼働できる時
間は13〜14秒である)、10種の洗浄ポジションの
設定を表1の如く設定してレジスト塗布、乾燥後のパネ
ル内面温度を比較した結果、従来、43℃〜38℃であ
ったものが、42°C〜40℃とそのバラツキは半分以
下となり、製造工程における品質と歩留は大巾に向上し
た。
In the example of bookcase 1, the index time is 18 seconds (this includes 3 to 4 seconds of movement time, and the actual operating time is 13 to 14 seconds), and the settings for 10 cleaning positions are as shown in Table 1. As a result of comparing the internal temperature of the panel after resist application and drying, the conventional temperature was 43°C to 38°C, but it was 42°C to 40°C, and the variation was less than half that, which improved the quality in the manufacturing process. Yield has improved significantly.

表1 尚、表中、秒単位の表示は薬液の噴射時間を、kg/c
1!!単位の表示は薬液の噴射圧力を示す、又、高温パ
ネルとは40℃以上を、低温パネルは40℃未満を示す
Table 1 In the table, the display in seconds indicates the injection time of the chemical solution in kg/c
1! ! The unit display indicates the injection pressure of the chemical solution, and a high temperature panel indicates a temperature of 40°C or higher, and a low temperature panel indicates a pressure of less than 40°C.

去流班1 本発明の第2の実施例は構成そのものは第1の実施例と
同じであるが、従来常温としていた洗浄ポジション6の
酸性フッ化アンモニウム系の洗浄液液温を40℃とした
点に特徴があり、その設定は表2の如くである。なおこ
の温度は35℃〜45°Cとしてもよい。
Discharge team 1 The second embodiment of the present invention has the same structure as the first embodiment, except that the temperature of the acidic ammonium fluoride-based cleaning solution at cleaning position 6, which was conventionally kept at room temperature, was changed to 40°C. The settings are as shown in Table 2. Note that this temperature may be 35°C to 45°C.

表2 この例においてはポジション6.7.8の3ポジション
分の温度コントロール、即ちセンサーやヒーター(図示
せず)を必要とするものの、従来のパネル温度差43℃
〜38℃を42℃〜41℃とほとんどその差をなくすこ
とができ、製造工程における品質と歩留は大巾に向上し
た。
Table 2 In this example, although temperature control for three positions, positions 6, 7, and 8, requires sensors and heaters (not shown), the conventional panel temperature difference is 43°C.
The difference between ~38°C and 42°C ~ 41°C could be almost eliminated, and the quality and yield in the manufacturing process were greatly improved.

なお上記実施例では高温側パネルの温度60°C5低温
側パネルの温度20℃を例として示したが、ガラスパネ
ルの温度差および変動の中央点などにより、各洗浄用の
薬液および純水の温度はラインのインデックス、洗浄ポ
ジションの構成により、種々組合せのあること、また洗
浄液量のコントロールには、時間、圧力、ノズル数など
条件に合わせて選定できることは言うまでもない。
In the above example, the temperature of the high-temperature side panel was 60°C, and the temperature of the low-temperature side panel was 20°C. Needless to say, there are various combinations depending on the line index and the configuration of the cleaning position, and the amount of cleaning liquid can be controlled depending on conditions such as time, pressure, and number of nozzles.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、投入パネルの温
度を自動的に測定し、その結果により、各洗浄ポジショ
ンにおける洗浄用の薬液および純水の適用量(作用時間
)を制御できるように構成したので、従来のラインへの
付加取付が充分可能であり、精度の高い寸法制御を行う
ことができ、製品の品質歩留向上に優れた効果を発揮す
る。
As explained above, according to the present invention, the temperature of the input panel is automatically measured, and the amount of cleaning chemical solution and pure water applied (action time) at each cleaning position can be controlled based on the result. Therefore, it is fully possible to add it to a conventional line, and it is possible to perform highly accurate dimensional control, which is highly effective in improving product quality and yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例による光吸収膜形成方
法を説明するためのブロック系統図、第2図は螢光面の
製造工程中、露光工程における状態を説明するための要
部断面図、第3図、第4図及び第5図は螢光面の製造過
程を説明するための要部断面図、第6図はガラスパネル
の洗浄工程を説明するためのブロック構成図である。 1)・・・温度測定装置、12・・・制御装置、13・
・・電磁バルブ、1・・・ガラスパネル、2・・・レジ
スト膜、3・・・シャドウマスク、60・・・アルカリ
洗浄、61・・・すすぎ洗い、62・・・酸洗浄、63
・・・循環水洗浄、64・・・純水洗浄。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a block system diagram for explaining the light-absorbing film forming method according to the first embodiment of the present invention, and FIG. 2 is a main part for explaining the state in the exposure process during the manufacturing process of the fluorescent surface. The sectional views, FIGS. 3, 4, and 5 are sectional views of main parts to explain the manufacturing process of the fluorescent surface, and FIG. 6 is a block configuration diagram to explain the cleaning process of the glass panel. . 1)...Temperature measuring device, 12...Control device, 13.
... Solenoid valve, 1 ... Glass panel, 2 ... Resist film, 3 ... Shadow mask, 60 ... Alkali cleaning, 61 ... Rinse washing, 62 ... Acid cleaning, 63
...Circulating water cleaning, 64...Pure water cleaning. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)陰極線管ガラスパネルの内面もしくは外面を薬液
と純水で洗浄し、乾燥した後、感光剤としてのレジスト
溶液を塗布、乾燥し、 シャドウマスクを装着して3原色の発光部を限定する露
光を行い現像して、レジスト膜パターンを形成し、 その後この上に光吸収膜形成溶液を塗布乾燥し、酸化剤
を作用させて前記レジスト膜を分解し、次いで高圧の現
像を行って光吸収膜パターンを形成する光吸収膜形成方
法において、 前記ガラスパネルの温度を洗浄前に測定し、前記薬液と
純水による洗浄は、 高温のパネルに対しては比較的高温に設定されている薬
液または洗浄水の適用量は比較的小さく、比較的低温に
設定されている薬液または洗浄水の適用量は比較的大き
く設定して行い、一方低温のパネルに対しては前記高温
の薬液または洗浄水の適用量は比較的大きく、前記低温
の薬液または洗浄水の適用量は比較的小さく設定して行
うことを特徴とする光吸収膜形成方法。
(1) After cleaning the inner or outer surface of the cathode ray tube glass panel with a chemical solution and pure water and drying it, apply a resist solution as a photosensitizer, dry it, and attach a shadow mask to limit the light-emitting areas of the three primary colors. A resist film pattern is formed by exposure and development, after which a light-absorbing film-forming solution is applied and dried, an oxidizing agent is applied to decompose the resist film, and then high-pressure development is performed to form a light-absorbing film pattern. In the light-absorbing film forming method for forming a film pattern, the temperature of the glass panel is measured before cleaning, and the cleaning with the chemical solution and pure water is performed using a chemical solution or a chemical solution set at a relatively high temperature for the high-temperature panel. The amount of cleaning water applied is relatively small, and the amount of chemical solution or cleaning water set at a relatively low temperature is set relatively large. A method for forming a light-absorbing film, characterized in that the applied amount is set to be relatively large, and the applied amount of the low-temperature chemical solution or cleaning water is set to be relatively small.
JP20999888A 1988-08-24 1988-08-24 Formation of light absorbing film Pending JPH0260026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20999888A JPH0260026A (en) 1988-08-24 1988-08-24 Formation of light absorbing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20999888A JPH0260026A (en) 1988-08-24 1988-08-24 Formation of light absorbing film

Publications (1)

Publication Number Publication Date
JPH0260026A true JPH0260026A (en) 1990-02-28

Family

ID=16582163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20999888A Pending JPH0260026A (en) 1988-08-24 1988-08-24 Formation of light absorbing film

Country Status (1)

Country Link
JP (1) JPH0260026A (en)

Similar Documents

Publication Publication Date Title
JPH0260026A (en) Formation of light absorbing film
CN107329378A (en) A kind of high-precision ITO photoetching processes
US3658530A (en) Process for forming an opaque interstitial web in a color crt screen structure
EP0477980B1 (en) Apparatus of forming a coating film on an inner panel surface of a cathode ray tube
US3767395A (en) Multiple exposure color tube screening
US3440077A (en) Method of fabricating a color cathode ray tube screen
KR930006885B1 (en) Method of making a fluorescent screen of crt
CA1111698A (en) Crt screen structure produced by photographic method
KR920005158B1 (en) Screen making method of crt
US3515553A (en) Photolithographic deposition of phosphors on faceplate of crt using spraying of photosensitive pva-phosphor suspension in plural layers
JPH04306532A (en) Manufacture of fluorescent screen black matrix film of color picture tube
US3739439A (en) Method of manufacturing display screens for cathode-ray tubes
KR100313104B1 (en) Manufacturing method for phosphor layer of cathode ray tube
JPH02278630A (en) Method for forming fluorescent screen of color cathode-ray tube
JPS60218736A (en) Manufacture of color cathode-ray tube
JPS60258830A (en) Formation of phosphor film
JP2000011871A (en) Manufacture of phosphor screen for color cathode-ray tube
JPH08293251A (en) Preparation of fluorescent film of color cathode-ray tube
CN109407462A (en) A kind of mask plate manufacture craft
JPS6235431A (en) Method for forming fluorescent screen
JPS59105239A (en) Trimming of photoabsorbing film
JPH0451424A (en) Manufacture of fluorescent screen black-matrix film of color-picture tube
JPH1055760A (en) Manufacture of cathode-ray tube
JPS63105429A (en) Light absorption membrane forming method
JPS6366820A (en) Fluorescent screen forming method for crt