JPH0259761A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0259761A
JPH0259761A JP63209363A JP20936388A JPH0259761A JP H0259761 A JPH0259761 A JP H0259761A JP 63209363 A JP63209363 A JP 63209363A JP 20936388 A JP20936388 A JP 20936388A JP H0259761 A JPH0259761 A JP H0259761A
Authority
JP
Japan
Prior art keywords
charge
layer
charge transport
triarylamine
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63209363A
Other languages
Japanese (ja)
Inventor
Michiko Ogata
緒方 道子
Koji Tsukamoto
浩司 塚本
Tomosumi Kamisaka
友純 上坂
Tsuneo Watanuki
恒夫 綿貫
Norio Saruwatari
紀男 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63209363A priority Critical patent/JPH0259761A/en
Publication of JPH0259761A publication Critical patent/JPH0259761A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve sensitivity and continuous stability by incorporating a specific triarylamine deriv. into a charge transfer layer. CONSTITUTION:The triarylamine deriv. expressed by the formula I is incorporated as the charge transfer material into the photosensitive body. In the formula I, X1 and X2 respectively denote hydrogen or lower alkyl groups which may be the same as or different form each other; Ar1 to Ar4 respectively denote substd. or unsubstd. aryl groups which may be the same as or different from each other. The charge transfer layer is formed by dissolving the triarylamine deriv. expressed by the formula I together with a binder in a solvent and applying the soln. onto a charge generating layer, then drying the coating. The photosensitive body which exhibits the high sensitivity and low residual potential and is not deteriorated in characteristics even in repetitive use is obtd. in this way.

Description

【発明の詳細な説明】 〔概 要〕 電荷発生層と電荷輸送層とを積層した機能分離積層型電
子写真感光体に関し、 高い感度と低い残留電位を示し、かつ繰り返し使用にお
いても特性の劣化を伴なわない電子写真感光体を提供す
ることを目的とし、 次の一般式(I)により表わされるトリアリールアミン
誘導体: (上式において、 X、及びX2は、互いに同一もしくは異なっていてもよ
く、それぞれ水素又は低級アルキル基を表わし、そして A r l + A r Z + A r 3及びAr
、は、互いに同一もしくは異なっていてもよく、それぞ
れ置換もしくは非置換のアリール基を表わす)を電荷輸
送物質として含有するように構成する。
[Detailed Description of the Invention] [Summary] This invention relates to a functionally separated laminated electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated, which exhibits high sensitivity and low residual potential, and which exhibits no deterioration of characteristics even after repeated use. A triarylamine derivative represented by the following general formula (I): (In the above formula, X and X2 may be the same or different from each other, each represents hydrogen or a lower alkyl group, and A r l + A r Z + A r 3 and Ar
may be the same or different and each represents a substituted or unsubstituted aryl group) as a charge transport substance.

〔産業上の利用分野〕[Industrial application field]

本発明は電子写真感光体に関し、さらに詳しく述べると
、電荷発生層と電荷輸送層とを積層した機能分離積層型
電子写真感光体に関する。本発明の電子写真感光体は、
複写機、プリンタなどの分野において広くかつ有利に利
用することができる。
The present invention relates to an electrophotographic photoreceptor, and more specifically, to a functionally separated layered electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated. The electrophotographic photoreceptor of the present invention includes:
It can be widely and advantageously used in fields such as copying machines and printers.

〔従来の技術〕[Conventional technology]

電子写真感光体は、周知の通り、電子写真方式を応用し
た複写機、プリンタなどに広く適用することができる。
As is well known, electrophotographic photoreceptors can be widely applied to copying machines, printers, etc. that utilize electrophotography.

また、電子写真のプロセスは、帯電、露光、現像、転写
、および定着の各工程から成り、これらの繰り返しによ
って印刷物を得ることができる。ここで、帯電は、光導
電性を有する感光体の表面に正または負の均一な静電荷
を施す。
Further, the electrophotographic process consists of the steps of charging, exposure, development, transfer, and fixing, and printed matter can be obtained by repeating these steps. Here, charging applies a uniform positive or negative electrostatic charge to the surface of the photoreceptor having photoconductivity.

続く露光プロセスでは、レーザ光などを照射して特定部
分の表面電荷を消去することによって感光体上に画像情
報に対応した静電潜像を形成する。
In the subsequent exposure process, an electrostatic latent image corresponding to the image information is formed on the photoreceptor by irradiating it with laser light or the like to erase the surface charge on a specific portion.

次に、この潜像を一般にトナーと呼ばれる粉体インクに
よって静電的に現像することにより、感光体上にトナー
による可視像を形成する。最後に、このトナー像を記録
紙上に静電的に転写し、熱、光、および圧力などによっ
て融着させる。このような一連のプロセスにより、所望
の印刷物を得ることができる。
Next, this latent image is electrostatically developed with powder ink generally called toner, thereby forming a visible toner image on the photoreceptor. Finally, this toner image is electrostatically transferred onto recording paper and fused using heat, light, pressure, or the like. Through such a series of processes, desired printed matter can be obtained.

従来、上述のような光導電性を有する感光体として、セ
レン系に代表される無機感光体が広く使用されてきた。
Conventionally, inorganic photoreceptors typified by selenium-based photoreceptors have been widely used as photoreceptors having photoconductivity as described above.

しかし、この無機感光体は、感度が高い上に機械的摩耗
に強く、高速・大型機に適しているという特長を有する
反面、真空蒸着法で製造しなければなら−ないこと、人
体に有害であるため回収する必要があることなどの理由
により、コストが高く、メインテナンスフリーの小型・
低価格機への適用が困難であるという問題点を有してい
た。
However, while this inorganic photoreceptor has the characteristics of being highly sensitive, resistant to mechanical abrasion, and suitable for high-speed, large-scale machines, it must be manufactured using a vacuum deposition method and is harmful to the human body. Due to the high cost and maintenance-free, small-sized and maintenance-free
The problem was that it was difficult to apply to low-cost machines.

無機感光体に代わるものとして開発されたものが有機感
光体である。有機感光体は、塗布法によって製造できる
ため量産によるコスト低減が容易であること、セレンな
どの無機物を用いる無機感光体に比べて材料選択範囲が
広いため有害性の無い化合物を選ぶことができ、ユーザ
廃棄によるメインテナンスフリー化も可能であること、
などという特長を持つ。
Organic photoreceptors have been developed as an alternative to inorganic photoreceptors. Organic photoreceptors can be manufactured by a coating method, making it easy to reduce costs through mass production.Compared to inorganic photoreceptors that use inorganic substances such as selenium, organic photoreceptors have a wider range of material selection, so non-toxic compounds can be selected. It is also possible to make it maintenance-free by disposing of it by the user.
It has the following characteristics.

なかんずく、電荷発生層と電荷輸送層とを積層した機能
分離積層型感光体が注目されている。ここで、電荷発生
層は、入射光を吸収して電子・正孔ペア(キャリアペア
)を発生させる機能を有し、また、電荷輸送層は、その
表面に帯電を保持すると共に、電荷発生層で発生したキ
ャリアの片方を感光体表面まで輸送して静電潜像を形成
させる機能を有する。電荷発生層は、光を吸収してキャ
リアペアを発生させる電荷発生物質を蒸着膜にするか、
あるいはバインダ樹脂中に分散させて形成する。電荷発
生物質としてはアゾ系顔料やフタロシアニンなどが知ら
れており、バインダ樹脂としてはポリエステルやポリビ
ニルブチラールなどが用いられる。電荷輸送層は、キャ
リア輸送能を有する電荷輸送物質をバインダ樹脂中に相
溶させて形成する。電荷輸送物質としては電子を輸送す
る性質を持つトリニトロフルオレノンやクロラニルなど
の電子輸送性電荷輸送物質と、正孔を輸送する性質を有
するヒドラゾンやピラゾリンなどの正孔輸送性電荷輸送
物質があり、バインダ樹脂としてはポリカーボネートや
スチレン−アクリルなどが使用される。
In particular, a functionally separated laminated photoreceptor in which a charge generation layer and a charge transport layer are laminated is attracting attention. Here, the charge generation layer has a function of absorbing incident light and generating electron-hole pairs (carrier pairs), and the charge transport layer retains a charge on its surface, and the charge generation layer It has the function of transporting one of the carriers generated in the process to the surface of the photoreceptor to form an electrostatic latent image. The charge generation layer may be a vapor-deposited film of a charge generation substance that absorbs light and generates carrier pairs, or
Alternatively, it is formed by dispersing it in a binder resin. Azo pigments, phthalocyanine, and the like are known as charge-generating substances, and polyester, polyvinyl butyral, and the like are used as binder resins. The charge transport layer is formed by dissolving a charge transport material having carrier transport ability in a binder resin. Charge transport materials include electron transport charge transport materials such as trinitrofluorenone and chloranil, which have the property of transporting electrons, and hole transport charge transport materials such as hydrazone and pyrazoline, which have the property of transporting holes. Polycarbonate, styrene-acrylic, etc. are used as the binder resin.

このように感光体の機能を電荷発生層と電荷輸送層の二
つの層に分離することにより、それぞれの機能に最適な
化合物をほぼ独立に選択することができ、感度、分光特
性、帯電保持性、高速応答性、機械的耐摩耗性などの緒
特性を向上させることができる。
By separating the functions of the photoreceptor into two layers, the charge generation layer and the charge transport layer, it is possible to select the optimal compound for each function almost independently, resulting in improved sensitivity, spectral characteristics, and charge retention. It is possible to improve mechanical properties such as high-speed response and mechanical wear resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の有機感光体は、例えばセレンなどのよう
な無機感光体に較べると依然として低感度であり、した
がって、高速プリンタへの適用は困難を伴う。また、従
来の感光体において用いられる電荷輸送物質は、静電潜
像形成のための帯電−露光のプロセスを繰り返すに従っ
て、帯電の際発生するオゾンや光輝度で照射されるレー
ザによって劣化を生じ、帯電電位の低下、残留電位の上
昇による印字品位の低下をひきおこす。
However, conventional organic photoreceptors still have lower sensitivity than inorganic photoreceptors such as selenium, and therefore are difficult to apply to high-speed printers. Furthermore, as the charge-transporting material used in conventional photoreceptors is repeatedly subjected to the charging-exposure process for forming electrostatic latent images, it deteriorates due to ozone generated during charging and laser irradiation with brightness. This causes a decrease in printing quality due to a decrease in charging potential and an increase in residual potential.

本発明の目的は、したがって、高い感度と低い残留電位
を示し、かつ繰り返し使用においても特性の劣化を伴な
わない電子写真感光体を提供することにある。
Therefore, an object of the present invention is to provide an electrophotographic photoreceptor that exhibits high sensitivity and low residual potential, and whose characteristics do not deteriorate even after repeated use.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的は、本発明によれば、次の一般式(I)に
より表わされるトリアリールアミン誘導体: (上式において、 Xl及びX2は、互いに同一もしくは異なっていてもよ
く、それぞれ水素又は低級アルキル基を表わし、そして Ar+ + Arz + Arz及びAr4は、互いに
同一もしくは異なっていてもよく、それぞれ置換もしく
は非置換の了り−ル基を表わす)を電荷輸送物質として
含有することを特徴とする機能分離積層型電子写真感光
体によって達成することができる。
The above object, according to the present invention, is a triarylamine derivative represented by the following general formula (I): (In the above formula, Xl and X2 may be the same or different from each other, and are hydrogen or lower alkyl and Ar+ + Arz + Arz and Ar4 may be the same or different from each other and each represents a substituted or unsubstituted group) as a charge transport substance. This can be achieved by a separate laminated electrophotographic photoreceptor.

本発明において電荷輸送物質として用いられる前記一般
式(I)のトリアリールアミン誘導体は、好ましくは、
式中のXl及びX2が水素であるがもしくはメチル基、
エチル基、プロピルlの低級アルキル基であり、そして
Ar、 、 Ar2 、 Ar3及びAr、が非置換で
あるかもしくは塩素、臭素等のハロゲン、メチル基、エ
チル基、プロピル基等の低級アルキル基、メトキシ基、
エトキシ基、ブトキシ基等の低級アルコキシ基、その他
の基で置換されたフェニル基又はナフチル基であるもの
である。このようなトリアルアミン誘導体は、出発物質
としての市販のトリアリールアミンから常法に従って調
製することができる。
The triarylamine derivative of general formula (I) used as a charge transport material in the present invention preferably has
Xl and X2 in the formula are hydrogen or a methyl group,
A lower alkyl group such as an ethyl group or a propyl group, and Ar, , Ar2, Ar3 and Ar are unsubstituted or a halogen such as chlorine or bromine, or a lower alkyl group such as a methyl group, an ethyl group or a propyl group, methoxy group,
It is a lower alkoxy group such as an ethoxy group or a butoxy group, or a phenyl group or a naphthyl group substituted with another group. Such trialamine derivatives can be prepared according to conventional methods from commercially available triarylamine as a starting material.

本発明において有利に使用することのできる前代(I)
のトリアリールアミン誘導体の典型的な例をまとめて列
挙すると、次の第1表の通りである。
Previous generation (I) that can be advantageously used in the present invention
Typical examples of triarylamine derivatives are listed in Table 1 below.

本発明による電子写真感光体は、従来の技術の項で説明
したけれども、電荷発生層と電荷輸送層とを積層した機
能分離積層型感光体の層構成をとる。かかる感光体の一
例として、例えば第1図に示すような感光体をあげるこ
とができる:電子写真感光体5は、支持体1と、それ上
に順次積層された電荷発生層2及び電荷輸送層3とから
なる。
As explained in the prior art section, the electrophotographic photoreceptor according to the present invention has a layer structure of a functionally separated layered photoreceptor in which a charge generation layer and a charge transport layer are laminated. An example of such a photoreceptor is a photoreceptor as shown in FIG. 1. An electrophotographic photoreceptor 5 includes a support 1, a charge generation layer 2 and a charge transport layer sequentially laminated thereon. It consists of 3.

感光層4とは、電荷発生層2と電荷輸送層3の積層体を
指す。なお、必要に応じて、層2及び層3の位置を逆転
させて、電流の流れる方向を反対にすること等も可能で
ある。
The photosensitive layer 4 refers to a laminate of the charge generation layer 2 and the charge transport layer 3. Note that, if necessary, the positions of layer 2 and layer 3 can be reversed to reverse the direction of current flow.

本発明の電子写真感光体において、支持体としては、そ
れが導電性でかつ感光体をアースでき得るものなら何で
もよく、各種の金属円筒、導電性を施した樹脂や紙など
の円筒、絶縁性円筒表面に金属を蒸着あるいはラミネー
トしたもの、絶縁性円筒上に導電性を有する有機薄膜を
施したもの、および上記と同様の構成を有するフィルム
などを用いることができる。
In the electrophotographic photoreceptor of the present invention, the support may be anything as long as it is conductive and can ground the photoreceptor, such as various metal cylinders, cylinders made of conductive resin or paper, and insulating materials. It is possible to use a cylinder in which metal is vapor-deposited or laminated on the surface of the cylinder, a conductive organic thin film on an insulating cylinder, a film having the same structure as above, and the like.

電荷発生層を構成するかもしくは電荷発生層中に含有さ
れるべき電荷発生物質としては、アゾ系、フタロシアニ
ン系、インジゴ系、ペリレン系、スクアリリウム系、キ
ノン系、など、各種の染料、顔料を使用できるが、特に
フタロシアニン系顔料を用いると良好な感度を得ること
ができる。フタロシアニンとしては、無金属フタロシア
ニン、銅フタロシアニン、塩化アルミニウムフタロシア
ニン、チタニルフタロシアニン、バナジルフタロシアニ
ン、インジウムフタロシアニンなど各種の金属フタロシ
アニンを用いることができる。
Various dyes and pigments such as azo-based, phthalocyanine-based, indigo-based, perylene-based, squarylium-based, quinone-based, etc. are used as the charge-generating substance that should constitute or be contained in the charge-generating layer. However, particularly when phthalocyanine pigments are used, good sensitivity can be obtained. As the phthalocyanine, various metal phthalocyanines can be used, such as metal-free phthalocyanine, copper phthalocyanine, aluminum chloride phthalocyanine, titanyl phthalocyanine, vanadyl phthalocyanine, and indium phthalocyanine.

電荷発生層は、支持体上に上述の電荷発生物質を蒸着す
るか、あるいはバインダ樹脂と共に溶媒中に分散させた
ものを塗布、乾燥させることにより形成する。バインダ
樹脂としては、ポリエステル、ポリビニルアルコール、
ポリビニルアセタール、ポリアミド、エポキシ、シリコ
ーンなど各種の樹脂、あるいはカゼインなどの成膜性を
有する各種有機化合物を用いることができ、下地への密
着性や電荷発生物質の分散性などを考慮して選択する。
The charge generation layer is formed by vapor depositing the above charge generation substance on the support, or by coating and drying a mixture dispersed in a solvent together with a binder resin. Binder resins include polyester, polyvinyl alcohol,
Various resins such as polyvinyl acetal, polyamide, epoxy, and silicone, or various organic compounds with film-forming properties such as casein can be used, and the material is selected in consideration of adhesion to the substrate and dispersibility of the charge-generating substance. .

溶媒は、用いる電荷発生物質とバインダ樹脂に合わせて
選択するが、テトラヒドロフラン、ジオキサン、メタノ
ール、エタノール、ヘキサン、エーテル、ジクロルメタ
ン、ジクロルエタン、ベンゼン、トルエン、クロルベン
ゼン、キシレン、メチルセロソルブ、エチルセロソルブ
、酢酸エチルなど各種有機溶媒を単独あるいは混合して
用いることができる。支持体への塗布方法としては、浸
漬コート、スプレーコート、ワイヤーバーコード、ドク
ターブレードコートなどがある。膜厚は、約0.01〜
3卿、特に約1p以下とするのが望ましい。
The solvent is selected depending on the charge generating substance and binder resin used, but examples include tetrahydrofuran, dioxane, methanol, ethanol, hexane, ether, dichloromethane, dichloroethane, benzene, toluene, chlorobenzene, xylene, methyl cellosolve, ethyl cellosolve, and ethyl acetate. Various organic solvents such as these can be used alone or in combination. Methods for coating the support include dip coating, spray coating, wire barcode coating, and doctor blade coating. Film thickness is approximately 0.01~
It is desirable to set the amount to 3 points, especially about 1 p or less.

電荷輸送層は、前記一般式(r)で示されるトリアリー
ルアミン誘導体をバインダ樹脂と共に溶媒に熔解させ、
前記電荷発生層上に塗布、乾燥させることによって形成
する。
The charge transport layer is prepared by dissolving a triarylamine derivative represented by the general formula (r) in a solvent together with a binder resin,
It is formed by coating on the charge generation layer and drying it.

電荷輸送層のバインダ樹脂としては、ポリエステル、ポ
リカーボネート、ポリスチレン、ポリアクリロニトリル
、アクリル−スチレン、ポリスルホンなど公知のものが
使用できる。溶媒は、用いるバインダ樹脂などに合わせ
て電荷発生層の塗工に用いたのと同様のものの中から適
宜選択する。
As the binder resin for the charge transport layer, known binder resins such as polyester, polycarbonate, polystyrene, polyacrylonitrile, acrylic-styrene, and polysulfone can be used. The solvent is appropriately selected from the same solvents as those used for coating the charge generation layer, depending on the binder resin used.

塗布方法も電荷発生層の場合と同様の方法を用いること
ができる。膜厚は、約5〜50−1特に10〜30tr
mとするのが望ましい。
As for the coating method, the same method as in the case of the charge generation layer can be used. The film thickness is approximately 5 to 50-1, especially 10 to 30 tr.
It is desirable to set it to m.

また、電荷輸送層中には、前記トリアリールアミン誘導
体(I)に加えて、ヒドラゾン誘導体やピラゾリン誘導
体のような他の正孔輸送性電荷輸送物質を添加しても良
い。その際、トリアリールアミン誘導体に対するその他
の電荷輸送物質の混合比は、100:1〜100 : 
500の範囲が望ましい。
In addition to the triarylamine derivative (I), other hole-transporting charge-transporting substances such as hydrazone derivatives and pyrazoline derivatives may be added to the charge-transporting layer. At that time, the mixing ratio of the other charge transport substance to the triarylamine derivative is 100:1 to 100:
A range of 500 is desirable.

さらにまた、導電性支持体と電荷発生層の間には、接着
性の改良、支持体表面の平坦化、支持体表面の欠陥被服
、ホットキャリアの注入制御、帯電受容性や帯電保持率
の改良などの目的で下引層を設けても良い。下引層の構
成材料としては、電荷発生層や電荷輸送層に用いられる
各種バインダ樹脂やカゼインなどのように成膜性を有す
る材料単独、あるいはそれらの中に導電性物質を含有さ
せて抵抗値を10′4Ω・cm以下に調整したものなど
を用いることができる。下引層の抵抗値を調整するため
の導電性物質としては、各種金属粉、導電性金属酸化物
粉、カーボンなど、導電性を有するものなら何でもよい
Furthermore, improvements in adhesion, flattening of the surface of the support, covering of defects on the surface of the support, control of hot carrier injection, and improvement of charge acceptance and charge retention between the conductive support and the charge generation layer are provided. A subbing layer may be provided for purposes such as the following. The constituent material of the undercoat layer may be a film-forming material alone such as various binder resins or casein used in the charge generation layer or charge transport layer, or a conductive material may be added therein to increase the resistance value. It is possible to use a material whose resistance is adjusted to 10'4 Ω·cm or less. As the conductive substance for adjusting the resistance value of the undercoat layer, any substance having conductivity may be used, such as various metal powders, conductive metal oxide powders, and carbon.

〔作 用〕[For production]

本発明による電子写真感光体では、その電荷輸送物質と
して特定のトリアリールアミン誘導体を用いることの結
果、以下の実施例でも明らかにするように、高い感度と
すぐれた連続安定性(感度が経時的に低下することがな
い)とが得られる。
As a result of using a specific triarylamine derivative as a charge transport material, the electrophotographic photoreceptor according to the present invention has high sensitivity and excellent continuous stability (the sensitivity changes over time), as will be made clear in the following examples. (no deterioration) is obtained.

〔実施例〕〔Example〕

次に、本発明の実施例及び比較例を記載して本発明をさ
らに詳しく説明する。なお、例中、「部」は特に断りの
ない限り「重量部」を意味する。
Next, the present invention will be explained in more detail by describing examples and comparative examples of the present invention. In addition, in the examples, "parts" means "parts by weight" unless otherwise specified.

汎−土 酸化チタンフタロシアニン1部、ポリエステル1部、ジ
クロロメタン9部及びジクロロエタン9部を硬質ガラス
ピーズと硬質ガラスポットを用いて24時間分散混合し
た。得られた混合物をアルミ蒸着ポリエステルフィルム
のアルミ面上にドクターブレードで塗布し、100℃で
1時間乾燥させて膜厚約0.3−の電荷発生層とした。
1 part of pan-earth oxidized titanium phthalocyanine, 1 part of polyester, 9 parts of dichloromethane, and 9 parts of dichloroethane were dispersed and mixed for 24 hours using hard glass beads and a hard glass pot. The resulting mixture was applied onto the aluminum surface of an aluminized polyester film using a doctor blade and dried at 100° C. for 1 hour to form a charge generation layer having a thickness of about 0.3 −.

次に、前記第1表に記載のトリアリールアミン誘導体(
化合物隘2)1部及びポリカーボネート1部をテトラヒ
ビ0フ9フ10部に溶解し、前記電荷発生層上にドクタ
ーブレードで塗布し、70℃で2時間乾燥させて膜厚約
17声の電荷輸送層を形成した。第1図に示すような電
子写真感光体が得られた。
Next, a triarylamine derivative (
1 part of the compound 2) and 1 part of polycarbonate were dissolved in 10 parts of tetracarbonate, coated on the charge generation layer with a doctor blade, and dried at 70°C for 2 hours to form a charge transport layer with a film thickness of about 17 cm. formed a layer. An electrophotographic photoreceptor as shown in FIG. 1 was obtained.

得られた感光体について次の測定を行った:まず一5k
Vでコロナ帯電し、1秒後の表面電位をVo (V)と
する。その瞬間から780nmの入射光で露光を行い、
表面電位がVoの半分になるまでの時間tl/Zを求め
て半減露光量El/□ (μJ/cni)を計算する。
The following measurements were carried out on the obtained photoreceptor: First, 5k
Corona charging is performed with V, and the surface potential after 1 second is Vo (V). From that moment, exposure is performed with 780 nm incident light,
The time tl/Z until the surface potential becomes half of Vo is determined, and the half-reduction exposure amount El/□ (μJ/cni) is calculated.

さらに、露光開始後10jl/□の表面電位、すなわち
、残留電位、Vr(V)を記録する。最後に、630n
mのLEDで除電してプロセスを終える。このプロセス
をそれぞれ10,000回繰り返した結果を下記の第2
表に示す。
Furthermore, the surface potential of 10 jl/□ after the start of exposure, that is, the residual potential, Vr (V), is recorded. Finally, 630n
The process is completed by eliminating static electricity using the LED m. The results of repeating this process 10,000 times are shown below.
Shown in the table.

此MA九1 前記例1に記載の手法を繰り返した。しかし、本例では
、電荷輸送物質として、トリアリールアミン誘導体の代
りに次の構造式で示されるヒドラゾン誘導体(公知物質
)を用いた。
MA91 The procedure described in Example 1 above was repeated. However, in this example, a hydrazone derivative (a known substance) represented by the following structural formula was used as the charge transport substance instead of the triarylamine derivative.

倒2 :11足 前記例1に記載の手法を繰り返した。しかし、本例では
、前記例1のトリアリールアミン誘導体(化合物隘2)
の代りとして、次の第2表に記載のもの(第1表の化合
物隘8,10.18及び22)を使用した。次の第2表
の結果が示すように、満足し得る結果が得られた。
2: The procedure described in Example 1 above was repeated for 11 pairs. However, in this example, the triarylamine derivative of Example 1 (compound number 2)
Instead, the compounds listed in Table 2 below (compounds 8, 10, 18 and 22 in Table 1) were used. As shown in the results in Table 2 below, satisfactory results were obtained.

得られた結果を下記の第2表に示す。The results obtained are shown in Table 2 below.

第2表に記載の例1及び比較例1の結果かられかるよう
に、本発明の感光体は、比較例に比べてEl/□の値が
小さく、したがって高感度である。
As can be seen from the results of Example 1 and Comparative Example 1 shown in Table 2, the photoreceptor of the present invention has a smaller value of El/□ than the Comparative Example, and therefore has high sensitivity.

さらに、10,000回連続試験の後も感度の低下や残
留電位Vrの上昇を生じておらず、特性の劣化はほとん
ど無いと考えられる。これに対し、比較例の感光体は、
初期には比較的良好な特性を示すにもかかわらず、連続
試験後には感度の低下、残留電位の上昇を伴い、感光体
が劣化(あるいは疲労)しているのがわかる。
Furthermore, even after 10,000 continuous tests, there was no decrease in sensitivity or increase in residual potential Vr, and it is considered that there is almost no deterioration in characteristics. On the other hand, the photoreceptor of the comparative example
Despite exhibiting relatively good characteristics initially, after continuous testing, sensitivity decreased and residual potential increased, indicating that the photoreceptor had deteriorated (or become fatigued).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電荷輸送層に特定のトリアリールアミ
ン誘導体を含有させることにより、高い感度と低い残留
電位が得られ、かつ、繰り返し使用においても特性の劣
化を伴わない電子写真感光体を得ることができる。
According to the present invention, by containing a specific triarylamine derivative in the charge transport layer, an electrophotographic photoreceptor is obtained which provides high sensitivity and low residual potential and does not cause deterioration of characteristics even after repeated use. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による電子写真感光体の好ましい層構
成例を示した断面図である。 図中、■は支持体、2は電荷発生層、3は電荷輸送層、
4は感光層、そして5は感光体である。 第1図 1・・・支持体 2・・・電荷発生層 さ・・・電荷輸送層 4・・・感光層 5・・・感光体
FIG. 1 is a sectional view showing a preferred example of the layer structure of the electrophotographic photoreceptor according to the present invention. In the figure, ■ is a support, 2 is a charge generation layer, 3 is a charge transport layer,
4 is a photosensitive layer, and 5 is a photoreceptor. 1...Support 2...Charge generation layer...Charge transport layer 4...Photosensitive layer 5...Photoreceptor

Claims (1)

【特許請求の範囲】 1、次の一般式( I )により表わされるトリアリール
アミン誘導体: ▲数式、化学式、表等があります▼( I ) (上式において、 X_1及びX_2は、互いに同一もしくは異なっていて
もよく、それぞれ水素又は低級アルキル基を表わし、そ
してAr_1、Ar_2、Ar_3及びAr_4は、互
いに同一もしくは異なっていてもよく、それぞれ置換も
しくは非置換のアリール基を表わす)を電荷輸送物質と
して含有することを特徴とする、機能分離積層型電子写
真感光体。
[Claims] 1. Triarylamine derivative represented by the following general formula (I): ▲There are numerical formulas, chemical formulas, tables, etc.▼(I) (In the above formula, X_1 and X_2 are the same or different from each other. each represents hydrogen or a lower alkyl group, and Ar_1, Ar_2, Ar_3 and Ar_4 may be the same or different from each other and each represents a substituted or unsubstituted aryl group) as a charge transport substance. A functionally separated laminated electrophotographic photoreceptor characterized by:
JP63209363A 1988-08-25 1988-08-25 Electrophotographic sensitive body Pending JPH0259761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63209363A JPH0259761A (en) 1988-08-25 1988-08-25 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63209363A JPH0259761A (en) 1988-08-25 1988-08-25 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0259761A true JPH0259761A (en) 1990-02-28

Family

ID=16571698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63209363A Pending JPH0259761A (en) 1988-08-25 1988-08-25 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0259761A (en)

Similar Documents

Publication Publication Date Title
JPH0252360A (en) Electrophotographic sensitive body
JPH04289867A (en) Electrophotographic sensitive body
US4567125A (en) Electrophotographic recording material
JPH04174859A (en) Electrophotographic sensitive material
JPH01219838A (en) Electrophotographic sensitive body
JPH0259761A (en) Electrophotographic sensitive body
JPH01142641A (en) Electrophotographic sensitive body
JPH0248670A (en) Electrophotographic sensitive body
JPH0456865A (en) Electrophotographic sensitive body
JPH04155348A (en) Electrophotography photosensitive body
JPH0456866A (en) Electrophotographic photosensitive body
JPH03105347A (en) Electrophotographic sensitive body
JPH03155558A (en) Electrophotographic sensitive body
JPH04114166A (en) Electrophotographic sensitive body
JPH04155349A (en) Electrophotography photosensitive body
JPH0252359A (en) Electrophotographic sensitive body
JPH0247666A (en) Electrophotographic sensitive body
JPH04328563A (en) Electrophotographic sensitive body
JPH0419752A (en) Electrophotographic sensitive body
JPH01219840A (en) Electrophotographic sensitive body
JPH0311359A (en) Electrophotographic sensitive body
JPH04328565A (en) Electrophotographic sensitive body
JPH04147264A (en) Electrophotographic sensitive body
JPH04338963A (en) Electrophotographic sensitive body
JPH02306248A (en) Electrophotographic sensitive body