JPH0259692A - Laser radar - Google Patents

Laser radar

Info

Publication number
JPH0259692A
JPH0259692A JP63211872A JP21187288A JPH0259692A JP H0259692 A JPH0259692 A JP H0259692A JP 63211872 A JP63211872 A JP 63211872A JP 21187288 A JP21187288 A JP 21187288A JP H0259692 A JPH0259692 A JP H0259692A
Authority
JP
Japan
Prior art keywords
aircraft
optical system
area
angle
monitored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63211872A
Other languages
Japanese (ja)
Other versions
JPH0774828B2 (en
Inventor
Hiroshi Imoto
井元 拓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63211872A priority Critical patent/JPH0774828B2/en
Publication of JPH0259692A publication Critical patent/JPH0259692A/en
Publication of JPH0774828B2 publication Critical patent/JPH0774828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To allow an area to be monitored to correspond with an area in which the flight of an aircraft can be executed by controlling the maximum distance detection and the monitoring visual field angle corresponding to the area to be monitored, namely, a beam divergence angle in accordance with an aircraft body speed. CONSTITUTION:A laser light is offered to a beam expander 3 through a half mirror 7 from a laser transmitting part 1, a prescribed beam divergence angle is given and the light is received by a scanning optical system 4. The scanning optical system 4 scans this received light at a monitoring visual field angle of a solid angle psi, and an input received light advances in the direction opposite to a feeding light, offered to a received light processing part 2 through the half mirror 7 and a mirror 6 and brought to signal processing. An optical system control part 5 receives aircraft body speed data from a speed indicator 8, calculates the maximum detection distance to be monitored, and thereafter, calculates a necessary beam divergence angle and the monitorvisual field angle, and brings the beam expander 3 and the scanning optical system 4 to setting control to this calculated value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザレーダに関し、特に航空機に搭載し、運
行の妨げとなる進路上の障害物の探知に利用するレーザ
レーダに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser radar, and more particularly to a laser radar mounted on an aircraft and used for detecting obstacles on the aircraft's path that may impede flight operations.

〔従来の技術〕[Conventional technology]

従来、この種のレーザレーダは、航空機の速度にかかわ
らず、監視すべき領域の最大探知距離と監視視野角がそ
れぞれ独立的に設定されていた。
Conventionally, in this type of laser radar, the maximum detection distance and monitoring viewing angle of the area to be monitored have been set independently, regardless of the speed of the aircraft.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のこの種のレーザレーダは、一般に、航空
機の進路を変更しようとするとき、慣性により機体の速
度Vが大きい程、一定時間Δを後い進路変更可能最大角
度ψは小さくなる。
In the above-mentioned conventional laser radar of this type, when attempting to change the course of an aircraft, the larger the speed V of the aircraft due to inertia, the smaller the maximum angle ψ at which the course can be changed after a certain period of time Δ.

第3図は機体速度と進路変更可能な最大角度との関係を
示す説明図、第4図は機体速度と飛行可能領域との関係
を示す説明図である。
FIG. 3 is an explanatory diagram showing the relationship between the aircraft speed and the maximum angle at which the course can be changed, and FIG. 4 is an explanatory diagram showing the relationship between the aircraft speed and the possible flight range.

第3図において、Δtはパイロットが障害物を視認して
から安全に機体を退避させるためにとる操縦動作までの
時間である。
In FIG. 3, Δt is the time from when the pilot visually recognizes an obstacle to when the pilot takes a maneuvering action to safely evacuate the aircraft.

航空機の一定時間Δを内の飛行可能な領域は機体の速度
に依存し、第4図に示すごとくなる。したがって、第4
図の点線で示す従来方式による監視領域103の外にあ
るX印で示す障害物104は検知できないという欠点が
あった。
The range in which the aircraft can fly within a certain period of time Δ depends on the speed of the aircraft, as shown in FIG. Therefore, the fourth
The conventional method has a drawback in that it cannot detect an obstacle 104 indicated by an X mark outside the monitoring area 103 indicated by a dotted line in the figure.

また、これら障害物104を検知するためには、第3図
の一点破線で示す領域を監視する必要があり、このこと
はより高い出力のレーザ送信部を必要とし、レーザレー
ダがより大型化するという欠点があった。
In addition, in order to detect these obstacles 104, it is necessary to monitor the area indicated by the dotted line in FIG. 3, which requires a higher output laser transmitter, making the laser radar larger. There was a drawback.

更に、点線で示す従来方式による監視領域103内の障
害物104aを検知しても、この障害物に対しては、第
3図に示す機体速度如何によっては、これら障害物が飛
行可能領域の外側に存在することになって、これら障害
物が航空機の妨げとなることはなく、無駄な監視をして
いることになるという欠点がある。
Furthermore, even if an obstacle 104a is detected within the monitoring area 103 by the conventional method shown by the dotted line, depending on the speed of the aircraft shown in FIG. The disadvantage is that these obstacles do not obstruct the aircraft and result in unnecessary monitoring.

これらの欠点はいずれも、監視すべき領域が航空機の飛
行可能な領域、即ち機体の速度に無関係に定めているこ
とに起因している。
All of these drawbacks are due to the fact that the area to be monitored is determined regardless of the flight range of the aircraft, that is, the speed of the aircraft.

本発明の目的は上述した欠点を除去し、″監視すべき領
域を航空機の飛行可能と合致させるレーザレーダを提供
することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks and to provide a laser radar which "coincides the area to be monitored with the flight range of the aircraft."

〔課題を解決するための手段〕[Means to solve the problem]

本発明のレーザレーダは、航空機に搭載し進路上の障害
物を探知するレーザレーダにおいて、レーザビームの拡
がり角と監視視野角を航空機の速度に反比例して制御し
監視視野角を航空機の速度に反比例して制御し監視領域
を航空機の飛行可能領域と合致せしめる手段を備えて構
成される。
The laser radar of the present invention is a laser radar mounted on an aircraft to detect obstacles on the path, and the spread angle of the laser beam and the monitoring viewing angle are controlled in inverse proportion to the speed of the aircraft, so that the monitoring viewing angle is adjusted to the speed of the aircraft. It is constructed with means for inversely proportional control to match the monitoring area with the flightable area of the aircraft.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の構成図であり、本実施例の
レーザレーダは、レーザ送信部1、受光信号処理部2、
ビームエキスパンダ3、走査光学部4および光学系制御
部5、ミラー6、ハーフミラ−7を備えて構成され、他
に速度計8を併記して示す。
FIG. 1 is a configuration diagram of an embodiment of the present invention, and the laser radar of this embodiment includes a laser transmitter 1, a received light signal processor 2,
It is comprised of a beam expander 3, a scanning optical section 4, an optical system control section 5, a mirror 6, and a half mirror 7, and a speedometer 8 is also shown.

レーザ光はレーザ送信部1からハーフミラ−7を介して
ビームエキスパンダ3に提供され、所定のビーム拡がり
角を付与されて走査光学系4に受光される。走査光学系
4は、この受光を立体角φの監視視野角で走査し、入力
受光は送光とは逆方向に進行してハーフミラ−7、ミラ
ー6を介して受光処理部2に提供され信号処理される。
Laser light is provided from the laser transmitter 1 to the beam expander 3 via the half mirror 7, is given a predetermined beam spread angle, and is received by the scanning optical system 4. The scanning optical system 4 scans this received light at a monitoring viewing angle of a solid angle φ, and the input received light travels in the opposite direction to the transmitted light and is provided to the light reception processing section 2 via the half mirror 7 and the mirror 6, where it is sent as a signal. It is processed.

光学系制御部5は速度計から機体速度データを受信し、
監視すべき最大の探知距離を計算した後必要なビーム拡
がり角と監視視野角を計算し、ビームエキスパンダ3と
走査光学系をこの計算値に設定制御する。
The optical system control unit 5 receives aircraft speed data from the speedometer,
After calculating the maximum detection distance to be monitored, the necessary beam spread angle and monitoring viewing angle are calculated, and the beam expander 3 and scanning optical system are set and controlled to these calculated values.

次に、本実施例における光学系制御部5のビーム拡がり
角θと監視視野角Φの設定方法に関し、−例をあげて説
明する。
Next, a method of setting the beam divergence angle θ and the monitoring viewing angle Φ of the optical system control section 5 in this embodiment will be explained using an example.

先に、第4図で説明しように、航空機の飛行可能な領域
は機体速度によって異なる。今、監視すべき領域をこの
飛行可能な領域と一致させ、これよりビーム拡がり角θ
と監視視野角Φを求めてみる。
First, as explained in FIG. 4, the range in which the aircraft can fly varies depending on the speed of the aircraft. Now, match the area to be monitored with this flightable area, and from this the beam divergence angle θ
Let's find the monitoring viewing angle Φ.

第2図は第1図の実施例における監視視野角とビーム拡
がり角の関係を示す説明図である。
FIG. 2 is an explanatory diagram showing the relationship between the monitoring viewing angle and the beam divergence angle in the embodiment of FIG. 1.

先ず、機体の進路変更可能最大角度ψは、速度Vに反比
例するので、監視視野角Φは次の(1)式で定まる。
First, since the maximum angle ψ at which the aircraft's course can be changed is inversely proportional to the speed V, the monitoring viewing angle Φ is determined by the following equation (1).

Φ=2ψoc”l / v −(1) 一方、最大探知距離ρは、機体速度Vに比例するから、
監視すべき面積S1は次の(2)で示すとおり機体の速
度Vにがかわらデ一定となる。
Φ=2ψoc"l/v-(1) On the other hand, since the maximum detection distance ρ is proportional to the aircraft speed V,
The area S1 to be monitored remains constant regardless of the speed V of the aircraft, as shown in (2) below.

S 、  cx=(,2・ Φ ) 2 ζ:x:  
(v  ・  1 / ■ ) 2 −一定・・・(2
) ビーム拡がり角をθとすると、最大探知圧i4ρにおけ
るレーザビーム断面積S2は次の(3)式で計算できる
S, cx=(,2・Φ) 2ζ:x:
(v ・ 1 / ■) 2 - constant... (2
) If the beam divergence angle is θ, the laser beam cross-sectional area S2 at the maximum detection pressure i4ρ can be calculated using the following equation (3).

S2 − yr  (ffz θ/2)”  ・  (
3)レーザ送信部1の繰り返し周波数fは(3)式を(
2)式で除いて(4)式のように定まる。
S2 − yr (ffz θ/2)” ・ (
3) The repetition frequency f of the laser transmitter 1 is calculated by converting equation (3) into (
2), it is determined as in equation (4).

f ”=S+、 / S2 =St /π(ρθ/2)
2・・・(4) ここで、レーザ送信部1の繰り返し周波数fは一定、ま
た(3)式から81も一定であるので、(4)式からi
θが一定となる。
f”=S+, /S2=St/π(ρθ/2)
2...(4) Here, since the repetition frequency f of the laser transmitter 1 is constant, and from equation (3), 81 is also constant, from equation (4), i
θ becomes constant.

故に、ビーム拡がり角θは次のく5〉式のように求まる θα1/fl医1 / v・・・(5)したがって監視
視野角Φとビーム拡がり角θは(1)式および(5)式
に示すように機体の速度に反比例させれば良く、光学系
制御部5によってこのような光学系制御を実行する。
Therefore, the beam divergence angle θ is determined as shown in the following equation 5: θα1/fl doctor 1/v (5) Therefore, the monitoring viewing angle Φ and the beam divergence angle θ are determined by the following equations (1) and (5). The optical system control unit 5 executes such optical system control by making it inversely proportional to the speed of the aircraft as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は機体速度に応じて、監視す
べぎ領域、即ちビーム拡がり角に対応する最大距離探知
と監視視野角と制御するりことにより、監視すべき領域
を航空機の飛行可能な領域に一致させることがき、その
結果、機体速度が速いときはより遠方まで監視でき、ま
た機体速度が遅いときはより広い視野を監視できるとい
う効果がある。
As explained above, the present invention controls the area to be monitored according to the speed of the aircraft, that is, the maximum distance detection and monitoring viewing angle corresponding to the beam divergence angle. As a result, when the speed of the aircraft is high, it is possible to monitor further distances, and when the speed of the aircraft is slow, it is possible to monitor a wider field of view.

また本発明に上り、レーザレーダをより小さい平均出力
のレーザ送信部で構成できるため、レーザレーダを軽量
簡素化できるという効果がある。
Further, according to the present invention, since the laser radar can be configured with a laser transmitter having a smaller average output, there is an effect that the laser radar can be made lighter and simpler.

係を示す説明図である。FIG.

1・・・レーザ送信部、2・・・受光信号処理部、3・
・・ビームエキスパンダ、4・・・走査光学系、5・・
・光学系制御1部、6・・・速度計。
DESCRIPTION OF SYMBOLS 1... Laser transmitting section, 2... Light receiving signal processing section, 3.
... Beam expander, 4... Scanning optical system, 5...
・Optical system control part 1, 6... speedometer.

Claims (1)

【特許請求の範囲】 航空機に搭載し進路上の障害物を探知するレーザレーダ
において、 レーザビームの拡がり角と監視視野角を航空機の速度に
反比例して制御し監視視野角を航空機の速度に反比例し
て制御し監視領域を航空機の飛行可能領域と合致せしめ
る手段を備えて成ることを特徴とするレーザレーダ。
[Claims] In a laser radar mounted on an aircraft to detect obstacles on the path, the spread angle of the laser beam and the monitoring viewing angle are controlled in inverse proportion to the speed of the aircraft, and the monitoring viewing angle is inversely proportional to the speed of the aircraft. What is claimed is: 1. A laser radar comprising means for controlling and matching a monitoring area with a flight area of an aircraft.
JP63211872A 1988-08-25 1988-08-25 Laser radar Expired - Lifetime JPH0774828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63211872A JPH0774828B2 (en) 1988-08-25 1988-08-25 Laser radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63211872A JPH0774828B2 (en) 1988-08-25 1988-08-25 Laser radar

Publications (2)

Publication Number Publication Date
JPH0259692A true JPH0259692A (en) 1990-02-28
JPH0774828B2 JPH0774828B2 (en) 1995-08-09

Family

ID=16613014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63211872A Expired - Lifetime JPH0774828B2 (en) 1988-08-25 1988-08-25 Laser radar

Country Status (1)

Country Link
JP (1) JPH0774828B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009956A (en) * 2003-06-18 2005-01-13 Mitsubishi Electric Corp Laser apparatus
JP2005502055A (en) * 2001-09-04 2005-01-20 ローズマウント エアロスペース インコーポレイテッド LOAS and LIDAR combination system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195579A (en) * 1986-02-24 1987-08-28 Hitachi Ltd Obstacle detecting device for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195579A (en) * 1986-02-24 1987-08-28 Hitachi Ltd Obstacle detecting device for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502055A (en) * 2001-09-04 2005-01-20 ローズマウント エアロスペース インコーポレイテッド LOAS and LIDAR combination system
JP2005009956A (en) * 2003-06-18 2005-01-13 Mitsubishi Electric Corp Laser apparatus

Also Published As

Publication number Publication date
JPH0774828B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
EP0054553B1 (en) Aircraft flare path control signal
CA2096538A1 (en) Ground proximity warning instrument using flight path modulation of glide slope alerting function
JPS614986A (en) Ultrasonic distance measuring instrument
US6259395B1 (en) Relative velocity detecting apparatus for automotive vehicle
JPH0259692A (en) Laser radar
JP2993995B2 (en) Mobile car image processing device
JPH01197133A (en) Vehicle running control device
GB2092749A (en) Detecting obstacles to vehicles
JP2629634B2 (en) Precision approaching radar
JPH09236400A (en) Device for guiding missile
JPH0725299A (en) Obstacle detector of automobile
JPH0663500U (en) Aircraft automatic landing gear
JP4085816B2 (en) Flying object guidance system, flying object and guidance control device
JPS6177775A (en) Automatic clutter removing system for radar equipment
JPH03200090A (en) Automatic tracking optical communication equipment
JPH08160060A (en) Method for controlling gain of reception wave in measuring device using ultrasonic wave
JPS6179178A (en) Target tracking device
SU1203482A1 (en) Control device for inertial object
JP2518080B2 (en) Guided flying body
JPS5853709A (en) Optical tracking device
JPH07333340A (en) Radar
JP2610315B2 (en) Passive sonar device
JPH0996500A (en) Guided airframe
JPS56135170A (en) Laser range finder
JPH11271438A (en) Target tracking apparatus