JPH0259620A - Water level sensor - Google Patents

Water level sensor

Info

Publication number
JPH0259620A
JPH0259620A JP21055988A JP21055988A JPH0259620A JP H0259620 A JPH0259620 A JP H0259620A JP 21055988 A JP21055988 A JP 21055988A JP 21055988 A JP21055988 A JP 21055988A JP H0259620 A JPH0259620 A JP H0259620A
Authority
JP
Japan
Prior art keywords
tube
water level
current
transparent measuring
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21055988A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Yamazaki
宣悦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REIDEITSUKU KK
Original Assignee
REIDEITSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REIDEITSUKU KK filed Critical REIDEITSUKU KK
Priority to JP21055988A priority Critical patent/JPH0259620A/en
Publication of JPH0259620A publication Critical patent/JPH0259620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To measure the settlement by a leveling system whose structure is simple and which scarcely causes a measurement error by obtaining an output being proportional to a water level in a transparent measuring tube by receiving a current output of a one-dimensional light position sensor. CONSTITUTION:A light beam from a light source 2 lighted by a constant-current circuit 1 is made incident on the inside of a tube from the bottom part of a transparent measuring tube 3. To the inside of the tube, water at the time of measuring the settlement of the ground is applied from an inlet/outlet 3a through a communication tube, and in accordance with its hydraulic pressure, a water level in the tube moves. To the inside surface of the transparent measuring tube 3, hydrophilic coating is applied in advance, therefore, water of a part brought into contact with the inside surface of the tube of the peripheral part of the water level swells, and the light beam from the light source 2 is refracted and emitted to the outside of the tube. As for the outside surface of the transparent measuring tube 3, the length direction is finished partially to a plane, and a refracted light is received by a one-dimensional light position sensor 4 fixed to this plane part and converted to a current value being proportional to a water level generated in the tube. The converted current value is converted to a voltage value by a current/voltage converting means and obtained as a measured value from an output side.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水盛方式による沈下測定を行う際に使用され
る水位センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a water level sensor used when measuring subsidence using a water mounding method.

〔従来技術] 従来、水盛方式を用いて地盤の沈下測定を行う場合には
、水位変化を測定する必要がある。この水位変化の測定
には、水の誘電率が空気に比較して大きいことを利用し
た。いわゆる電気容11i1!1定方式や、水面にフロ
ートを浮かべ、サーボ系による制御によってフロートの
位置を検出するフロート位置測定方式が多く用いられて
いる。
[Prior Art] Conventionally, when measuring ground subsidence using a water embankment method, it is necessary to measure changes in water level. To measure this change in water level, we took advantage of the fact that the dielectric constant of water is larger than that of air. The so-called electric capacitance 11i1!1 constant method and the float position measurement method in which a float is floated on the water surface and the position of the float is detected by control by a servo system are often used.

[発明が解決しようとする課題] しかしながら、上記の電気容ff1U1定方式では水の
誘電率が水温により変動するため、測定部に温度変化を
補正するための補正用電極を設けねばならず、 all
ll定形状が大きくなるだけでなく1回路も複雑になる
という欠点があった。
[Problems to be Solved by the Invention] However, in the above-mentioned electric capacitance ff1U1 constant method, the dielectric constant of water changes depending on the water temperature, so a correction electrode must be provided in the measurement section to correct for temperature changes.
This has the disadvantage that not only the regular shape becomes larger, but also one circuit becomes more complicated.

また、フロート位置測定方式では、水位変化がサーボ系
の動作温度よりも速い場合や、停電中に水位変化が生じ
た場合に、その変化に追従することが出来ず、測定が不
能になることは勿論、フロート自体が管壁に接触して測
定誤差を生ずるという欠点があった。
In addition, with the float position measurement method, if the water level changes faster than the operating temperature of the servo system, or if the water level changes during a power outage, it will not be able to follow the changes and measurement will not be possible. Of course, there was a drawback in that the float itself came into contact with the tube wall, causing measurement errors.

[課題を解決するための手段] 本発明による水位センサは、内面に親水性コーティング
を施した透明測定管と、該透明測定管の底部外側から光
を管内に入射させるための光源と。
[Means for Solving the Problems] A water level sensor according to the present invention includes a transparent measuring tube whose inner surface is coated with a hydrophilic coating, and a light source for allowing light to enter the tube from outside the bottom of the transparent measuring tube.

該透明測定管の外面の長さ方向を部分的に平面に仕上げ
、該平面部に固着して該透明fllllllll主管内
水位面周辺部から得られる屈折光を水位に比例した電流
値に変換して検出する1次元光位置センサと、該光位置
センサから検出される電流出力を受け、これを電圧に変
換する電流−電圧変換手段とから成ることを特徴とする
The length direction of the outer surface of the transparent measuring tube is partially finished as a flat surface, and the refracted light obtained from the periphery of the water level inside the transparent main tube is converted into a current value proportional to the water level by fixing it to the flat surface. It is characterized by comprising a one-dimensional optical position sensor for detection, and current-voltage conversion means for receiving the current output detected from the optical position sensor and converting it into voltage.

[作用コ 本発明の水位センサによれば、透明測定管の内面に親水
性コーティングを施しであるため、管内に入った水位面
の周辺部、すなわち管の内面と近接した水の盛り上がり
部分で光源から入ってきた光が屈折して管外に放出され
る。この屈折した光は透明1ffj定管の外面に張られ
た1次元光位置センサにより受けられて管内に生ずる水
位に比例した電流値に変換される。この変換された電流
値は更に電流−電圧変換手段により電圧値に変換されて
測定値として出力側から得られる。
[Operation] According to the water level sensor of the present invention, since the inner surface of the transparent measuring tube is coated with a hydrophilic coating, the light source is generated at the periphery of the water level surface that has entered the tube, that is, at the bulge of water close to the inner surface of the tube. Light entering the tube is refracted and emitted outside the tube. This refracted light is received by a one-dimensional optical position sensor attached to the outer surface of the transparent 1ffj fixed tube and converted into a current value proportional to the water level generated inside the tube. This converted current value is further converted into a voltage value by a current-voltage conversion means and obtained as a measured value from the output side.

[発明の実施例] 次に1本発明による水位センサについて実施例を挙げ1
図面を参照して説明する。
[Embodiments of the Invention] Next, an embodiment of a water level sensor according to the present invention will be given.
This will be explained with reference to the drawings.

第1図は本発明による実施例の構成を示すブロック図で
ある。この図において、光源2は定電流回路1から与え
られる電流で点灯され、光源2からの光は透明測定管3
の底部から管内に入射する。
FIG. 1 is a block diagram showing the configuration of an embodiment according to the present invention. In this figure, a light source 2 is turned on with a current supplied from a constant current circuit 1, and the light from the light source 2 is transmitted to a transparent measuring tube 3.
enters the tube from the bottom of the tube.

管内には地盤の沈下M[定を行う際の水が連通管を介し
出入口3aから加えられ、その水圧に応じて管内に水位
の移動を生ぜしめる。透明測定管3の内面には予め親水
性コーティングが施されているから、水位面の周辺部の
管の内面と接する部分の水が盛り上がり、光源2から入
ってきた光がここで屈折して管外へ放出される。この屈
折した放射光は周囲方向に対しては均等になる。透明測
定管3の外面は、第2図に見られるように1部分的に長
さ方向が平面3cに仕上げられており、上記の屈折した
光はこの平面部に固着された1次元光位置センサ4によ
り受けられて管内に生ずる水位に比例した電流値に変換
される。
Water for determining ground subsidence M is added to the pipe from the inlet/outlet 3a through the communication pipe, causing the water level to shift within the pipe in accordance with the water pressure. Since the inner surface of the transparent measuring tube 3 has been previously coated with a hydrophilic coating, the water in the area around the water level that contacts the inner surface of the tube bulges, and the light coming from the light source 2 is refracted here and absorbed into the tube. released outside. This refracted radiation becomes uniform in the surrounding direction. As shown in FIG. 2, the outer surface of the transparent measuring tube 3 is partially finished with a flat surface 3c in the longitudinal direction, and the refracted light is transmitted to a one-dimensional optical position sensor fixed to this flat surface. 4 and is converted into a current value proportional to the water level generated in the pipe.

第3図は上記1次元光位置センサ4の具体的な構成例を
示した断面図である。この光位置センサは、平板状シリ
コンの表面に2層4c、裏面にN層4d、中間に1層4
eの3層から構成されている。P層に図のごとく光ビー
ムが入射すると、その入射位置には光エネルギーに比例
した電荷が発生し、光電流としてP層(抵抗層)を通っ
て電極4aと4bへ流れ出る。このP層は全面に均一な
抵抗値を持つように作られているので、光電流は入射位
置から電極4aと電極4bまでの距離にそれぞれ逆比例
して分割され、取り出される。
FIG. 3 is a sectional view showing a specific example of the configuration of the one-dimensional optical position sensor 4. As shown in FIG. This optical position sensor consists of two layers 4c on the front surface of a flat silicon plate, an N layer 4d on the back surface, and one layer 4c in the middle.
It is composed of three layers: e. When a light beam is incident on the P layer as shown in the figure, a charge proportional to the light energy is generated at the incident position and flows out as a photocurrent through the P layer (resistance layer) to the electrodes 4a and 4b. Since this P layer is made to have a uniform resistance value over the entire surface, the photocurrent is divided and extracted in inverse proportion to the distances from the incident position to the electrodes 4a and 4b, respectively.

ここで9両電極間距離を2L、完全電流を’Or電極4
aから取り出される電流をII+If4bから取り出さ
れる電流を12.P層の中間点を原点とした場合の入射
光位置から原点までの距離をXとすれば2次の式が得ら
れる。
Here, the distance between 9 electrodes is 2L, and the complete current is 'Or electrode 4
The current taken out from a is II + If the current taken out from 4b is 12. If the distance from the position of the incident light to the origin is set to X when the midpoint of the P layer is set as the origin, the following equation is obtained.

r+ −10(L−X)/2L   ・・・ (1)1
2−1.(L+X)/2L   −(2)(12If 
 )  /  (If  +  12  )  =X/
L                   ・・・ (
3)この(3)式から判るように、電極4bおよび4a
から得られる電流I2および11の差と和を求めること
により、入射光のエネルギーとは無関係に光の入射位置
を算定することが出来る。
r+ -10(L-X)/2L... (1)1
2-1. (L+X)/2L-(2)(12If
) / (If + 12) =X/
L... (
3) As can be seen from this equation (3), the electrodes 4b and 4a
By determining the difference and sum of the currents I2 and 11 obtained from , it is possible to calculate the light incident position regardless of the energy of the incident light.

再び第1図を参照して、光位置センサ4の電極4a側に
は電流−電圧変換回路5が接続され、電極4b側には電
流−電圧変換回路6が接続され。
Referring again to FIG. 1, a current-voltage conversion circuit 5 is connected to the electrode 4a side of the optical position sensor 4, and a current-voltage conversion circuit 6 is connected to the electrode 4b side.

それぞれ電極4a側の電流11と電極4b側の電流I2
とが電圧値に変換される。電流!、に対応する電流−電
圧変換回路5の出力と電流I2に対応する電流−電圧変
換回路6の出力とは減算回路7に加えられ1両者の差が
求められる。一方、電流−電圧変換回路5の出力と電流
−電圧変換回路6の出力とは加算回路8にも加えられ、
ここで両者の和が求められる。割算回路9は減算回路7
と加算回路8の両画力を受け、減算回路7の出力値が加
算回路8の出力値で割算される。これ等減算回路7.加
算回路82割算回路9による一連の機能は前記(3)式
の処理を意味する。かくして。
Current 11 on the electrode 4a side and current I2 on the electrode 4b side, respectively.
is converted into a voltage value. Current! The output of the current-voltage conversion circuit 5 corresponding to , and the output of the current-voltage conversion circuit 6 corresponding to the current I2 are added to a subtraction circuit 7, and the difference between the two is determined. On the other hand, the output of the current-voltage conversion circuit 5 and the output of the current-voltage conversion circuit 6 are also added to the addition circuit 8,
Here, the sum of both is found. The division circuit 9 is the subtraction circuit 7
The output value of the subtraction circuit 7 is divided by the output value of the addition circuit 8. These subtraction circuits7. The series of functions performed by the addition circuit 82 and the division circuit 9 means the processing of equation (3) above. Thus.

割算回路9の出力により光の入射位置を知ることができ
る。
The output of the division circuit 9 allows the light incident position to be known.

このように1割算回路は分子側入力に差電圧。In this way, the 1 division circuit has a differential voltage on the numerator side input.

分母側入力に和電圧を入力することにより、光量変化に
よる光位置センサの出力変動が補正される。
By inputting the sum voltage to the denominator side input, fluctuations in the output of the optical position sensor due to changes in the amount of light are corrected.

また、光源2は定電流回路1により一定電流が供給され
ており、光源の輝度は安定に保持されている。
Further, a constant current is supplied to the light source 2 by a constant current circuit 1, and the brightness of the light source is maintained stably.

なお、上記の実施例においては、(3)式を適用したが
、これとは別に(1)式と(2)式から次式。
In addition, in the above embodiment, formula (3) was applied, but in addition to this, the following formula is applied from formulas (1) and (2).

II  /12 −  (L−X)/  (L+X) 
 ・・・(4)を導くことにより、減算回路と加算回路
を省き。
II /12 - (L-X)/ (L+X)
...By deriving (4), the subtraction circuit and addition circuit can be omitted.

直接割算回路に加えて演算することも出来る。It can also be used for calculations in addition to the direct division circuit.

[発明の効果〕 以上の説明により明らかなように2本発明は。[Effect of the invention〕 As is clear from the above description, there are two aspects of the present invention.

親水性コーティングを施した透明nj定管゛と、該透明
測定管の底部外側から光を管内に入射させるための光源
と、該透明測定管の外側に固着した1次元光位置センサ
と、該1次元光位置センサの電流出力を受けて透明測定
管のなかの水位に比例した電圧を出力する手段とを主要
素として構成されており、これにより電気容量測定方式
やフロート位置」j定力式の欠点を排除し、構造が簡単
で、連応性よく、かつ測定誤差を少なくできる点、得ら
れる効果は大きい。
a transparent NJ fixed tube with a hydrophilic coating, a light source for allowing light to enter the tube from outside the bottom of the transparent measurement tube, a one-dimensional optical position sensor fixed to the outside of the transparent measurement tube; The main element is a means for receiving the current output from the dimensional optical position sensor and outputting a voltage proportional to the water level in the transparent measuring tube. The advantages of this method are that it eliminates drawbacks, has a simple structure, has good connectivity, and can reduce measurement errors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による実施例の構成を示すブロック図、
第2図は、第1図における透明測定管と1次元光位置セ
ンサとの間の取り付は関係を示す斜視図、第3図は1次
元光位置センサの構成例を示す断面図である。 図において、1は定電流回路、2は光源、3は透明測定
管、3a、3bは出入口、3cは平面。 4は1次元光位置センサ、4a、4bは電極、 4cは
P層、4dはN層、4eは!層、5.6は電流−電圧変
換回路、7は減算回路、8は加算回路。
FIG. 1 is a block diagram showing the configuration of an embodiment according to the present invention;
FIG. 2 is a perspective view showing the attachment relationship between the transparent measuring tube and the one-dimensional optical position sensor in FIG. 1, and FIG. 3 is a sectional view showing an example of the configuration of the one-dimensional optical position sensor. In the figure, 1 is a constant current circuit, 2 is a light source, 3 is a transparent measuring tube, 3a and 3b are entrances and exits, and 3c is a flat surface. 4 is a one-dimensional optical position sensor, 4a and 4b are electrodes, 4c is a P layer, 4d is an N layer, and 4e is! layer, 5.6 is a current-voltage conversion circuit, 7 is a subtraction circuit, and 8 is an addition circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、内面に親水性コーティングを施した透明測定管と、
該透明測定管の底部外側から光を管内に入射させるため
の光源と、該透明測定管に固着して該透明測定管内に生
ずる水位面周辺部から得られる屈折光を水位に比例した
電流値に変換して検出する1次元光位置センサと、該光
位置センサから検出される電流出力を受け、これを電圧
に変換する電流−電圧変換手段とから成ることを特徴と
する水位センサ。
1. A transparent measuring tube with a hydrophilic coating on the inside,
A light source for inputting light into the tube from outside the bottom of the transparent measuring tube, and a light source fixed to the transparent measuring tube to convert refracted light obtained from the area around the water level surface generated in the transparent measuring tube to a current value proportional to the water level. A water level sensor comprising: a one-dimensional optical position sensor that converts and detects; and current-voltage conversion means that receives a current output detected from the optical position sensor and converts it into voltage.
JP21055988A 1988-08-26 1988-08-26 Water level sensor Pending JPH0259620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21055988A JPH0259620A (en) 1988-08-26 1988-08-26 Water level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21055988A JPH0259620A (en) 1988-08-26 1988-08-26 Water level sensor

Publications (1)

Publication Number Publication Date
JPH0259620A true JPH0259620A (en) 1990-02-28

Family

ID=16591328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21055988A Pending JPH0259620A (en) 1988-08-26 1988-08-26 Water level sensor

Country Status (1)

Country Link
JP (1) JPH0259620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166359A (en) * 2008-01-16 2009-07-30 Seiko Epson Corp Liquid supplier and liquid injector
CN109141579A (en) * 2018-07-31 2019-01-04 珠海格力电器股份有限公司 Liquid level detection device and water purifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166359A (en) * 2008-01-16 2009-07-30 Seiko Epson Corp Liquid supplier and liquid injector
CN109141579A (en) * 2018-07-31 2019-01-04 珠海格力电器股份有限公司 Liquid level detection device and water purifier

Similar Documents

Publication Publication Date Title
EP0064746B1 (en) Sunlight direction sensor
EP0184721B1 (en) Pressure measuring system
JPH04350513A (en) Instrument for level of laser light ray
JPH0259620A (en) Water level sensor
US3340763A (en) Angular measuring device for light beams
KR860000292B1 (en) Sencor of sonlight's direction
JP3215232B2 (en) Photoelectric distance sensor
EP0312332B1 (en) Barometric meter
CN111156904B (en) Non-contact bridge displacement sensing method based on flexible photoelectric sensing array
JP2006242608A (en) Optical water gauge
JPH05322562A (en) Electronic level and level rod therefor
RU2292525C1 (en) A fiber-optic sensor
JPH0242311A (en) Detector for inclined angle
KR100239868B1 (en) Signal processing method for digital sun sensor using satellite control
SU970106A1 (en) Device for determination of object tilt angle
JPS58151507A (en) Position detecting photodiode
JPS62254005A (en) Sunlight direction sensor
SU1350496A1 (en) Photoelectric function displacement converter
JPS60244802A (en) Distance measuring instrument
JP4374119B2 (en) Absolute encoder
JPS62133309A (en) Attitude detector
RU2219493C2 (en) Method establishing displacement of object and opto-electron displacement converter for its realization
SU960528A1 (en) Photoelectric displacement converter
JPH0242310A (en) Detector for inclined angle
JPH06112520A (en) Photoelectric conversion device