JPH0259613B2 - - Google Patents

Info

Publication number
JPH0259613B2
JPH0259613B2 JP22892383A JP22892383A JPH0259613B2 JP H0259613 B2 JPH0259613 B2 JP H0259613B2 JP 22892383 A JP22892383 A JP 22892383A JP 22892383 A JP22892383 A JP 22892383A JP H0259613 B2 JPH0259613 B2 JP H0259613B2
Authority
JP
Japan
Prior art keywords
film
resin
mixture
melamine
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22892383A
Other languages
Japanese (ja)
Other versions
JPS60120511A (en
Inventor
Teijiro Arai
Tsugio Nagasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP22892383A priority Critical patent/JPS60120511A/en
Publication of JPS60120511A publication Critical patent/JPS60120511A/en
Publication of JPH0259613B2 publication Critical patent/JPH0259613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はメタライズドフイルムコンデンサーに
関する。詳しくは環境耐性、特に耐湿熱性におい
て長期信頼性を有する大容量、小型コンデンサー
およびその製造方法に関するものである。 メタライズドフイルムコンデンサーは一般にポ
リカーボネート、ポリエステル、ポリプロピレン
等のプラスチツクフイルムに金属蒸着薄膜を設
け、これを巻回または積層して製造されており、
プラスチツクフイルムとアルミ箔を重ね合わせて
製造される箔型コンデンサーに比べて一層の小型
化が可能であり、各種電子機器の小型、計量化の
要請に合致して著しく普及しつつある。しかし、
長期信頼性特に高温高湿環境における性能の安定
性については必ずしも満足されるものではなく、
使用中に静電容量の変化等が起こりがちであつ
た。このためテープ、ケース等による外装、エポ
キシ樹脂等によるデイツプ処理等の対策が講じら
れているが、工程が繁雑となり、仕上がり品の寸
法が大きくなる等の不都合があつた。 本発明者らは、特に高温高湿環境下における静
電容量の変化について詳細に検討を加えた結果、
基体フイルムに対する金属蒸着薄膜の接着性と深
い関係があることが判明した。すなわち、二軸延
伸プラスチツクフイルムは、フイルムコンデンサ
ー素材として要求される電気的、機械的、熱的性
質、物質性等は優れているが一般に表面活性に乏
しく、金属蒸着薄膜の接着性において不満足であ
り、特に水分の介在下で金属薄膜が容易に変質し
たり離脱したりする。 本発明者らは、蒸着フイルムの温水浸漬という
苛酷条件下に金属蒸着膜の変化を観察し、二軸延
伸フイルムの表面に予め特定の樹脂層を設けてお
けば金属蒸着膜の耐久性は著しく向上することを
知り本発明に到達した。すなわち、 (A) アルキツド樹脂とメラミンおよび/または尿
素樹脂との混合物 (B) アクリル樹脂とメラミンおよび/またはは尿
素樹脂との混合物 (C) 100%モジユラスが80Kg/cm2以上の水分散性
ポリウレタンまたはポリウレタンポリ尿素とメ
ラミンとの混合物から選ばれた厚さ0.1μ以下の
熱硬化性樹脂被膜を表面に有する二軸延伸熱可
塑性樹脂フイルムにアルミニウムまたは亜鉛が
蒸着されており、フイルムを誘電体とし、金属
蒸着膜を電極としてなる耐湿熱性の優れたフイ
ルムコンデンサーである。 さらに本発明のコンデンサーを製造する方法と
して基体フイルムの延伸完了前に該コーテイング
樹脂層を設け、少なくとも一方向に基体フイルム
と共に延伸することによつてコーテイング樹脂と
基体フイルムとの良好な接着が得られ、さらに必
要最少限の厚さの塗膜を有するフイルムが均一に
かつ効率よく製造できることを見出した。すなわ
ち、未延伸または一方向にのみ延伸した熱可塑性
樹脂フイルムに (A) アルキツド樹脂とメラミンおよび/または尿
素樹脂との混合物 (B) アクリル樹脂とメラミンおよび/または尿素
樹脂との混合物 (C) 100%モジユラスが80Kg/cm2以上の水分散性
ポリウレタンまたはポリウレタンポリ尿素とメ
ラミンとの混合物から選ばれた樹脂の溶液また
は水分散液をコーテイング、乾燥し、続いて二
軸または前記延伸方向と直角方向に延伸した後
基体フイルムの融点下5〜50℃の温度範囲で熱
処理して得られたフイルムにアルミニウムまた
は亜鉛を真空蒸着し、該蒸着フイルムを巻回ま
たは積層することを特徴とする耐湿熱性の優れ
たフイルムコンデンサーの製造方法である。 本発明における基体フイルムは、二軸延伸熱可
塑性樹脂フイルムであり、耐湿熱性の改善が要請
されるフイルムコンデンサーに使用されているフ
イルムが対象となるが、ポリエステルフイルム、
ポリプロピレンフイルム等二軸延伸により、結晶
化が進むいわゆる結晶性樹脂フイルムに関して特
に効果的である。特にコンデンサーの加工上、最
終性能上の要請を満足し、極薄かつ均一なフイル
ムが得やすい二軸延伸ポリエステルフイルムに適
用したとき最も優れた小型フイルムコンデンサー
が得られる。 本発明におけるコーテイング樹脂は塗膜形成後
室温でまたは加熱により硬化反応するいわゆる熱
硬化性樹脂の溶液または分散液で、次の3種の中
から選ばれる。 (A) アルキツド樹脂とメラミンおよび/または尿
素樹脂との混合物からなり、その混合比率は、
基材フイルムの種類、塗工プロセスによつて適
宜決定されうる。必要に応じて粘度調節のため
にニトロセルロースを加えることも可能であ
る。これらの樹脂の混合物は有機溶剤に溶解さ
せるかまたは水乳化あるいは水性の状態で使用
することもできる。 (B) アクリル樹脂とメラミンおよび/またはは尿
素樹脂との混合物からなり、その混合比率は基
材フイルムの種類、塗工プロセスによつて適宜
決定されうる。これらの混合物は有機溶剤に溶
解させるかまたは水乳化あるいは水性の状態で
使用することもできる。 (C) 100%モジユラスが80Kg/cm2以上の水分散性
ポリウレタンまたはポリウレタポリ尿素とメラ
ミンとの混合物からなり、その混合比率は基材
フイルムの種類、塗工プロセスによつて適宜選
択されうる。水分散性ポリウレタンとして、末
端−NCO基を有するプレポリマーを水、乳化
剤、鎖長延長剤と混合・混練することにより乳
化分散と同時に高分子化を進行させて得られる
いわゆる強制乳化型ポリウレタン、分子鎖中に
イオン性基を導入して親水性を付与し、乳化剤
の助けなしに水中に安定に分散させて得られる
いわゆるアイオノマー型ポリウレタン(自己乳
化型ポリウレタン)または水溶性ポリオールを
主原料とした水溶性ポリウレタン等いずれも適
用可能であるが、塗膜の100%モジユラスが80
Kg/cm2以上の比較的硬い樹脂が必要であり、メ
ラミンの配合により適宜調節することができ
る。ここで100%モジユラスとはJISK6301に準
拠して測定した値である。 コーテイング層の厚さは0.1μ以下で十分であ
り、均一なコーテイングが可能ならば薄いほど良
い。例えば基体フイルムが1.5μの場合、0.03μで
も十分効果があり、コンデンサー小型化の要請か
らもコーテイング層を厚くするのは得策でない。
(コンデンサーの容量はフイルムの厚さに反比例
する。) 本発明における金属蒸着以降の工程は特に限定
するものではなく、通常のメタライズドフイルム
コンデンサー製造工程が全て適用できる。蒸着フ
イルムの巻回または積層に際して通常使用されて
いる合わせフイルム、ラツカー塗工も可能であ
る。 本発明のコンデンサーはテープ、ケース等によ
る外層または樹脂デイツプを施さずとも良好な耐
湿熱性を示すが、これらの外部保護を行うとさら
に長期安定性が得られる。 次に本発明のコンデンサーを製造する方法につ
いて述べる。本発明のコンデンサーは二軸延伸熱
可塑性樹脂フイルムに前記した特定のコーテイン
グ剤を塗工するいわゆるポストコート法で得られ
たコーテイングフイルムを使用することは勿論可
能であるが、小型化容量アツプの狙いから必要最
少限度の厚さのコーテイングを均一に行うために
は得策でない。熱可塑性樹脂をフイルム状に溶融
押出ししたいわゆる未延伸フイルムにコーテイン
グし、該コーテイングフイルムを縦横同時にまた
は逐次二段延伸するかまたは上記未延伸フイルム
を予め、縦または横の一方向に延伸した一軸延伸
フイルムにコーテイングし、その後前記方向と直
角の方向に少なくとも最終の延伸がなされる前に
コーテイングして基体フイルムとコーテイング層
を同時に少なくとも一方向に延伸するインライン
コーテイング法が、均一薄膜を生産性良く得る方
法として最良であり、基体フイルムに対するコー
テイング層の接着性が著しく改善される。コーテ
イング方法は特に限定するものではなく、例えば
グラビアロールコーテイング法、インバースロー
ルコーテイング法、リバースロールコーテイング
法、マイヤバーコーテイング法、エアナイフコー
テイング法等が採用しうる。 コーテイング層と基体フイルムが共延伸された
後、基体フイルムの融点下5〜50℃の温度で熱処
理する必要がある。熱処理温度が融点下50℃より
低いときは基体フイルムの熱寸法安定性が十分で
なく、コンデンサー加工工程において歪を生じ最
終製品の耐湿性が劣る。融点下5℃より高温で熱
処理するとフイルム製造中に破断が起こり易く、
機械的性質も低下する。上記熱セツト処理は同時
にコーテイング樹脂硬化を短時間で促進し、耐久
性の良い薄膜を形成するのに役立つている。 比較実験例 厚さ25μの未延伸ポリエステルフイルムに下記
各種塗工液を80μのマイヤバーで塗工し、乾燥し
て塗工厚さ0.4μのコーテイングフイルムを得た。 これらのフイルムをテンター式同時二軸延伸機
によつて80℃に予熱し、縦3.0倍、横3.3倍に同時
に延伸し、続いて220℃5秒間緊張下に熱処理し
た。得られたフイルムのコート面に真空蒸着法に
より膜厚ほぼ500Åの金属アルミ薄膜を設けた。 比較のためコーテイングしないフイルムも同様
に二軸延伸および熱セツトし、アルミ蒸着した。 これらのフイルムの耐水性を評価するために40
℃の温水に24時間浸漬し、アルミ蒸着膜の状態変
化を観察した。結果を表1に示す。 塗工液 (A) アミノアルキツド系樹脂塗工液 フタルキツドM641−50(日立化成KK製)/
メラミン20(日立化成KK製)/ニトロセルロ
ースの63/27/10重量比からなる樹脂混合物を
トルエン/酢酸エチル/シクロヘキサンの6/
2/2重量比からなる混合溶媒に固型分濃度10
%となるように溶解して得られた塗工液。 (B) 熱硬化性アクリル樹脂塗工液 ヒタロイド2405/ヒタロイド2602/メラン20
(いずれも日立化成KK製)の40/30/30重量
比からなる樹脂混合物をトルエン/キシレン/
n−ブタノールの1/1/1重量比からなる混
合溶媒に固型分濃度10%となるように溶解して
得られた塗工液。 (C) 水分散性ウレタン系樹脂塗工液 アニオン性脂肪族ポリエステルウレタン水分
散液である。インプラニル(INPRANIL)−
DLH(バイエル社製、固型分40%)100重量部
にイオン交換水300重量部を加えよく撹拌した
固型分濃度10%の塗工液。塗膜の100%モジユ
ラスは50Kg/cm2。 (D) 水分散性ポリウレタンとメラミンの混合系塗
工液 (C)の塗工液100重量部にトリメトキシメチル
メラミンの10%水溶液20重量部を加えてよく撹
拌した固型分濃度10%の塗工液。塗膜の100%
モジユラスは105Kg/cm2
The present invention relates to metallized film capacitors. Specifically, the present invention relates to a large-capacity, small-sized capacitor that has long-term reliability in terms of environmental resistance, particularly moisture and heat resistance, and a method for manufacturing the same. Metallized film capacitors are generally manufactured by providing a metal vapor-deposited thin film on a plastic film such as polycarbonate, polyester, or polypropylene, and then winding or laminating the film.
Compared to foil-type capacitors, which are manufactured by laminating plastic film and aluminum foil, capacitors can be made more compact, and are becoming increasingly popular as they meet the demands for smaller and more compact electronic devices. but,
Long-term reliability, especially performance stability in high-temperature and high-humidity environments, is not always satisfied.
Changes in capacitance, etc. tended to occur during use. For this reason, countermeasures have been taken, such as wrapping with tape, cases, etc., and dipping with epoxy resin, etc., but these have resulted in inconveniences such as complicated processes and increased dimensions of the finished product. The inventors conducted a detailed study on changes in capacitance, especially under high temperature and high humidity environments, and found that
It has been found that there is a deep relationship between the adhesion of the metal-deposited thin film to the base film. In other words, although biaxially stretched plastic film has excellent electrical, mechanical, thermal, and material properties required as a material for film capacitors, it generally has poor surface activity and is unsatisfactory in adhesion to metal-deposited thin films. In particular, the metal thin film easily deteriorates or comes off in the presence of moisture. The present inventors observed changes in the metal vapor deposited film under the harsh conditions of immersion in hot water, and found that if a specific resin layer was provided on the surface of the biaxially stretched film in advance, the durability of the metal vapor deposited film would be significantly improved. The present invention was developed based on the knowledge that this can be improved. That is, (A) a mixture of alkyd resin and melamine and/or urea resin (B) a mixture of acrylic resin and melamine and/or urea resin (C) water-dispersible polyurethane with a 100% modulus of 80 kg/cm 2 or more Alternatively, aluminum or zinc is vapor-deposited on a biaxially stretched thermoplastic resin film having a thermosetting resin film with a thickness of 0.1μ or less selected from a mixture of polyurethane polyurea and melamine on the surface, and the film is used as a dielectric material. This is a film capacitor with excellent moisture and heat resistance that uses a metal vapor-deposited film as an electrode. Furthermore, as a method for manufacturing the capacitor of the present invention, the coating resin layer is provided before the stretching of the base film is completed, and good adhesion between the coating resin and the base film can be obtained by stretching the base film together with the base film in at least one direction. Furthermore, it has been found that a film having a coating film of the minimum necessary thickness can be produced uniformly and efficiently. That is, on a thermoplastic resin film that is unstretched or stretched only in one direction, (A) a mixture of alkyd resin and melamine and/or urea resin (B) a mixture of acrylic resin and melamine and/or urea resin (C) 100 A solution or aqueous dispersion of a resin selected from a water-dispersible polyurethane or a mixture of polyurethane polyurea and melamine having a % modulus of 80 Kg/ cm2 or more is coated and dried, followed by biaxial or perpendicular stretching direction. After stretching, aluminum or zinc is vacuum-deposited on a film obtained by heat treatment at a temperature range of 5 to 50°C below the melting point of the base film, and the deposited film is wound or laminated. This is an excellent method for manufacturing film capacitors. The base film in the present invention is a biaxially stretched thermoplastic resin film, and the target film is a film used in a film capacitor that requires improvement in heat and humidity resistance, but polyester film,
It is particularly effective for so-called crystalline resin films that undergo crystallization by biaxial stretching, such as polypropylene films. In particular, the most excellent small film capacitor can be obtained when applied to a biaxially stretched polyester film that satisfies the requirements for processing and final performance of the capacitor and is easy to obtain an extremely thin and uniform film. The coating resin in the present invention is a so-called thermosetting resin solution or dispersion that undergoes a curing reaction at room temperature or by heating after coating film formation, and is selected from the following three types. (A) Consists of a mixture of alkyd resin and melamine and/or urea resin, the mixing ratio of which is:
It can be appropriately determined depending on the type of base film and coating process. It is also possible to add nitrocellulose to adjust the viscosity if necessary. Mixtures of these resins can also be used dissolved in organic solvents or in water emulsion or aqueous form. (B) Consists of a mixture of acrylic resin and melamine and/or urea resin, the mixing ratio of which can be appropriately determined depending on the type of base film and the coating process. These mixtures can also be dissolved in organic solvents or used in the form of water emulsions or aqueous forms. (C) A mixture of water-dispersible polyurethane or polyurethane with a 100% modulus of 80 kg/cm 2 or more and melamine, the mixing ratio of which can be appropriately selected depending on the type of base film and coating process. Water-dispersible polyurethane is a so-called forced emulsification type polyurethane obtained by mixing and kneading a prepolymer with a terminal -NCO group with water, an emulsifier, and a chain extender to advance polymerization at the same time as emulsification and dispersion. So-called ionomer-type polyurethane (self-emulsifying polyurethane) obtained by introducing ionic groups into the chain to impart hydrophilicity and stably dispersing it in water without the aid of an emulsifier, or water-soluble polyurethane made mainly from water-soluble polyol. Polyurethane, etc., can be applied, but the 100% modulus of the coating film is 80
A relatively hard resin of Kg/cm 2 or more is required, and can be adjusted appropriately by adding melamine. Here, 100% modulus is a value measured in accordance with JISK6301. It is sufficient for the thickness of the coating layer to be 0.1 μm or less, and the thinner the better, as long as uniform coating is possible. For example, if the base film is 1.5μ, even 0.03μ is sufficiently effective, and it is not a good idea to make the coating layer thicker due to the need for smaller capacitors.
(The capacitance of the capacitor is inversely proportional to the thickness of the film.) The steps after metal vapor deposition in the present invention are not particularly limited, and all conventional metallized film capacitor manufacturing steps can be applied. Laminated film and lacquer coating, which are commonly used for winding or laminating vapor deposited films, are also possible. Although the capacitor of the present invention exhibits good moisture and heat resistance even without an outer layer such as a tape, a case, or a resin dip, longer-term stability can be obtained by providing such external protection. Next, a method for manufacturing the capacitor of the present invention will be described. The capacitor of the present invention can of course use a coating film obtained by the so-called post-coating method in which the above-mentioned specific coating agent is applied to a biaxially stretched thermoplastic resin film, but the aim is to reduce the size and increase the capacity. Therefore, it is not a good idea to uniformly apply a coating to the required minimum thickness. A so-called unstretched film obtained by melt-extruding a thermoplastic resin into a film is coated, and the coated film is stretched in two steps simultaneously or sequentially in the longitudinal and transverse directions, or uniaxial stretching is performed by previously stretching the unstretched film in one direction, longitudinally or transversely. An in-line coating method in which a film is coated, and then the base film and the coating layer are simultaneously stretched in at least one direction by coating the film and then at least before the final stretching in a direction perpendicular to the aforementioned direction, yields a uniform thin film with high productivity. This is the best method and the adhesion of the coating layer to the base film is significantly improved. The coating method is not particularly limited, and for example, gravure roll coating, inverse roll coating, reverse roll coating, Meyer bar coating, air knife coating, etc. can be employed. After the coating layer and the base film are co-stretched, it is necessary to heat-treat at a temperature of 5 to 50°C below the melting point of the base film. When the heat treatment temperature is lower than 50°C below the melting point, the thermal dimensional stability of the base film is insufficient, distortion occurs during the capacitor processing process, and the moisture resistance of the final product is poor. If heat treated at a temperature higher than 5°C below the melting point, breakage will easily occur during film production.
Mechanical properties are also reduced. The above-mentioned heat setting treatment simultaneously accelerates the curing of the coating resin in a short period of time and is useful for forming a highly durable thin film. Comparative Experimental Example The following various coating solutions were applied to an unstretched polyester film with a thickness of 25μ using an 80μ Maya bar and dried to obtain a coating film with a coating thickness of 0.4μ. These films were preheated to 80°C using a tenter-type simultaneous biaxial stretching machine, stretched simultaneously 3.0 times in length and 3.3 times in width, and then heat-treated at 220°C for 5 seconds under tension. A thin metal aluminum film with a thickness of approximately 500 Å was provided on the coated surface of the obtained film by vacuum evaporation. For comparison, an uncoated film was similarly biaxially stretched, heat set, and aluminum vapor deposited. 40 to evaluate the water resistance of these films.
It was immersed in warm water at ℃ for 24 hours, and changes in the state of the aluminum vapor-deposited film were observed. The results are shown in Table 1. Coating liquid (A) Aminoalkyd resin coating liquid Phthalkyd M641-50 (manufactured by Hitachi Chemical KK)/
A resin mixture consisting of melamine 20 (manufactured by Hitachi Chemical KK)/nitrocellulose in a weight ratio of 63/27/10 was mixed with toluene/ethyl acetate/cyclohexane in a 6/6/20 weight ratio.
Solid content concentration 10 in mixed solvent consisting of 2/2 weight ratio
Coating liquid obtained by dissolving it so that it becomes %. (B) Thermosetting acrylic resin coating liquid Hitaroid 2405/Hitaroid 2602/Melan 20
(all manufactured by Hitachi Chemical KK) in a 40/30/30 weight ratio toluene/xylene/
A coating liquid obtained by dissolving n-butanol in a mixed solvent with a weight ratio of 1/1/1 to a solid content concentration of 10%. (C) Water-dispersible urethane resin coating liquid This is an anionic aliphatic polyester urethane aqueous dispersion. INPRANIL-
A coating solution with a solid content concentration of 10% is obtained by adding 300 parts by weight of ion-exchanged water to 100 parts by weight of DLH (manufactured by Bayer AG, solid content 40%) and stirring well. The 100% modulus of the coating film is 50Kg/cm 2 . (D) Mixed coating solution of water-dispersible polyurethane and melamine 20 parts by weight of a 10% aqueous solution of trimethoxymethylmelamine was added to 100 parts by weight of the coating solution of (C) and stirred well. Coating liquid. 100% of coating film
Modulus is 105Kg/cm 2 .

【表】 実施例1および比較例1、2 ポリエチレンテレフタレートをフイルム状に溶
融押出して、厚さ14μの未延伸フイルムとなし、
このフイルムの両面に前記塗工液C(比較例1)
およびD(実施例1)をそれぞれ乾燥後の厚さで
片面0.5μとなるようコーテイングし、乾燥後テン
ター式同時二軸延伸機に連続的に送り込み予熱部
100℃、延伸部部85℃で縦3.0倍、横3.3倍に連続
的に同時二軸延伸し、150〜230℃の熱処理部を経
て、冷却後捲取つた。得られたフイルムは両面に
それぞれ0.05μの塗膜を有する全厚さ1.5μの両面
コーテイング二軸延伸ポリエステルフイルムであ
る。上記フイルムに蒸着巾9mm、マージン巾1mm
の縦条両面アルミ蒸着を施し、マイクロスリツト
して合わせフイルムとともに巻回し、電極を付し
て0.1μFのフイルムコンデンサーとした。 比較のために同じプロセスによつて二軸延伸さ
れたコーテイングなしの厚さ1.5μのポリエステル
フイルムを使つて同様に巻回型フイルムコンデン
サーを作つた(比較例2)。それぞれのコンデン
サーを40℃95%RHの雰囲気下に放置し、500時
間および1000時間後の静電容量の変化を調べた。
結果を表2に示す。
[Table] Example 1 and Comparative Examples 1 and 2 Polyethylene terephthalate was melt-extruded into a film to form an unstretched film with a thickness of 14μ,
The coating liquid C (Comparative Example 1) was applied to both sides of this film.
and D (Example 1) were coated so that the thickness after drying was 0.5μ on one side, and after drying, they were continuously fed into a tenter type simultaneous biaxial stretching machine and the preheating section
The film was simultaneously biaxially stretched 3.0 times in length and 3.3 times in width at 100°C and 85°C in the stretching section, passed through a heat treatment section at 150 to 230°C, cooled, and then rolled up. The resulting film is a double-sided coated biaxially oriented polyester film with a total thickness of 1.5μ with a coating of 0.05μ on each side. Vapor deposition width on the above film: 9mm, margin width: 1mm
A vertical strip of aluminum was vapor-deposited on both sides, micro-slit and wound together with a laminated film, and electrodes were attached to form a 0.1 μF film capacitor. For comparison, a wound type film capacitor was similarly made using an uncoated 1.5 μm thick polyester film that had been biaxially stretched by the same process (Comparative Example 2). Each capacitor was left in an atmosphere of 40°C and 95% RH, and changes in capacitance were examined after 500 and 1000 hours.
The results are shown in Table 2.

【表】 表2から明らかなようにコンデンサーの耐湿性
はアルミ蒸着フイルムの温水浸漬試験結果とよく
対応しており、本発明のコーテイングフイルムを
使用したフイルムコンデンサーは耐湿負荷寿命に
おいて著しく改善されていることがわかる。
[Table] As is clear from Table 2, the moisture resistance of the capacitor corresponds well with the hot water immersion test results of the aluminum vapor-deposited film, and the film capacitor using the coating film of the present invention has significantly improved moisture resistance and load life. I understand that.

Claims (1)

【特許請求の範囲】 1 (A) アルキツド樹脂とメラミンおよび/また
は尿素樹脂との混合物 (B) アクリル樹脂とメラミンおよび/または尿素
樹脂との混合物 (C) 100%モジユラスが80Kg/cm2以上の水分散性
ポリウレタンまたはポリウレタンポリ尿素とメ
ラミンとの混合物から選ばれた厚さ0.1μ以下の
熱硬化性樹脂被膜を表面に有する二軸延伸熱可
塑性樹脂フイルムにアルミニウムまたは亜鉛が
蒸着されており、フイルムを誘電体とし、金属
蒸着膜を電極としてなる耐湿熱性の優れたフイ
ルムコンデンサー。 2 二軸延伸熱可塑性フイルムがポリエステルフ
イルムである特許請求の範囲第1項記載のコンデ
ンサー。 3 未延伸または一方向にのみ延伸した熱可塑性
樹脂フイルムに (A) アルキツド樹脂とメラミンおよび/または尿
素樹脂との混合物 (B) アクリル樹脂とメラミンおよび/または尿素
樹脂との混合物 (C) 100%モジユラスが80Kg/cm2以上の水分散性
ポリウレタンまたはポリウレタンポリ尿素とメ
ラミンとの混合物から選ばれた樹脂の溶液また
は水分散液をコーテイング、乾燥し、続いて二
軸または前記延伸方向と直角方向に延伸した後
基体フイルムの融点下5〜50℃の温度範囲で熱
処理して得られたフイルムにアルミニウムまた
は亜鉛を真空蒸着し、該蒸着フイルムを巻回ま
たは積層することを特徴とする耐湿熱性の優れ
たフイルムコンデンサーの製造方法。
[Scope of Claims] 1 (A) A mixture of an alkyd resin and a melamine and/or a urea resin (B) A mixture of an acrylic resin and a melamine and/or a urea resin (C) A mixture with a 100% modulus of 80 Kg/cm 2 or more Aluminum or zinc is vapor-deposited on a biaxially stretched thermoplastic resin film having a thermosetting resin coating with a thickness of 0.1μ or less on the surface selected from water-dispersible polyurethane or a mixture of polyurethane polyurea and melamine. A film capacitor with excellent moisture and heat resistance, which uses a dielectric as a dielectric and a metal vapor-deposited film as an electrode. 2. The capacitor according to claim 1, wherein the biaxially stretched thermoplastic film is a polyester film. 3 A thermoplastic resin film that is unstretched or stretched only in one direction contains (A) a mixture of alkyd resin and melamine and/or urea resin (B) a mixture of acrylic resin and melamine and/or urea resin (C) 100% A solution or aqueous dispersion of a resin selected from a water-dispersible polyurethane or a mixture of polyurethane polyurea and melamine having a modulus of 80 kg/cm 2 or more is coated and dried, and then biaxially or in a direction perpendicular to the stretching direction. After stretching, aluminum or zinc is vacuum-deposited on a film obtained by heat treatment at a temperature range of 5 to 50°C below the melting point of the base film, and the deposited film is wound or laminated, and has excellent moisture and heat resistance. A method of manufacturing a film capacitor.
JP22892383A 1983-12-02 1983-12-02 Film capaciotr having excellent moisture thermal resistance and method of producing same Granted JPS60120511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22892383A JPS60120511A (en) 1983-12-02 1983-12-02 Film capaciotr having excellent moisture thermal resistance and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22892383A JPS60120511A (en) 1983-12-02 1983-12-02 Film capaciotr having excellent moisture thermal resistance and method of producing same

Publications (2)

Publication Number Publication Date
JPS60120511A JPS60120511A (en) 1985-06-28
JPH0259613B2 true JPH0259613B2 (en) 1990-12-13

Family

ID=16883970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22892383A Granted JPS60120511A (en) 1983-12-02 1983-12-02 Film capaciotr having excellent moisture thermal resistance and method of producing same

Country Status (1)

Country Link
JP (1) JPS60120511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091128A1 (en) * 2018-10-29 2020-05-07 성문전자주식회사 Metal deposition film, for film capacitor, used for driving motor of electric vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738926A (en) * 1991-11-29 1998-04-14 Diafoil Hoechst Company Limited Metallized polyester film capacitor
JPH05152159A (en) * 1991-11-29 1993-06-18 Diafoil Co Ltd Metallized polyester film capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091128A1 (en) * 2018-10-29 2020-05-07 성문전자주식회사 Metal deposition film, for film capacitor, used for driving motor of electric vehicle

Also Published As

Publication number Publication date
JPS60120511A (en) 1985-06-28

Similar Documents

Publication Publication Date Title
EP0129674B1 (en) Polyester foil with an adhesive copolyester coating
DE69634015T2 (en) Adhesive improved film and process for its preparation
JPH0259613B2 (en)
US6409862B1 (en) Process for producing biaxially oriented PET films and use of the same for SMD-technology film capacitors
JPH0259612B2 (en)
US3740246A (en) Process for improving polyamide films
JPS5915341B2 (en) High dielectric constant film
DE2736881A1 (en) FILM LAYER ARRANGEMENT IMPROVEMENTS
JP2663597B2 (en) Electrical insulation materials and capacitors
DE4000038A1 (en) Biaxially oriented polyester esp. PET film substrate - with specified surface tension, modulus and refractive index for good adhesion
US5442517A (en) Cellulose triacetate, thin film dielectric capacitor
JPH10130410A (en) Polyester film, metallized polyester film and film capacitor
JPS6410188B2 (en)
JP2692189B2 (en) Composite film
KR0151813B1 (en) Metal deposited biaxially oriented polyester film for capacitor
KR900003210B1 (en) Film capacitor
JPH0128493B2 (en)
JPS5826651B2 (en) Kinzokuka Film Capacitor Noseizouhouhou
KR100256550B1 (en) Biaxially oriented polyester film for capacitor
JPS6259636A (en) Polyester film for wiring board
DE2337295C3 (en) Process for the production of a tape-shaped electrophotographic recording material
JPS62173253A (en) Polyester film for wiring substrate
JPS6351529B2 (en)
JPH01204933A (en) Polymer film for metal deposition
JPS63224767A (en) Production of heat-resistant film or its similar