JPH0259429B2 - - Google Patents

Info

Publication number
JPH0259429B2
JPH0259429B2 JP57181983A JP18198382A JPH0259429B2 JP H0259429 B2 JPH0259429 B2 JP H0259429B2 JP 57181983 A JP57181983 A JP 57181983A JP 18198382 A JP18198382 A JP 18198382A JP H0259429 B2 JPH0259429 B2 JP H0259429B2
Authority
JP
Japan
Prior art keywords
tube
carbon
supply pipe
pipe
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57181983A
Other languages
Japanese (ja)
Other versions
JPS5970964A (en
Inventor
Takashi Kimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimoto Electric Co Ltd
Original Assignee
Kimoto Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimoto Electric Co Ltd filed Critical Kimoto Electric Co Ltd
Priority to JP18198382A priority Critical patent/JPS5970964A/en
Publication of JPS5970964A publication Critical patent/JPS5970964A/en
Publication of JPH0259429B2 publication Critical patent/JPH0259429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 本発明は、試料中に含まれる元素状炭素と有機
性炭素とを分離して分析する炭素および炭素化合
物の分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a carbon and carbon compound analysis device that separates and analyzes elemental carbon and organic carbon contained in a sample.

大気中に浮遊する粒子状炭素および粒子状炭素
化合物の混合物は、元素状炭素と、有機性炭素と
に分類される。この元素状炭素は、たとえばデイ
ーゼル排出ガスの黒煙として知られ、種々の燃料
の消費に伴なつて発生される。大気中にこの元素
状炭素が浮遊していると、光散乱が行なわれると
同時に光吸収も行なわれるので、視程障害ならび
に下層大気の熱的バランスをくずし気象変化を引
き起す可能性がある。さらにこの元素状炭素は、
大気中におけるSO2→SO4 2-反応の重要な触媒と
成る。また有機性炭素は、ベンツピレンなどに代
表されるように発ガン性を持つ場合もあり、健康
上有害である。このため大気中に含まれる前記混
合物の濃度を元素状炭素と有機性炭素とに分離し
て定量する必要が生じる。
Particulate carbon and mixtures of particulate carbon compounds floating in the atmosphere are classified as elemental carbon and organic carbon. This elemental carbon is known, for example, as black smoke from diesel exhaust gases, and is generated as a result of the consumption of various fuels. When elemental carbon is suspended in the atmosphere, it both scatters and absorbs light, which can impair visibility and disrupt the thermal balance of the lower atmosphere, causing weather changes. Furthermore, this elemental carbon is
It is an important catalyst for the SO 2 →SO 4 2- reaction in the atmosphere. Furthermore, organic carbon can be carcinogenic, as exemplified by benzpyrene, and is harmful to health. Therefore, it is necessary to separate and quantify the concentration of the mixture contained in the atmosphere into elemental carbon and organic carbon.

或る先行技術では、このような粒子状炭素およ
び粒子状炭素化合物の混合物の濃度の測定方法と
して、有機溶媒抽出による装置があるけれども、
抽出溶媒による抽出量の差が大きく、しかも抽出
操作が煩雑である欠点があつた。
Some prior art methods for measuring the concentration of particulate carbon and particulate carbon compound mixtures include devices using organic solvent extraction;
The disadvantages were that there was a large difference in the amount of extraction depending on the extraction solvent, and the extraction operation was complicated.

他の先行技術では、熱天びんを用いる熱分析装
置があるけれども、測定時間に長時間を要すると
ともに、炭素を含まない揮発性成分を有機性炭素
として誤まつて見積る可能性があり、さらに検出
感度に劣る欠点があつた。
Other prior art techniques include thermal analyzers that use thermal balances; however, they require long measurement times, may incorrectly estimate volatile components that do not contain carbon as organic carbon, and have low detection sensitivity. It had some disadvantages.

さらに他の先行技術では、水素炎イオン化検知
器を用いる分析装置があるけれども、有機性炭素
が検出されるだけであつた。
Still other prior art analyzers use flame ionization detectors, but only detect organic carbon.

本発明の目的は、上述の先行技術の欠点を解決
し、短時間に測定ができ、かつ検出感度が向上
し、しかも操作が容易である炭素および炭素化合
物の分析装置を提供することである。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a carbon and carbon compound analyzer that can perform measurements in a short time, has improved detection sensitivity, and is easy to operate.

本発明は、上下に延び、上方に開放し、底を有
する外筒管4と、 外筒管4内に同軸に挿入され、下端部は、外筒
管4の底から上方に間隔をあけて開口9を有する
内筒管5であつて、この内筒管5と外筒管4との
間に反応ガス経路25が形成され、反応ガス経路
25の下部は、外筒管4の底付近に連通してお
り、反応ガス経路25の上部は閉じられている、
そのような内筒管5と、 外筒管4の底に、内筒管5の下端部の開口9よ
りもわずかに上方まで充填される酸化触媒15
と、 内筒管5の上端部6付近に連通され、窒素ガス
を供給する窒素ガス供給管11と、 内筒管5内に、その内筒管5の上端部6付近か
ら挿入され、内筒管5の下端部の開口9付近で酸
化触媒15よりもわずかに上方まで延びて下方に
開口しており、酸素ガスを供給する酸素ガス供給
管12と、 外筒管4の外方で、外筒管4の上下方向の途中
位置に設けられ、内筒管5内方の熱分解領域23
を200〜600℃の一定温度に加熱するための第1加
熱器13と、 外筒管4の底付近に設けられ、内筒管5の下端
部の開口9よりもわずかに上方の酸化領域24を
600〜900℃の一定温度に加熱する第2加熱器14
と、 外筒管4の上下方向の途中位置で、反応ガス経
路25に連通して接続される反応ガス供給管26
と、 反応ガス供給管26に接続され、二酸化炭素ガ
スの定量を行う分析計27と、 内筒管5の上端部6を開閉可能に閉じる蓋7
と、 蓋7を挿通して内筒管5に挿入され、下端部に
試料10が設けられ、熱分解領域23から酸化領
域24まで、上下に変位自在である挿入棒16と
を含むことを特徴とする炭素および炭素化合物の
分析装置である。
The present invention includes an outer tube 4 that extends vertically, opens upward, and has a bottom; and an outer tube 4 that is inserted coaxially into the outer tube 4 and whose lower end is spaced upwardly from the bottom of the outer tube 4. The inner tube 5 has an opening 9, and a reaction gas path 25 is formed between the inner tube 5 and the outer tube 4, and the lower part of the reaction gas path 25 is located near the bottom of the outer tube 4. are in communication, and the upper part of the reaction gas path 25 is closed.
Such an inner tube 5 and an oxidation catalyst 15 filled at the bottom of the outer tube 4 to a point slightly above the opening 9 at the lower end of the inner tube 5.
a nitrogen gas supply pipe 11 that is connected to the vicinity of the upper end 6 of the inner cylindrical pipe 5 and supplies nitrogen gas; It extends slightly above the oxidation catalyst 15 near the opening 9 at the lower end of the pipe 5 and opens downward, and connects an oxygen gas supply pipe 12 that supplies oxygen gas, and an outer cylinder pipe 4 that extends outward from the outside. A pyrolysis region 23 is provided at a midway position in the vertical direction of the cylindrical tube 4 and is located inside the inner cylindrical tube 5.
a first heater 13 for heating the water to a constant temperature of 200 to 600°C; and an oxidation region 24 provided near the bottom of the outer tube 4 and slightly above the opening 9 at the lower end of the inner tube 5. of
A second heater 14 that heats to a constant temperature of 600 to 900°C
and a reaction gas supply pipe 26 that is connected to the reaction gas path 25 at an intermediate position in the vertical direction of the outer cylindrical pipe 4.
, an analyzer 27 that is connected to the reaction gas supply pipe 26 and performs quantitative determination of carbon dioxide gas, and a lid 7 that opens and closes the upper end 6 of the inner cylinder pipe 5 .
and an insertion rod 16 which is inserted into the inner tube 5 through the lid 7, has the sample 10 provided at its lower end, and is vertically movable from the pyrolysis region 23 to the oxidation region 24. This is an analyzer for carbon and carbon compounds.

以下、図面によつて本発明に従う実施例を説明
する。第1図は、本発明の一実施例の簡略化した
構成図である。炭素分析器1は、反応手段2と分
析手段3とを含む。反応手段2は、有底円筒状の
外筒管4と、外筒管4の内方に外筒管を密栓して
挿入される内筒管5と、内筒管5の上端部6に密
栓される蓋7と、蓋7に形成された孔8から前記
内筒管5の下端部開口9付近まで挿入される試料
10を釣支する挿入棒16と、前記内筒管5の上
端部6付近に連通される窒素ガス供給管11と、
内筒管5の上端部6付近から挿入され下端部開口
9付近まで延びる酸素ガス供給管12と、前記外
筒管4の上下方向のほぼ中心部で外筒管4を外囲
して設けられる第1加熱器13と、外筒管4の下
端部付近で外筒管4を外囲して設けられる第2加
熱器14とを含む。
Embodiments according to the present invention will be described below with reference to the drawings. FIG. 1 is a simplified configuration diagram of one embodiment of the present invention. Carbon analyzer 1 includes reaction means 2 and analysis means 3. The reaction means 2 includes an outer tube 4 having a cylindrical shape with a bottom, an inner tube 5 inserted into the outer tube 4 with the outer tube sealed, and an upper end 6 of the inner tube 5 with a seal. an insertion rod 16 for supporting a sample 10 inserted from a hole 8 formed in the lid 7 to near the lower end opening 9 of the inner cylindrical tube 5; and an upper end 6 of the inner cylindrical tube 5. a nitrogen gas supply pipe 11 connected to the vicinity;
An oxygen gas supply pipe 12 is inserted from near the upper end 6 of the inner cylindrical pipe 5 and extends to near the lower end opening 9, and an oxygen gas supply pipe 12 is provided surrounding the outer cylindrical pipe 4 at approximately the center of the outer cylindrical pipe 4 in the vertical direction. It includes a first heater 13 and a second heater 14 provided near the lower end of the outer tube 4 to surround the outer tube 4 .

前記外筒管4の底部には、前記内筒管5の開口
9よりもわずかに上方までたとえば白金化酸化銅
から成る酸化触媒15が充填される。内筒管5と
外筒管4との間には、間隔があり、反応ガス経路
25が形成される。前記試料10は、挿入棒16
の先端に釣支され、移動される。挿入棒16の先
端部には、試料10の温度を検出するための、た
とえばクロメル・アロメル熱電対17が付設され
る。試料10は、分析すべき大気を等速吸引する
エアサンプラに取付けられるたとえば石英繊維
紙などのフイルタに捕集された粒子状炭素および
粒子状炭素化合物の混合物から成る。
The bottom of the outer cylindrical tube 4 is filled with an oxidation catalyst 15 made of, for example, platinized copper oxide, up to a point slightly above the opening 9 of the inner cylindrical tube 5. There is a gap between the inner tube 5 and the outer tube 4, and a reaction gas path 25 is formed. The sample 10 is inserted into the insertion rod 16
A fishing rod is attached to the tip of the rod and the object is moved. For example, a chromel-allomel thermocouple 17 is attached to the tip of the insertion rod 16 to detect the temperature of the sample 10. Sample 10 consists of a mixture of particulate carbon and particulate carbon compounds collected on a filter, such as quartz fiber paper, attached to an air sampler that draws isokinetically the atmosphere to be analyzed.

試料10を釣支する挿入棒16は、内筒管5の
内方で上下移動され、このとき、前記孔8と気密
に保たれる。前記蓋7には、排気口18が設けら
れる。前記窒素ガス供給管11の上流側には、電
磁弁19が介在され、電磁弁19の直下流には、
供給する窒素ガス流量を制御するロタメータ20
が介在される。酸素ガス供給管12にも、窒素ガ
ス供給管11と同様の構成で、電磁弁21とロタ
メータ22とが介在される。
The insertion rod 16 that suspends the sample 10 is moved up and down inside the inner tube 5, and at this time is kept airtight with the hole 8. The lid 7 is provided with an exhaust port 18 . A solenoid valve 19 is interposed on the upstream side of the nitrogen gas supply pipe 11, and immediately downstream of the solenoid valve 19,
Rotameter 20 that controls the flow rate of nitrogen gas to be supplied
is intervened. The oxygen gas supply pipe 12 also has a configuration similar to that of the nitrogen gas supply pipe 11, and a solenoid valve 21 and a rotameter 22 are interposed therebetween.

第1加熱器13は、第1加熱器13の内方の内
筒管5内方の熱分解領域23の温度範囲が200〜
600℃の一定温度に保持されるように設定される。
第2加熱器14は、内筒管5の開口9よりわずか
に上方の酸化領域24の温度範囲が600℃を超え
る一定温度に保持されるように設定される。
The first heater 13 has a temperature range of a pyrolysis region 23 inside the inner cylindrical tube 5 of the first heater 13 of
It is set to maintain a constant temperature of 600℃.
The second heater 14 is set so that the temperature range of the oxidized region 24 slightly above the opening 9 of the inner tube 5 is maintained at a constant temperature exceeding 600°C.

分析手段3は大略的には、前記外筒管4の上下
方向のほぼ中心部に前記反応ガス経路25に連通
される反応ガス供給管26と、反応ガス供給管2
6に連通される非分散形赤外分析計27と、反応
ガスを吸引するためのポンプ28とを含む。非分
散形赤外分析計27は、反応ガス供給管26から
供給される反応ガス中の二酸化炭素ガスの定量を
行なう。非分散形赤外分析計27の直上流側の反
応ガス供給管26には、二酸化炭素ガスの定量を
妨害する水分を除去するために除湿器29が設け
られ、窒素ガスが矢符30に示すように反応ガス
供給管26の外周を流過する。反応ガスを一定量
非分散形赤外分析計27に供給するために、非分
散形赤外分析計27とポンプ28との間には、臨
界オリフイス31が介在される。
Roughly speaking, the analysis means 3 includes a reaction gas supply pipe 26 connected to the reaction gas path 25 at approximately the center in the vertical direction of the outer cylindrical tube 4, and a reaction gas supply pipe 2.
6 and a pump 28 for sucking the reaction gas. The non-dispersive infrared analyzer 27 measures carbon dioxide gas in the reaction gas supplied from the reaction gas supply pipe 26. A dehumidifier 29 is installed in the reaction gas supply pipe 26 immediately upstream of the non-dispersive infrared analyzer 27 in order to remove moisture that interferes with the determination of carbon dioxide gas, and nitrogen gas is supplied to the reaction gas supply pipe 26 as shown by the arrow 30. It flows around the outer periphery of the reaction gas supply pipe 26 as shown in FIG. A critical orifice 31 is interposed between the non-dispersive infrared analyzer 27 and the pump 28 in order to supply a constant amount of reaction gas to the non-dispersive infrared analyzer 27 .

外筒管4は上下に延び、上方に開放し、底を有
する。内筒管5は外筒管4内に同軸に挿入され、
上端部6が、開閉可能に蓋7によつて閉じられ
る。反応ガス経路25の上部は閉じられている。
第1加熱器13は、外筒管4の上下方向の途中位
置に設けられる。第2加熱器14は、外筒管4の
底付近に設けられる。反応ガス供給管26は、外
筒管4の上下方向の途中位置で、前述のように反
応ガス経路25に連通して接続される。挿入棒1
6の下端部である前記先端部には、試料10が設
けられ、少なくとも、熱分解領域23から酸化領
域24まで、上下に変位自在である。
The outer cylindrical tube 4 extends vertically, is open upward, and has a bottom. The inner tube 5 is coaxially inserted into the outer tube 4,
The upper end 6 is closed by a lid 7 in an openable and closable manner. The upper part of the reaction gas path 25 is closed.
The first heater 13 is provided at a midway position in the vertical direction of the outer cylindrical tube 4. The second heater 14 is provided near the bottom of the outer cylindrical tube 4. The reaction gas supply pipe 26 is connected to the reaction gas path 25 at a midway position in the vertical direction of the outer tube 4 as described above. Insertion rod 1
A sample 10 is provided at the tip, which is the lower end of the sample 6, and is vertically movable from at least the pyrolysis region 23 to the oxidation region 24.

捕集された粒子状炭素および粒子状炭素化合物
の混合物を元素状炭素と有機性炭素とに分離して
分析するにあたつては、熱分解領域23の温度を
たとえば450℃とし、酸化領域24の温度をたと
えば800℃とする。この熱分解領域の温度を200℃
〜600℃の範囲で適当に選ぶことによつて、比較
的低沸点の有機性炭素成分と比較的高沸点の有機
性炭素成分とに分別することが可能である。酸化
領域23の温度は、高温になる程酸化反応に要す
る時間が短かくて済むけれども、炭素分析器1の
保護の立場から900℃を超えないように設定され
る。
When separating and analyzing the collected mixture of particulate carbon and particulate carbon compounds into elemental carbon and organic carbon, the temperature of the thermal decomposition zone 23 is set to 450° C., for example, and the temperature of the oxidation zone 24 is set to 450°C. For example, let the temperature be 800℃. The temperature of this pyrolysis area is 200℃
By appropriately selecting the temperature within the range of ~600°C, it is possible to separate the organic carbon component with a relatively low boiling point and the organic carbon component with a relatively high boiling point. The temperature of the oxidation region 23 is set not to exceed 900° C. from the standpoint of protecting the carbon analyzer 1, although the higher the temperature, the shorter the time required for the oxidation reaction.

前記窒素ガス供給管11の電磁弁19が開か
れ、ロタメータ20が調整されることによつて一
定流量の不活性ガスとしての窒素ガスが矢符32
で示すように内筒管5内を流過する。前記酸素供
給管12からは、酸化領域24に酸素ガスが供給
される。ポンプ28が駆動されてこれらの窒素ガ
スと酸素ガスは、反応ガス経路25を経由して分
析手段3のポンプ28から排出される。
The solenoid valve 19 of the nitrogen gas supply pipe 11 is opened and the rotameter 20 is adjusted, so that a constant flow rate of nitrogen gas as an inert gas is supplied to the arrow 32.
The liquid flows through the inner tube 5 as shown in FIG. Oxygen gas is supplied from the oxygen supply pipe 12 to the oxidation region 24 . The pump 28 is driven, and these nitrogen gas and oxygen gas are discharged from the pump 28 of the analysis means 3 via the reaction gas path 25.

粒子状炭素および粒子状炭素化合物の混合物か
ら成る試料10が仮想線33で示すように熱分解
領域23に挿入棒に釣支されて配置される。前記
混合物のうち揮発性成分は、揮発され、窒素ガス
とともに酸化領域24に流過され、酸化触媒15
の作用によつて酸素ガスと反応し、第1の二酸化
炭素ガスが生成される。この生成した第1の二酸
化炭素ガスは、反応ガス経路25、反応ガス供給
管26を経由して非分散形赤外分析計27に導入
され、定量される。
A sample 10 consisting of a mixture of particulate carbon and particulate carbon compound is placed in the pyrolysis zone 23 as shown by phantom line 33 and suspended from an insertion rod. Volatile components of the mixture are volatilized and flowed together with nitrogen gas into the oxidation region 24, where they are passed through the oxidation catalyst 15.
The first carbon dioxide gas is generated by reacting with oxygen gas. The generated first carbon dioxide gas is introduced into a non-dispersive infrared analyzer 27 via a reaction gas path 25 and a reaction gas supply pipe 26, and is quantified.

次いで、挿入棒16を第1図の下方に移動して
実線で示す位置に試料10を配置する。試料10
が酸化領域24に配置されると、前記混合物のう
ち非揮発性成分は、酸素ガスと酸化触媒15の作
用によつて反応し、第2の二酸化炭素ガスが生成
される。この生成した第2の二酸化炭素ガスは、
前述の第1の二酸化炭素ガスと同様に、非分散形
赤外分析計27によつて定量される。
Next, the insertion rod 16 is moved downward in FIG. 1 to place the sample 10 at the position shown by the solid line. Sample 10
is placed in the oxidation region 24, the non-volatile components of the mixture react with oxygen gas under the action of the oxidation catalyst 15, and a second carbon dioxide gas is produced. This generated second carbon dioxide gas is
Similar to the first carbon dioxide gas described above, it is quantified by the non-dispersive infrared analyzer 27.

第2図は、第1図に示した炭素分析器1によつ
て測定された結果を示すグラフである。第2図に
実線で示す曲線34は、非分散形赤外分析計27
によつて測定された二酸化炭素ガスの吸収強度曲
線であり、破線で示す曲線35は試料10の温度
曲線である。曲線34のピーク36は前記第1の
二酸化炭素の吸収を示し、ピーク37は前記第2
の二酸化炭素ガスの吸収を示す。したがつて曲線
34を積分して、ピーク36を含む面積から前記
混合物のうち揮発性成分の有機性炭素が定量さ
れ、ピーク37を含む面積から前記混合物のうち
非揮発性成分の元素状炭素が定量される。
FIG. 2 is a graph showing the results measured by the carbon analyzer 1 shown in FIG. A curve 34 shown as a solid line in FIG.
The curve 35 shown by the broken line is the temperature curve of the sample 10. The peak 36 of the curve 34 indicates the absorption of the first carbon dioxide, and the peak 37 indicates the absorption of the second carbon dioxide.
shows the absorption of carbon dioxide gas. Therefore, by integrating the curve 34, the organic carbon, which is a volatile component of the mixture, is determined from the area that includes the peak 36, and the elemental carbon, which is a non-volatile component, of the mixture, is determined from the area that includes the peak 37. Quantitated.

この炭素分析器1によれば、たとえば0.1μgオ
ーダの炭素および炭素化合物を検出することがで
きる。また測定に要する時間は2〜3分程度であ
る。
According to this carbon analyzer 1, carbon and carbon compounds on the order of 0.1 μg can be detected, for example. Further, the time required for measurement is about 2 to 3 minutes.

上述の実施例では、分析手段3に二酸化炭素ガ
スを分析するために非分散形赤外分析計27が用
いられたけれども、本発明のさらに他の実施例で
は、非分散形赤外分析計27に限ることはなく、
他の二酸化炭素ガスの分析計が用いられてもよ
い。
In the above embodiment, the non-dispersive infrared analyzer 27 was used as the analysis means 3 to analyze carbon dioxide gas, but in still another embodiment of the present invention, the non-dispersive infrared analyzer 27 Not limited to,
Other carbon dioxide gas analyzers may also be used.

上述の実施例では、大気中に浮遊する粒子状炭
素および粒子状炭素化合物の混合物の分析方法に
ついて述べたけれども、本発明は、大気中に浮遊
する前記混合物の分析方法に限ることはなく、そ
の他の炭素および炭素化合物に関連して実施する
ことができる。たとえば、湖沼水を石英繊維紙
によつて過して、湖沼水中に含まれる前記混合
物を試料10として分析することができる。
Although the above embodiment describes a method for analyzing a mixture of particulate carbon and particulate carbon compounds floating in the air, the present invention is not limited to a method for analyzing the mixture floating in the air, and may be applied to other methods. carbon and carbon compounds. For example, lake water can be passed through quartz fiber paper and the mixture contained in the lake water can be analyzed as sample 10.

以上のように本発明によれば、分析すべき粒子
状炭素および粒子状炭素化合物の混合物を熱分解
領域から酸化領域に移動するようにしたので、短
時間に測定ができ、かつ検出感度が向上し、しか
も操作が容易である炭素および炭素化合物の分析
装置が得られる。
As described above, according to the present invention, since the mixture of particulate carbon and particulate carbon compounds to be analyzed is moved from the thermal decomposition region to the oxidation region, measurement can be performed in a short time and detection sensitivity is improved. However, an apparatus for analyzing carbon and carbon compounds that is easy to operate can be obtained.

特に本発明によれば、試料の揮発性成分と非揮
発性成分とを個別的に定量することができるよう
になる。
In particular, according to the present invention, volatile components and non-volatile components of a sample can be individually quantified.

しかも不活性ガスとして、安価な窒素ガスを用
い、酸素ガス供給管12は、酸化触媒15よりも
わずかに上方に酸素ガスを供給するので、揮発性
成分を輸送するための窒素ガスが不所望に熱分解
領域23において酸素と反応することを確実に防
ぐことができ、こうして揮発性成分の定量を高精
度で行うことができる。蓋7には挿入棒16が挿
通しており、この蓋7は内筒管5の上端部6を開
閉可能であるので、蓋7を内筒管5から取外して
試料10の装着が容易であり、また挿入棒16の
操作が容易である。
Moreover, since cheap nitrogen gas is used as the inert gas and the oxygen gas supply pipe 12 supplies oxygen gas slightly above the oxidation catalyst 15, the nitrogen gas used to transport volatile components is undesirably used. Reaction with oxygen in the thermal decomposition region 23 can be reliably prevented, and thus volatile components can be quantified with high precision. An insertion rod 16 is inserted through the lid 7, and since the lid 7 can open and close the upper end 6 of the inner tube 5, it is easy to remove the lid 7 from the inner tube 5 and attach the sample 10. Moreover, the insertion rod 16 is easy to operate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の簡略化した構成
図、第2図は第1図に示した炭素分析器1によつ
て測定された結果を示すグラフである。 1……炭素分析器、2……反応手段、3……分
析手段、4……外筒管、5……内筒管、10……
試料、11……窒素ガス供給管、12……酸素ガ
ス供給管、13,14……加熱器、15……酸化
触媒、16……挿入棒、23……熱分解領域、2
4……酸化領域、27……非分散形赤外分析計。
FIG. 1 is a simplified configuration diagram of an embodiment of the present invention, and FIG. 2 is a graph showing the results measured by the carbon analyzer 1 shown in FIG. DESCRIPTION OF SYMBOLS 1... Carbon analyzer, 2... Reaction means, 3... Analysis means, 4... Outer tube, 5... Inner tube, 10...
Sample, 11...Nitrogen gas supply pipe, 12...Oxygen gas supply pipe, 13, 14...Heater, 15...Oxidation catalyst, 16...Insertion rod, 23...Pyrolysis region, 2
4...Oxidation region, 27...Non-dispersive infrared analyzer.

Claims (1)

【特許請求の範囲】 1 上下に延び、上方に開放し、底を有する外筒
管4と、 外筒管4内に同軸に挿入され、下端部は、外筒
管4の底から上方に間隔をあけて開口9を有する
内筒管5であつて、この内筒管5と外筒管4との
間に反応ガス経路25が形成され、反応ガス経路
25の下部は、外筒管4の底付近に連通してお
り、反応ガス経路25の上部は閉じられている、
そのような内筒管5と、 外筒管4の底に、内筒管5の下端部の開口9よ
りもわずかに上方まで充填される酸化触媒15
と、 内筒管5の上端部6付近に連通され、窒素ガス
を供給する窒素ガス供給管11と、 内筒管5内に、その内筒管5の上端部6付近か
ら挿入され、内筒管5の下端部の開口9付近で酸
化触媒15よりもわずかに上方まで延びて下方に
開口しており、酸素ガスを供給する酸素ガス供給
管12と、 外筒管4の外方で、外筒管4の上下方向の途中
位置に設けられ、内筒管5内方の熱分解領域23
を200〜600℃の一定温度に加熱するための第1加
熱器13と、 外筒管4の底付近に設けられ、内筒管5の下端
部の開口9よりもわずかに上方の酸化領域24を
600〜900℃の一定温度に加熱する第2加熱器14
と、 外筒管4の上下方向の途中位置で、反応ガス経
路25に連通して接続される反応ガス供給管26
と、 反応ガス供給管26に接続され、二酸化炭素ガ
スの定量を行う分析計27と、 内筒管5の上端部6を開閉可能に閉じる蓋7
と、 蓋7を挿通して内筒管5に挿入され、下端部に
試料10が設けられ、熱分解領域23から酸化領
域24まで、上下に変位自在である挿入棒16と
を含むことを特徴とする炭素および炭素化合物の
分析装置。
[Scope of Claims] 1. An outer cylindrical tube 4 that extends vertically, is open upward, and has a bottom, and is inserted coaxially into the outer cylindrical tube 4, and the lower end is spaced upward from the bottom of the outer cylindrical tube 4. The inner tube 5 has an opening 9 at a distance, and a reactive gas path 25 is formed between the inner tube 5 and the outer tube 4 . It communicates near the bottom, and the upper part of the reaction gas path 25 is closed.
Such an inner tube 5 and an oxidation catalyst 15 filled at the bottom of the outer tube 4 to a point slightly above the opening 9 at the lower end of the inner tube 5.
a nitrogen gas supply pipe 11 that is connected to the vicinity of the upper end 6 of the inner cylindrical pipe 5 and supplies nitrogen gas; It extends slightly above the oxidation catalyst 15 near the opening 9 at the lower end of the pipe 5 and opens downward, and connects an oxygen gas supply pipe 12 that supplies oxygen gas, and an outer cylinder pipe 4 that extends outward from the outside. A pyrolysis region 23 is provided at a midway position in the vertical direction of the cylindrical tube 4 and is located inside the inner cylindrical tube 5.
a first heater 13 for heating to a constant temperature of 200 to 600°C; and an oxidation region 24 provided near the bottom of the outer tube 4 and slightly above the opening 9 at the lower end of the inner tube 5. of
A second heater 14 that heats to a constant temperature of 600 to 900°C
and a reaction gas supply pipe 26 that is connected to the reaction gas path 25 at an intermediate position in the vertical direction of the outer cylindrical pipe 4.
, an analyzer 27 that is connected to the reaction gas supply pipe 26 and performs quantitative determination of carbon dioxide gas, and a lid 7 that opens and closes the upper end 6 of the inner cylinder pipe 5 .
and an insertion rod 16 which is inserted into the inner tube 5 through the lid 7, has a sample 10 at its lower end, and is vertically movable from the pyrolysis region 23 to the oxidation region 24. Analyzer for carbon and carbon compounds.
JP18198382A 1982-10-15 1982-10-15 Analysis of carbon and carbon compound Granted JPS5970964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18198382A JPS5970964A (en) 1982-10-15 1982-10-15 Analysis of carbon and carbon compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18198382A JPS5970964A (en) 1982-10-15 1982-10-15 Analysis of carbon and carbon compound

Publications (2)

Publication Number Publication Date
JPS5970964A JPS5970964A (en) 1984-04-21
JPH0259429B2 true JPH0259429B2 (en) 1990-12-12

Family

ID=16110267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18198382A Granted JPS5970964A (en) 1982-10-15 1982-10-15 Analysis of carbon and carbon compound

Country Status (1)

Country Link
JP (1) JPS5970964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014064985A1 (en) * 2012-10-23 2016-09-08 佐藤 綾子 Unified quantitative system for carbon and nitrogen using calibration curves with organic compounds

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM579721U (en) * 2019-02-20 2019-06-21 總翔企業股份有限公司 Water sample analyzing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661458U (en) * 1979-10-16 1981-05-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014064985A1 (en) * 2012-10-23 2016-09-08 佐藤 綾子 Unified quantitative system for carbon and nitrogen using calibration curves with organic compounds

Also Published As

Publication number Publication date
JPS5970964A (en) 1984-04-21

Similar Documents

Publication Publication Date Title
US4525328A (en) Carbon, hydrogen, and nitrogen analyzer
Salonen A versatile method for the rapid and accurate determination of carbon by high temperature combustion 1
US6764857B2 (en) Systems and methods for measuring nitrate levels
US4234315A (en) Gas chromatographic analysis method and apparatus
US4352779A (en) Chemiluminescent sulfur detection apparatus and method
US4077774A (en) Interferent-free fluorescence detection of sulfur dioxide
US7497991B2 (en) Reagent tube for top loading analyzer
US3838972A (en) Method and apparatus for sulfuric acid aerosol analysis
US4622009A (en) Carbon, hydrogen, and nitrogen analyzer
US4678756A (en) Chemiluminescent sulfur detection apparatus and method
Stedman et al. Analytical applications of gas phase chemiluminescence
US4573910A (en) Carbon, hydrogen, and nitrogen analyzer
JPS5672332A (en) Analyzer for carbon in metal
GB2053460A (en) Detecting metal carbonyls by chemiluminescence
JPH0259429B2 (en)
JP4527110B2 (en) Analyzer having variable volume type ballast chamber and analysis method
US3305318A (en) Rapid carbon determination
JP3211462B2 (en) Carbon measuring device
US3589868A (en) Apparatus for quantitative analysis of a particular constituent of a sample
US20040213700A1 (en) Sampler for automatic elemental analysers
Goulden Automated determination of carbon in natural waters
CN212228730U (en) Carbon nitrogen sulphur measuring equipment
Kirsten et al. Rapid, automatic, high-precision method for micro, ultramicro, and trace determinations of sulfur
US3549262A (en) Apparatus for quantitative analysis of a particular constituent of a sample
SU905784A1 (en) Device for determination of content in rocks