JPH0259179B2 - - Google Patents

Info

Publication number
JPH0259179B2
JPH0259179B2 JP58009913A JP991383A JPH0259179B2 JP H0259179 B2 JPH0259179 B2 JP H0259179B2 JP 58009913 A JP58009913 A JP 58009913A JP 991383 A JP991383 A JP 991383A JP H0259179 B2 JPH0259179 B2 JP H0259179B2
Authority
JP
Japan
Prior art keywords
phenolic resin
parts
weight
composition
tar pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58009913A
Other languages
Japanese (ja)
Other versions
JPS59136347A (en
Inventor
Michio Inagaki
Masayuki Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Durez Co Ltd
Original Assignee
Sumitomo Durez Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Durez Co Ltd filed Critical Sumitomo Durez Co Ltd
Priority to JP58009913A priority Critical patent/JPS59136347A/en
Publication of JPS59136347A publication Critical patent/JPS59136347A/en
Publication of JPH0259179B2 publication Critical patent/JPH0259179B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は微細なモザイク状の異方性構造組織を
有する炭素化物を得るための組成物に関するもの
である。 炭素化物は耐熱性、耐摩耗性、耐薬品性などの
特性にすぐれているため、いろいろの用途に適用
されている。従来から炭素構造を形成する原料と
しては、タールピツチが主として使用されて来
た。一方、炭素構造を形成する原料としてのフエ
ノール樹脂がある。フエノール樹脂は他の材料に
較べて炭素化後の残炭率が大きい。このためにそ
の炭素化物は緻密性に勝り、強度、耐摩耗性、耐
薬品性などの諸特性にすぐれている、フエノール
樹脂にはいろいろの種類があるが、用途や使用条
件に最も適合したものを選択して使用することが
できる、汎用樹脂であるため品質が一定化してい
る、などのすぐれた特長を有している。 しかしながらフエノール樹脂から得られる炭素
化物はタールピツチから得られる炭素化物に較べ
て高温雰囲気に曝された時の耐酸化性が劣るなど
の欠点も有している。またタールピツチとフエノ
ール樹脂を単純に機械的混合した後に得られる炭
素化物では残炭率の増加を促進する効果のある場
合もあるが、炭素化物自体はタールピツチから生
じた流れ構造を伴う大きな異方性組織をもつた炭
素化物部分とフエノール樹脂から生じた等方性組
織をもつた炭素化物部分との不均一な混合物とな
る。このような混合物は低品位なため実用化され
る分野が限定されていたのが実情であつた。 一般に炭素化物を偏光顕微鏡により観察する
と、タールピツチの炭素化物は流れ構造を伴う大
きな異方性組織であり、またフエノール樹脂単独
の炭素化物は等方性組織である。またフエノール
樹脂とタールピツチを単純に機械的混合した後、
これを炭素化して得られる炭素化物では微細なモ
ザイク状の異方性組織を均一に形成することは全
く期待できなかつたのが事実である。すなわち、
局部的には微細モザイク状の異方性組織を生成し
ていることが観察されても、広範囲にわたり微細
なモザイク状組織の形成が至難であり、産業上有
用な資材として実用化するのは不可能であつた。 本来タールピツチを炭素化して生成する大きな
モザイク状異方性組織は、空気酸化がされにくい
し、骨材へのヌレも良好であるが、亀裂が入りや
すく、このため強度が低いという欠点が致命傷で
あつた。これがタールピツチによる炭素化物の実
用化に大きな障害をもたらしてきた。 発明者らは上述の欠点を克服するため鋭意研究
した結果、芳香族炭化水素系に全体の50重量以上
可溶なタールピツチとフエノール樹脂をそれぞれ
が可溶な溶媒から成る溶解物を炭素化すると、均
一で微細な異方性モザイク状組織をもつ炭素化物
が生成するという新規な知見を得た。このように
して生成した炭素化物は等方性炭素化物成分であ
るフエノール樹脂が介在するにも拘らず、等方性
炭素化物の欠点である脆さも激減することも見出
した。 本発明による均一で微細なモザイク状の異方性
組織が炭素化物の強度、耐摩耗性、耐空気酸化な
どの特性の向上をもたらし、それらの特性に要求
されるいろいろな用途に広く有用である。 ここで本発明による組成物を構成する物質の特
徴を述べる。 まず本発明によるタールピツチの分別である
が、タールピツチを分別するための芳香族炭化水
素系溶剤としてはベンゼン、トルエン、キシレ
ン、トリメチルベンゼン、テトラメチルベンゼ
ン、エチルベンゼン、プロピルベンゼン、クメ
ン、スチレンなどの単独使用または併用が可能で
ある。特にベンゼン、トルエン、キシレンの単独
使用または併用が好ましい。 本発明を好ましく実施するには、このようにタ
ールピツチを分別してみて芳香族炭化水素系溶剤
にタールピツチの50重量%以上溶解するものを使
用すればよい。本発明をさらに好ましく実施する
には、分別により芳香族炭化水素系溶剤に全量溶
解するものを使用する。タールピツチを分別して
みて芳香族系炭化水素系溶剤にタールピツチの50
重量%未満しか溶解しないものは、不溶分が多す
ぎて、これが炭素化物の組織を不均一にするた
め、使用するのを避けるべきである。 そして、本発明に使用されるタールピツチの種
類としては、石炭タールピツチ、石油タールピツ
チ、あるいは両者の混合物が好ましい。本発明に
使用されるフエノール樹脂はレゾール型フエノー
ル樹脂、ノボラツク型フエノール樹脂、あるいは
両者の混合物が使用できるが、これらのうちレゾ
ール型フエノール樹脂が好ましい。このようなタ
ールピツチとフエノール樹脂とのそれぞれが、可
溶な有機溶媒は、常温で液体であるアルコール
基、ケトン基、エステル基、エーテル基をもつ化
合物ないし炭化水素、含窒素化合物から選ばれた
1種以上を含む溶媒であるが、効果が高いのはこ
れら2種以上の混合溶媒の場合であることが多
い。 本発明の微細異方性組織を持つ炭素化物形成用
組成物に使用されるタールピツチ、フエノール樹
脂および溶媒の配合比率は芳香族炭化水素系溶剤
に50重量%以上可溶なタールピツチ20〜80重量%
とフエノール樹脂80〜20重量%の合計重量が100
重量部に対して、それぞれが可溶な有機溶媒が10
重量部以上である。なかでも芳香族炭化水素系溶
剤に50重量%以上可溶なタールピツチ30〜70重量
%とレゾール型フエノール樹脂70〜30重量%(不
揮発分換算)、あるいは上述のタールピツチ40〜
80重量%とノボラツク型フエノール樹脂60〜20重
量%とした夫々の場合の合計重量が100重量部に
対し、上述のタールピツチおよびフエノール樹脂
が可溶な溶媒が20重量部以上であることが好まし
い。 もし、芳香族炭化水素系溶剤に50重量%以上可
溶なタールピツチが20〜80重量%の範囲外にあ
り、またフエノール樹脂が80〜20重量%の範囲外
にある合計重量が100重量部に対してそれぞれが
可溶な有機溶媒が10重量部を下回る場合は、その
炭素化物は広範囲に均一に微細な異方性組織を生
成することがなく、仮に生成することがあつても
局部的な組織にとどまるだけであるため、従来の
フエノール樹脂やタールピツチの炭素化物に較べ
て何ら特徴がない。 本発明のフエノール樹脂の製造に使用するフエ
ノール類にはフエノール、クレゾール、キシレノ
ール、エチルフエノール、プロピルフエノール、
プロペニルフエノール、ブチルフエノール、オク
チルフエノール、ノニルフエノール、フエニルフ
エノール、カテコール、レゾルシン、ハイドロキ
ノンおよびビスフエノールAなどがあり、またこ
れらのフエノール類を製造する時に生成する副生
物を伴うことも本発明の実施に含まれる。一方、
このフエノール樹脂の製造に使用するアルデヒド
類としてはホルムアルデヒド、パラホルムアルデ
ヒド、トリオキサン、ポリオキシメチレンなどを
使用できるが要はホルムアルデヒドを所望する量
だけ発現する組成物でさえあればこの発明の目的
に任意に使用できる。 また、フエノール類Pとアルデヒド類Fとの使
用比率(モル比:F/P)は、レゾール型フエノ
ール樹脂製造の場合は0.8〜2.0が好ましく、さら
に好ましくは1.0〜1.6である。一方、ノボラツク
型フエノール樹脂製造の場合はその使用比率は
0.55〜0.90が好ましく、さらに好ましくは0.65〜
0.85である。レゾール型フエノール樹脂の製造に
使用する触媒は、ナトリウム、カリウム、リチウ
ムなどのアルカリ金属の酸化物や水酸化物や炭酸
塩、カルシウム、マグネシウム、バリウムなどの
アルカリ土類金属の酸化物や水酸化物、さらには
アンモニア、トリエチルアミンやトリエタノール
アミンなどのアミン化合物、ナフテン酸鉛、ナフ
テン酸亜鉛、ナフテン酸鉛、ナフテン酸ニツケ
ル、ナフテン酸コバルトなどのナフテン酸金属塩
などを単独使用または併用することが出来る。一
方、ノボラツク型フエノール樹脂の製造に使用す
る触媒は、塩酸、硫酸、りん酸などの無機酸、お
よび、しゆう酸、フエノールスルホン酸、パラト
ルエンスルホン酸、メタキシレンスルホン酸など
の有機酸、さらに酢酸亜鉛などの有機金属塩から
選ばれた1種以上の物質を使用する。 本発明による組成物はタールピツチが特定の組
成であること、フエノール樹脂がそのタールピツ
チの粘結作用を高めること、および、これら両者
が可溶な有機溶媒の存在で均一に分配されること
から、従来の炭素化物用原料にくらべて広範囲に
均一に微細なモザイク状の異方性組織をもつ炭素
化物が簡単に、しかも確実に生成できる。したが
つて、本発明の構成成分なればこそ産業上有用な
特性をもつた炭素化物が得られるのである。この
ため、生成した炭素化物は炭素繊維/炭素複合材
料用、炭素製品成形用、炭素製品含浸用、耐火物
成形用、耐火物造形用、耐火物含浸用などに広い
用途がある。 以下本発明を実施例によつて詳細に説明する
が、本発明は実施例によつて限定されるものでは
ない。なお、製造例、実施例および比較例に記載
されている「部」および「%」はすべて「重量
部」および「重量パーセント」を表わす。 製造例 1 タールピツチの分別 JIS K 2425による軟化点が109.5℃、BI量が
38.3%、QI量が16.0%の石炭系タールピツチ100
部にベンゼン400部を加えて室温で24時間撹拌し
た。過後その液を凍結乾燥してベンゼン可溶
タールピツチ(BS)62部を得た。過残渣30部
にピリジン120部を加えて室温で24時間撹拌した。
これを過後その液を減圧下で80〜90℃に加熱
してほぼピリジンを除去した。さらに減圧中150
℃で3時間保持してピリジンを除去し、ベンゼン
不溶一ピリジン可溶タールピツチ(BI−PS)27
部を得た。 製造例 2 タールピツチの分別 JIS K 2425による軟化点が114.0℃の石油系
タールピツチ100部にベンゼン400部を加えて室温
で24時間撹拌した。過後その液を凍結乾燥し
てベンゼン可溶タールピツチ(BS)93部を得た。 製造例 3 レゾール型フエノール樹脂の製造 撹拌機、還流冷却器および温度計付きの反応装
置にフエノール1000部、と37%ホルマリン1120部
を仕込み、25%水酸化ナトリウム水溶液80部を添
加した。内容物を昇温させ温度が80℃に到達後
150分間反応させた。その後ぎ酸でPHを7.0に調整
し、40〜60mmHgの減圧下で脱水反応を行なつた。
内温が85℃になつた時常圧に戻してレゾール型フ
エノール樹脂1380部を得た。このレゾール型フエ
ノール樹脂は40℃における粘度が110ポイズ、不
揮発分が85%であつた(測定方法はいずれもJIS
K 6909による)。 製造例 4 レゾール型フエノール樹脂の製造 製造例2と同型の反応装置にフエノール1000部
と37%ホルマリン1000部を仕込み、28%アンモニ
ア水45部と25%水酸化ナトリウム水溶液40部を添
加した。内容物を昇温させ温度が70℃に到達後5
時間反応させた。その後酢酸でPHを7.5に調整し、
40〜60mmHgの減圧下で脱水反応を行なつた。内
温が88℃になつた時常圧に戻してレゾール型フエ
ノール樹脂1330部を得た。このレゾール型フエノ
ール樹脂は40℃における粘度が320ポイズ、不揮
発分が86%であつた(測定方法はいずれもJIS K
6909による)。 製造例 5 ノボラツク型フエノール樹脂の製造 撹拌機、還流冷却器および温度計付きの反応装
置にフエノール1000部と37%ホルマリン710部を
仕込み、しゆう酸10部を添加して昇温させた。温
度が100℃に到達後90分間還流反応をさせ、その
後常圧から徐々に減圧に移して脱水反応を行なつ
た。40mmHgの減圧下で内温が150℃になつた時脱
水反応を終了し、ノボラツク型フエノール樹脂
1030部を得た。上記ノボラツク型フエノール樹脂
1000部に硬化剤としてヘキサメチレンテトラミン
100部を加え、共に微粉砕した後十分に混合し、
粉末のノボラツク型フエノール樹脂を得た。この
ヘキサメチレンテトラミンを含有した粉末のノボ
ラツク型フエノール樹脂は毛細管法による融点が
89℃、105μ篩による篩残分が3%、150℃の熱板
法によるゲル化時間が121秒であつた(測定方法
はいずれもJIS K 6909による)。 実施例 1 撹拌機、還流冷却器、および温度計の付いた混
合装置にピリジン300部を仕込み、撹拌しながら
JIS K 2425による軟化点が112.5℃、BI量が
33.5%、QI量が13.3%の石炭系タールピツチ100
部を常温で徐々に添加して溶解した。その後製造
例3で得たレゾール型フエノール樹脂100部とエ
チレングリコール100部をあらかじめ配合してあ
つた混合液200部を添加して混合溶液とし、ター
ルピツチ/レゾール型フエノール樹脂/溶媒系か
らなる微細異方性組織を持つ炭素化物形成用組成
物600部を得た。 実施例 2 実施例1と同型の混合装置にピリジン300部を
仕込み、撹拌しながら製造例1で得た石炭系
BS100部を常温で徐々に添加して溶解した。その
後、製造例3で得たレゾール型フエノール樹脂
100部とエチレングリコール100部をあらかじめ配
合してあつた混合液200部を添加混合して均一溶
液とし、BS/レゾール型フエノール樹脂/溶媒
系からなる微細異方性組織を持つ炭素化物形成用
組成物600部を得た。 実施例 3 実施例1と同型の混合装置にトルエン300部を
仕込み、撹拌しながら製造例2で得た石炭系
BS100部を常温で徐々に添加して溶解した。その
後、製造例4で得たレゾール型フエノール樹脂
100部とセロソルブ100部をあらかじめ配合してあ
つた混合液200部を添加混合して均一溶液とし、
BS/レゾール型フエノール樹脂/溶媒系からな
る微細異方性組織を持つ炭素化物形成用組成物
600部を得た。 実施例 4 実施例1と同型の混合装置にベンゼン300部を
仕込み、撹拌しながら製造例1で得た石炭系
BS100部を常温で徐々に添加して溶解した。その
後、製造例3で得たレゾール型フエノール樹脂
100部とエチレングリコール100部をあらかじめ配
合してあつた混合液200部を添加混合して均一溶
液とし、BS/レゾール型フエノール樹脂/溶媒
系からなる微細異方性組織を持つ炭素化物形成用
組成物600部を得た。 実施例 5 実施例1と同型の混合装置にトルエン300部を
仕込み、撹拌しながら製造例1で得た石炭系
BS100部を常温で徐々に添加して溶解した。その
後、製造例4で得たレゾール型フエノール樹脂50
部とエチレングリコール100部をあらかじめ配合
してあつた混合液150部と製造例5で得たヘキサ
メチレンテトラミン入りのノボラツク型フエノー
ル樹脂100部を徐々に添加して均一溶液とし、
BS/レゾール型フエノール樹脂/ノボラツク型
フエノール樹脂/溶媒系からなる微細異方性組織
を持つ炭素化物形成用組成物600部を得た。 実施例 6 実施例1と同型の混合装置にピリジン300部を
仕込み、撹拌しながら製造例1で得た石炭系
BS100部を徐々に添加して溶解した。その後エチ
レングリコール100部と製造例5で得たヘキサメ
チレンテトラミン入りのノボラツク型フエノール
樹脂100部を徐々に添加して均一溶液とし、BS/
ノボラツク型フエノール樹脂/溶媒系からなる微
細異方性組織を持つ炭素化物形成用組成物600部
を得た。 比較例 1 製造例1で得た石炭系BSを乳鉢を用いて微粉
砕化した。微粉砕した石炭系BSの105μ篩通過分
100部と製造例3で得たレゾール型フエノール樹
脂100部を常温でペースト状に十分練り合わせて
BS/レゾール型フエノール樹脂系からなる炭素
化物用組成物200部を得た。 比較例 2 製造例1で得た石炭系BSを乳鉢を使用して微
粉砕化した。微粉砕したBSの105μ篩通過分100部
と製造例5で得たヘキサメチレンテトラミン入り
のノボラツク型フエノール樹脂100部を実験用ミ
キサーで機械的に十分粉末混合し、BS/ノボラ
ツク型フエノール樹脂系からなる炭素化物用組成
物200部を得た。 比較例 3 製造例1で得た石炭系BI−PSを乳鉢を使用し
て微粉砕化した。微粉砕されたBI−PSの105μ篩
通過分100部と製造例4で得たレゾール型フエノ
ール樹脂100部を常温でペースト状に十分練り合
わせてBS/レゾール型フエノール樹脂系からな
る炭素化物用組成物200部を得た。 比較例 4 実施例1と同型の混合装置にピリジン200部を
仕込み、撹拌しながら製造例1で得た石炭系
BS100部を常温で徐々に添加して溶解し、BS/
溶媒系からなる炭素化物用組成物300部を得た。 比較例 5 実施例1と同型の混合装置にピリジン200部を
仕込み、撹拌しながら製造例3で得たレゾール型
フエノール樹脂100部を常温で徐々に添加して溶
解し、レゾール型フエノール樹脂/溶媒系からな
る炭素化物用組成物300部を得た。 比較例 6 実施例1と同型の混合装置にピリジン200部を
仕込み、撹拌しながら製造例5で得たノボラツク
型フエノール樹脂100部を常温で徐々に添加して
溶解し、ノボラツク型フエノール樹脂/溶媒系か
らなる炭素化物用組成物300部を得た。 実施例1〜6で得た微細異方性組織を持つ炭素
化物形成用組成物および比較例1〜6で得た炭素
化物用組成物をそれぞれアスピレーターで吸引し
ながら最高温度60℃で一昼夜保持して溶媒を除去
した。その後、乾燥器内において120℃で5時間
保持し、ついで電気炉内において窒素気流中200
℃で5時間を要して後硬化させた。後硬化させた
固形物を試験管に入れ窒素気流中毎分当り1℃の
割合で600℃まで昇温し、同温度で3時間保持し
た。生成した炭素化物を偏光顕微鏡写真に撮つた
結果は、第1表および第1図〜第10図に示す通
りであつた。 本発明の組成物から得られた炭素化物はほゞ完
全な微細モザイク状の異方性組織からなつている
ことが明らかとなつた。 一方、各比較例で示す炭素化物用組成物から得
られた炭素化物にはそのような組織の形成が殆ん
ど認められなかつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composition for obtaining a carbonized product having a fine mosaic-like anisotropic structure. Carbonized materials have excellent properties such as heat resistance, abrasion resistance, and chemical resistance, so they are used in a variety of applications. Conventionally, tar pitch has been mainly used as a raw material for forming carbon structures. On the other hand, there is a phenolic resin as a raw material for forming a carbon structure. Phenol resin has a higher percentage of residual carbon after carbonization than other materials. For this reason, the carbonized product is dense and has excellent properties such as strength, abrasion resistance, and chemical resistance.There are many types of phenolic resins, but the one that best suits the application and usage conditions. It has excellent features such as being able to select and use different materials, and being a general-purpose resin, the quality is consistent. However, carbonized products obtained from phenolic resins also have drawbacks such as poorer oxidation resistance when exposed to high temperature atmospheres than carbonized products obtained from tar pitch. Furthermore, the carbonized product obtained by simply mechanically mixing tar pitch and phenolic resin may have the effect of promoting an increase in the residual carbon ratio, but the carbonized product itself has a large anisotropy with a flow structure generated from tar pitch. This results in a heterogeneous mixture of a carbonized part with a structure and a carbonized part with an isotropic structure generated from the phenolic resin. The reality is that such mixtures are of low quality and have limited practical applications. Generally, when carbonized products are observed using a polarizing microscope, the carbonized products of tar pitch have a large anisotropic structure with a flow structure, and the carbonized products of phenolic resin alone have an isotropic structure. In addition, after simply mechanically mixing phenolic resin and tar pitch,
The fact is that the carbonized product obtained by carbonizing this could not be expected to uniformly form a fine mosaic-like anisotropic structure. That is,
Even if it is observed that a fine mosaic-like anisotropic structure is generated locally, it is extremely difficult to form a fine mosaic-like structure over a wide area, and it is difficult to put it into practical use as an industrially useful material. It was possible. The large mosaic-like anisotropic structure that is originally produced by carbonizing tar pitch is resistant to air oxidation and adheres well to aggregate, but it is prone to cracking, and its low strength is a fatal drawback. It was hot. This has been a major obstacle to the practical application of tarpitz carbonized products. As a result of intensive research by the inventors to overcome the above-mentioned drawbacks, we found that by carbonizing a solution consisting of a solvent in which more than 50% of the total weight of tar pitch and phenol resin are soluble in an aromatic hydrocarbon system, We obtained a new finding that carbonized products with a uniform and fine anisotropic mosaic structure are formed. It has also been found that the carbonized product produced in this way has a significant reduction in brittleness, which is a drawback of isotropic carbonized products, even though the phenol resin, which is an isotropic carbonized product component, is present. The uniform and fine mosaic-like anisotropic structure according to the present invention improves properties such as strength, wear resistance, and air oxidation resistance of carbonized materials, and is widely useful in various applications that require these properties. . Here, the characteristics of the substances constituting the composition according to the present invention will be described. First, regarding the separation of tar pitch according to the present invention, benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, ethylbenzene, propylbenzene, cumene, styrene, etc. are used alone as aromatic hydrocarbon solvents for separating tar pitch. Or they can be used together. In particular, benzene, toluene, and xylene are preferably used alone or in combination. In order to carry out the present invention preferably, it is sufficient to use a tar pitch which is separated in this way and which dissolves 50% by weight or more of the tar pitch in the aromatic hydrocarbon solvent. In order to carry out the present invention more preferably, a substance that can be completely dissolved in the aromatic hydrocarbon solvent by fractionation is used. After separating tar pitsu, 50% of tar pitch was found to be an aromatic hydrocarbon solvent.
Those that dissolve less than % by weight should be avoided because they contain too much insoluble matter, which makes the structure of the carbonized material non-uniform. The type of tar pitch used in the present invention is preferably coal tar pitch, petroleum tar pitch, or a mixture of both. The phenolic resin used in the present invention can be a resol type phenolic resin, a novolak type phenolic resin, or a mixture of the two, and among these, a resol type phenolic resin is preferred. The organic solvent in which these tarpitz and phenol resin are soluble is one selected from compounds having alcohol groups, ketone groups, ester groups, and ether groups, hydrocarbons, and nitrogen-containing compounds that are liquid at room temperature. Although the solvent contains more than one type of solvent, a mixed solvent of two or more of these types is often most effective. The blending ratio of tar pitch, phenolic resin, and solvent used in the composition for forming a carbonized product having a finely anisotropic structure of the present invention is 20 to 80% by weight of tar pitch that is soluble at least 50% by weight in an aromatic hydrocarbon solvent.
and phenolic resin 80-20% by weight total weight 100
10 parts by weight of each soluble organic solvent
Parts by weight or more. Among them, Tarpitz 30 to 70% by weight, which is soluble at least 50% by weight in aromatic hydrocarbon solvents, and 70 to 30% by weight of resol type phenolic resin (calculated as non-volatile content), or the above-mentioned Tarpitz 40 to 70% by weight.
It is preferable that the above-mentioned tarpitch and the solvent in which the phenolic resin is soluble is 20 parts by weight or more relative to the total weight of 100 parts by weight in each case of 80% by weight and 60 to 20% by weight of novolak type phenolic resin. If the tar pitch, which is soluble at least 50% by weight in the aromatic hydrocarbon solvent, is outside the range of 20 to 80% by weight, and the phenolic resin is outside the range of 80 to 20% by weight, the total weight is 100 parts by weight. On the other hand, if the organic solvent in which each is soluble is less than 10 parts by weight, the carbonized product will not form a fine anisotropic structure over a wide area, and even if it does form, it will only be localized. Since it only remains in the tissue, it has no characteristics compared to conventional phenolic resins or carbonized tarpitz. The phenols used in the production of the phenolic resin of the present invention include phenol, cresol, xylenol, ethylphenol, propylphenol,
These include propenylphenol, butylphenol, octylphenol, nonylphenol, phenylphenol, catechol, resorcinol, hydroquinone, and bisphenol A, and the practice of the present invention also involves by-products produced when producing these phenols. include. on the other hand,
As the aldehyde used in the production of this phenolic resin, formaldehyde, paraformaldehyde, trioxane, polyoxymethylene, etc. can be used, but in short, as long as the composition expresses formaldehyde in a desired amount, any composition may be used for the purposes of this invention. Can be used. Further, the usage ratio of phenols P and aldehydes F (molar ratio: F/P) is preferably 0.8 to 2.0, more preferably 1.0 to 1.6 in the case of producing a resol type phenolic resin. On the other hand, in the case of novolak type phenolic resin production, the usage ratio is
0.55~0.90 is preferable, more preferably 0.65~
It is 0.85. The catalysts used in the production of resol-type phenolic resins include oxides, hydroxides, and carbonates of alkali metals such as sodium, potassium, and lithium, and oxides and hydroxides of alkaline earth metals such as calcium, magnesium, and barium. Furthermore, amine compounds such as ammonia, triethylamine and triethanolamine, naphthenic acid metal salts such as lead naphthenate, zinc naphthenate, lead naphthenate, nickel naphthenate, and cobalt naphthenate can be used alone or in combination. . On the other hand, the catalysts used in the production of novolac type phenolic resins include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids such as oxalic acid, phenolsulfonic acid, p-toluenesulfonic acid, and metaxylenesulfonic acid; One or more substances selected from organic metal salts such as zinc acetate are used. The composition according to the present invention has a specific composition of tar pitch, the phenolic resin enhances the caking action of the tar pitch, and the presence of an organic solvent in which both of these components are soluble allows the composition to be uniformly distributed. Compared to raw materials for carbonized products, carbonized products having a fine mosaic-like anisotropic structure can be easily and reliably produced over a wide range of areas. Therefore, carbonized products with industrially useful properties can only be obtained by using the constituent components of the present invention. Therefore, the produced carbonized product has a wide range of uses, including carbon fiber/carbon composite materials, carbon product molding, carbon product impregnation, refractory molding, refractory modeling, and refractory impregnation. EXAMPLES The present invention will be explained in detail below using Examples, but the present invention is not limited by the Examples. Note that "parts" and "%" described in the production examples, examples, and comparative examples all represent "parts by weight" and "percent by weight." Production example 1 Sorting of tar pitch Softening point according to JIS K 2425 is 109.5℃, BI amount is
Coal-based tar pitch 100 with 38.3% and QI amount of 16.0%
400 parts of benzene was added to the mixture, and the mixture was stirred at room temperature for 24 hours. After evaporation, the liquid was freeze-dried to obtain 62 parts of benzene-soluble tarpitch (BS). 120 parts of pyridine was added to 30 parts of the residue, and the mixture was stirred at room temperature for 24 hours.
After this, the liquid was heated to 80-90°C under reduced pressure to remove most of the pyridine. Further decompression 150
Pyridine was removed by holding at ℃ for 3 hours, and benzene-insoluble-pyridine-soluble tarpitz (BI-PS) was prepared.
I got the department. Production Example 2 Fractionation of Tar Pitch 400 parts of benzene was added to 100 parts of petroleum tar pitch having a softening point of 114.0° C. according to JIS K 2425, and the mixture was stirred at room temperature for 24 hours. After evaporation, the liquid was freeze-dried to obtain 93 parts of benzene-soluble tarpitch (BS). Production Example 3 Production of resol type phenolic resin 1000 parts of phenol and 1120 parts of 37% formalin were charged into a reaction apparatus equipped with a stirrer, a reflux condenser and a thermometer, and 80 parts of a 25% aqueous sodium hydroxide solution was added. After the contents are heated and the temperature reaches 80℃
The reaction was allowed to proceed for 150 minutes. Thereafter, the pH was adjusted to 7.0 with formic acid, and a dehydration reaction was performed under reduced pressure of 40 to 60 mmHg.
When the internal temperature reached 85°C, the pressure was returned to normal to obtain 1380 parts of resol type phenolic resin. This resol type phenolic resin had a viscosity of 110 poise at 40°C and a non-volatile content of 85% (the measurement method was JIS
K 6909). Production Example 4 Production of resol type phenolic resin 1000 parts of phenol and 1000 parts of 37% formalin were charged into a reaction apparatus of the same type as Production Example 2, and 45 parts of 28% ammonia water and 40 parts of 25% sodium hydroxide aqueous solution were added. After the contents are heated and the temperature reaches 70℃ 5
Allowed time to react. Then adjust the pH to 7.5 with acetic acid,
The dehydration reaction was carried out under reduced pressure of 40-60 mmHg. When the internal temperature reached 88°C, the pressure was returned to normal to obtain 1330 parts of resol type phenolic resin. This resol type phenolic resin had a viscosity of 320 poise at 40°C and a non-volatile content of 86% (all measurement methods were JIS K).
6909). Production Example 5 Production of novolac type phenolic resin 1000 parts of phenol and 710 parts of 37% formalin were charged into a reaction apparatus equipped with a stirrer, a reflux condenser, and a thermometer, and 10 parts of oxalic acid was added thereto and the temperature was raised. After the temperature reached 100°C, a reflux reaction was carried out for 90 minutes, and then the pressure was gradually reduced from normal pressure to carry out a dehydration reaction. When the internal temperature reaches 150℃ under a reduced pressure of 40mmHg, the dehydration reaction ends and the novolak type phenolic resin
Obtained 1030 copies. The above novolak type phenolic resin
1000 parts hexamethylenetetramine as curing agent
Add 100 parts, pulverize together, and mix thoroughly.
A powdered novolak type phenolic resin was obtained. This powdered novolac-type phenolic resin containing hexamethylenetetramine has a melting point determined by the capillary method.
The sieve residue when measured at 89°C and a 105μ sieve was 3%, and the gelation time by the hot plate method at 150°C was 121 seconds (all measurement methods were in accordance with JIS K 6909). Example 1 300 parts of pyridine was charged into a mixing apparatus equipped with a stirrer, a reflux condenser, and a thermometer, and while stirring,
The softening point according to JIS K 2425 is 112.5℃, and the amount of BI is
Coal-based tar pitch 100 with 33.5% and QI amount of 13.3%
part was gradually added and dissolved at room temperature. Thereafter, 200 parts of a mixture of 100 parts of resol type phenolic resin obtained in Production Example 3 and 100 parts of ethylene glycol was added to obtain a mixed solution, and a microscopic difference consisting of tarpitz/resol type phenolic resin/solvent system was added. 600 parts of a composition for forming a carbonized product having an orthogonal structure was obtained. Example 2 300 parts of pyridine was charged into a mixing device of the same type as in Example 1, and while stirring, the coal-based mixture obtained in Production Example 1 was added.
100 parts of BS was gradually added and dissolved at room temperature. After that, the resol type phenolic resin obtained in Production Example 3
Add and mix 200 parts of a mixture of 100 parts of 100 parts of ethylene glycol and 100 parts of ethylene glycol to make a homogeneous solution, and create a composition for forming a carbonized product with a finely anisotropic structure consisting of BS/resol type phenolic resin/solvent system. Obtained 600 copies. Example 3 300 parts of toluene was charged into a mixing device of the same type as in Example 1, and while stirring, the coal-based mixture obtained in Production Example 2 was added.
100 parts of BS was gradually added and dissolved at room temperature. After that, the resol type phenolic resin obtained in Production Example 4
Add and mix 200 parts of a mixed solution of 100 parts of Cellosolve and 100 parts of Cellosolve to make a homogeneous solution,
Composition for forming carbonized products with fine anisotropic structure consisting of BS/resol type phenolic resin/solvent system
Got 600 copies. Example 4 300 parts of benzene was charged into a mixing device of the same type as in Example 1, and while stirring, the coal-based mixture obtained in Production Example 1 was added.
100 parts of BS was gradually added and dissolved at room temperature. After that, the resol type phenolic resin obtained in Production Example 3
Add and mix 200 parts of a mixture of 100 parts of 100 parts of ethylene glycol and 100 parts of ethylene glycol to make a homogeneous solution, and create a composition for forming a carbonized product with a finely anisotropic structure consisting of BS/resol type phenolic resin/solvent system. Obtained 600 copies. Example 5 300 parts of toluene was charged into a mixing device of the same type as in Example 1, and while stirring, the coal-based mixture obtained in Production Example 1 was added.
100 parts of BS was gradually added and dissolved at room temperature. After that, the resol type phenolic resin 50 obtained in Production Example 4 was
and 100 parts of ethylene glycol were mixed in advance, and 100 parts of the novolak type phenolic resin containing hexamethylenetetramine obtained in Production Example 5 were gradually added to make a homogeneous solution.
600 parts of a composition for forming a carbonized product having a finely anisotropic structure consisting of BS/resol type phenolic resin/novolac type phenolic resin/solvent system was obtained. Example 6 300 parts of pyridine was charged into a mixing device of the same type as in Example 1, and while stirring, the coal-based mixture obtained in Production Example 1 was added.
100 parts of BS was gradually added and dissolved. Thereafter, 100 parts of ethylene glycol and 100 parts of the novolak type phenolic resin containing hexamethylenetetramine obtained in Production Example 5 were gradually added to make a homogeneous solution.
600 parts of a composition for forming a carbonized product having a finely anisotropic structure consisting of a novolak type phenolic resin/solvent system was obtained. Comparative Example 1 The coal-based BS obtained in Production Example 1 was pulverized using a mortar. Amount of finely ground coal-based BS that passes through a 105μ sieve
Thoroughly knead 100 parts and 100 parts of the resol type phenolic resin obtained in Production Example 3 into a paste at room temperature.
200 parts of a composition for carbonized products consisting of a BS/resol type phenolic resin system was obtained. Comparative Example 2 The coal-based BS obtained in Production Example 1 was pulverized using a mortar. 100 parts of the finely ground BS that passed through a 105 μ sieve and 100 parts of the novolak type phenolic resin containing hexamethylenetetramine obtained in Production Example 5 were thoroughly mixed mechanically into powder using a laboratory mixer, and the BS/novolak type phenolic resin system was mixed. 200 parts of a composition for carbonide was obtained. Comparative Example 3 The coal-based BI-PS obtained in Production Example 1 was pulverized using a mortar. 100 parts of the finely ground BI-PS that passed through a 105μ sieve and 100 parts of the resol type phenolic resin obtained in Production Example 4 were sufficiently kneaded into a paste at room temperature to obtain a composition for carbonized products consisting of a BS/resol type phenolic resin system. Got 200 copies. Comparative Example 4 200 parts of pyridine was charged into a mixing device of the same type as in Example 1, and while stirring, the coal-based mixture obtained in Production Example 1 was added.
Gradually add and dissolve 100 parts of BS at room temperature, and
300 parts of a composition for carbonized material consisting of a solvent system was obtained. Comparative Example 5 200 parts of pyridine was charged into a mixing device of the same type as Example 1, and while stirring, 100 parts of the resol type phenolic resin obtained in Production Example 3 was gradually added and dissolved at room temperature to form a resol type phenolic resin/solvent. 300 parts of a composition for carbonized material consisting of the system was obtained. Comparative Example 6 200 parts of pyridine was charged into a mixing device of the same type as in Example 1, and while stirring, 100 parts of the novolak type phenolic resin obtained in Production Example 5 was gradually added and dissolved at room temperature to form a novolak type phenolic resin/solvent. 300 parts of a composition for carbonized material consisting of the system was obtained. The compositions for forming carbonized products having a fine anisotropic structure obtained in Examples 1 to 6 and the compositions for forming carbonized products obtained in Comparative Examples 1 to 6 were each maintained at a maximum temperature of 60°C for one day and night while being suctioned with an aspirator. to remove the solvent. After that, it was kept at 120℃ for 5 hours in a dryer, and then placed in an electric furnace for 200℃ in a nitrogen stream.
Post-curing took 5 hours at .degree. The post-cured solid material was placed in a test tube, heated to 600°C at a rate of 1°C per minute in a nitrogen stream, and held at the same temperature for 3 hours. The results of polarizing microphotographs of the carbonized products produced were as shown in Table 1 and Figures 1 to 10. It has been revealed that the carbonized product obtained from the composition of the present invention consists of an almost perfect fine mosaic-like anisotropic structure. On the other hand, formation of such a structure was hardly observed in the carbonized products obtained from the carbonized product compositions shown in each comparative example. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図、第5図、第
6図は炭素化物の組織がほぼ完全に微細異方性で
あることを示す倍率300倍の偏光顕微鏡写真。第
7図、第8図、第9図は炭素化物の組織が流れタ
イプを持つ異方性と等方性の混在していることを
示す倍率300倍の偏光顕微鏡写真。第10図は炭
素化物の組織が流れタイプとなつていることを示
す倍率300倍の偏光顕微鏡写真。
Figures 1, 2, 3, 4, 5, and 6 are polarized light micrographs at 300x magnification, showing that the structure of the carbonide is almost completely micro-anisotropic. Figures 7, 8, and 9 are polarized light micrographs taken at 300x magnification, showing that the carbonized structure is a mixture of flow-type anisotropy and isotropy. Figure 10 is a polarized light micrograph at 300x magnification, showing that the structure of the carbonide is of a flow type.

Claims (1)

【特許請求の範囲】 1 芳香族炭化水素溶剤に全体の50重量%以上が
可溶なタールピツチと、フエノール樹脂と、それ
ぞれが可溶な有機溶媒からなる溶解物を成分とす
る、微細異方性組織を持つ炭素化物形成用組成
物。 2 芳香族炭化水素系溶剤に全体の50重量%以上
が可溶なタールピツチ20〜80重量%、フエノール
樹脂80〜20重量%の合計重量100重量部に対して、
それぞれが可溶な有機溶媒が10重量部以上である
組成をもつ特許請求の範囲第1項記載の、微細異
方性組織を持つ炭素化物形成用組成物。 3 芳香族炭化水素系溶剤に全体の50重量%以上
可溶なタールピツチが石炭タールピツチ、石油タ
ールピツチ、あるいは石炭タールピツチと石油タ
ールピツチの混合物から選ばれた1種である特許
請求の範囲第1項、または第2項記載の、微細異
方性組織を持つ炭素化物形成用組成物。 4 フエノール樹脂がレゾール型フエノール樹脂
である特許請求の範囲第1項、または第2項記載
の、微細異方性組織を持つ炭素化物形成用組成
物。 5 フエノール樹脂がノボラツク型フエノール樹
脂である特許請求の範囲第1項、または第2項記
載の、微細異方性組織を持つ炭素化物形成用組成
物。 6 フエノール樹脂がレゾール型フエノール樹脂
とノボラツク型フエノール樹脂の混合物である特
許請求の範囲第1項、または第2項記載の、微細
異方性組織を持つ炭素化物形成用組成物。 7 有機溶媒が常温で液体である、アルコール
基、ケトン基、エステル基、エーテル基をもつ化
合物、ないし、炭化水素、含窒素化合物から選ば
れた1種以上を含む溶媒である特許請求の範囲第
1項、または第2項記載の、微細異方性組織を持
つ炭素化物形成用組成物。
[Scope of Claims] 1. Fine anisotropy comprising a dissolved substance consisting of tar pitch which is soluble at least 50% by weight in an aromatic hydrocarbon solvent, a phenolic resin, and an organic solvent in which each is soluble. A composition for forming carbonized products having a structure. 2. For 100 parts by weight of the total weight of 20-80% by weight of tar pitch, which is soluble at least 50% by weight in aromatic hydrocarbon solvents, and 80-20% by weight of phenolic resin,
A composition for forming a carbonized product having a finely anisotropic structure according to claim 1, having a composition in which each of the organic solvents is soluble in an amount of 10 parts by weight or more. 3. Claim 1, wherein the tar pitch that is soluble at least 50% by weight in the aromatic hydrocarbon solvent is one selected from coal tar pitch, petroleum tar pitch, or a mixture of coal tar pitch and petroleum tar pitch, or 3. The composition for forming a carbonized product having a finely anisotropic structure according to item 2. 4. The composition for forming a carbonized product having a finely anisotropic structure according to claim 1 or 2, wherein the phenolic resin is a resol type phenolic resin. 5. The composition for forming a carbonized product having a finely anisotropic structure according to claim 1 or 2, wherein the phenolic resin is a novolak type phenolic resin. 6. The composition for forming a carbonized product having a finely anisotropic structure according to claim 1 or 2, wherein the phenolic resin is a mixture of a resol type phenolic resin and a novolak type phenolic resin. 7. The organic solvent is a solvent that is liquid at room temperature and contains one or more compounds selected from alcohol groups, ketone groups, ester groups, ether groups, hydrocarbons, and nitrogen-containing compounds. A composition for forming a carbonide having a finely anisotropic structure according to item 1 or 2.
JP58009913A 1983-01-26 1983-01-26 Composition for forming carbide with fine anisotropic texture Granted JPS59136347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58009913A JPS59136347A (en) 1983-01-26 1983-01-26 Composition for forming carbide with fine anisotropic texture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009913A JPS59136347A (en) 1983-01-26 1983-01-26 Composition for forming carbide with fine anisotropic texture

Publications (2)

Publication Number Publication Date
JPS59136347A JPS59136347A (en) 1984-08-04
JPH0259179B2 true JPH0259179B2 (en) 1990-12-11

Family

ID=11733339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009913A Granted JPS59136347A (en) 1983-01-26 1983-01-26 Composition for forming carbide with fine anisotropic texture

Country Status (1)

Country Link
JP (1) JPS59136347A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129256A (en) * 1988-11-08 1990-05-17 Unitika Ltd Composition for forming carbonized product

Also Published As

Publication number Publication date
JPS59136347A (en) 1984-08-04

Similar Documents

Publication Publication Date Title
JP6259770B2 (en) Resin composition and precursor of carbon fiber reinforced composite material, carbon fiber reinforced composite material, and carbon fiber reinforced carbon material obtained using the same
JPS62297347A (en) Heat resistant molding material comprising carbon forming binder and filler
KR100566673B1 (en) Phenolic coated refractory aggregates
JPH0259179B2 (en)
JPS6140242B2 (en)
JP2008214498A (en) Aldehyde group-containing phenolic resin composition, phenolic resin composition containing the same and molding material
RU2337926C2 (en) Polycondensation products, method of their production and their application
JP4337431B2 (en) Binder composition for amorphous refractories
JPH0651824B2 (en) Phenolic resin binder
JPS5819351A (en) Liquid phenolic resin for refractory
US3027345A (en) Condensation product of cresylic acid resin and phenol resin
JPH0892461A (en) Binder composition
JPS63230761A (en) Phenolic resin binder
JPH0692084B2 (en) Method for producing phenolic resin
JP2004204035A (en) Molding resin composition, and molding compound containing the same
JP2004197020A (en) Phenolic resin composition
JPH06200118A (en) Refractory composition
JPH09132697A (en) Phenolic resin composition for carbonaceous material
JP3154435B2 (en) Irregular refractory composition
JP3853008B2 (en) Refractory binder composition
JPH1046005A (en) Thermosetting resin composition
JPH0438791B2 (en)
JPS61183161A (en) Liquid binder for refractories
JPH1077385A (en) Phenolic resin composition for binding carbon material and carbon-resin composite material
JPH06100646A (en) Production of rubber-dispersed p-substituted-phenol-modified phenolic resin