JPH0259158A - Method for changing width of mold - Google Patents

Method for changing width of mold

Info

Publication number
JPH0259158A
JPH0259158A JP21201988A JP21201988A JPH0259158A JP H0259158 A JPH0259158 A JP H0259158A JP 21201988 A JP21201988 A JP 21201988A JP 21201988 A JP21201988 A JP 21201988A JP H0259158 A JPH0259158 A JP H0259158A
Authority
JP
Japan
Prior art keywords
drive shaft
driving shaft
width
tip
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21201988A
Other languages
Japanese (ja)
Other versions
JPH084892B2 (en
Inventor
Kiyoshi Kondo
近藤 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63212019A priority Critical patent/JPH084892B2/en
Publication of JPH0259158A publication Critical patent/JPH0259158A/en
Publication of JPH084892B2 publication Critical patent/JPH084892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent excess small or large taper and to remove danger of breakout by obtaining shifting velocity of a bottom part driving shaft so that a bottom part end position does not vary at the time of changing the inclination of a short side to drive a top part driving shaft and the bottom part driving shaft. CONSTITUTION:At first, the TOP driving shaft 7 is mainly shifted at the max. velocity for the period until a slab falls from meniscus 2 by descending and the BOTTOM driving shaft 10 is shifted by a little so that the variety of the BOTTOM end position 5 accompanied with the shift becomes zero. Successively, both of the TOP driving shaft 7 and the BOTTOM driving shaft 10 are shifted until the inclination from the meniscus 2 position to the BOTTOM end position 5 of the slab becomes the ideal inclination. The TOP and the BOTTOM driving shafts 7, 10 are shifted by equal velocities until a TOP end point 6 reaches to the finishing end point. Further, only the BOTTOM driving shaft 10 is shifted at the shifting velocity of the meniscus. Further, the TOP driving shaft 7 is fixed and only the BOTTOM driving shaft 10 is shifted at the shifting velocity of the meniscus.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は連続鋳造用のモールドに係り、特に、鋳造中
に鋳片の幅を変更するために、モールドを構成する短片
(型枠の側片)相互の幅を変更するモールド幅変更方法
に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention relates to a mold for continuous casting, and in particular, to a mold for changing the width of a slab during casting. (Side pieces of formwork) This relates to a mold width changing method of changing mutual widths.

(従来の技術) 第4図はこの種のモールドの概略構成図であり、短片1
は図示省略のもう一つの短片と対をなし、この短片1を
冷却水で冷却しながらその間にし一ドルターレットから
出た溶湯を注入すると、溶湯の外周部が冷却されてここ
に殻が形成され、その低端を通過するとき鋳片4となる
(Prior art) Figure 4 is a schematic diagram of this type of mold.
The short piece 1 is paired with another short piece (not shown), and when the molten metal from the dollar turret is poured into the short piece 1 while cooling it with cooling water, the outer periphery of the molten metal is cooled and a shell is formed here. , when it passes through its lower end, it becomes the slab 4.

ここで、短片1は頂部(以下TOPとも言う)先端6か
ら適当な寸法だけ下方に隔たった外側にTOP駆動軸7
を備え、底部(以下BOTTOMとも言う)先端5から
適当な寸法だけ上方に隔たった外側にBOTTOM駆動
軸10を備え、これらの駆動軸をそれぞれTOP駆動電
動機8およびBOTTOM駆動電動機11で駆動して短
片1の相互間隔を変えることにより、鋳片4の幅を変え
得るようになっている。
Here, the short piece 1 has a TOP drive shaft 7 on the outside separated downward by an appropriate dimension from the top (hereinafter also referred to as TOP) tip 6.
A BOTTOM drive shaft 10 is provided on the outside separated upwardly by a suitable dimension from the bottom (hereinafter also referred to as BOTTOM) tip 5, and these drive shafts are driven by a TOP drive motor 8 and a BOTTOM drive motor 11, respectively, to form a short piece. By changing the mutual spacing between the slabs 1, the width of the slab 4 can be changed.

この場合、TOP駆動電動機8にTOP位置検出器9が
、BOTTOM駆動電動機11にBOTTOM位置検出
器12がそれぞれ結合され、各検出値に基づいて、短片
1の幅と内側面の傾き(以下テーパー量と言う)を目標
値に合わせ得るようになっている。なお、テーパー量と
は、鋳片の凝縮率によって設定される値である。
In this case, a TOP position detector 9 is coupled to the TOP drive motor 8, a BOTTOM position detector 12 is coupled to the BOTTOM drive motor 11, and based on each detected value, the width of the short piece 1 and the inclination of the inner surface (hereinafter referred to as the amount of taper) are coupled. ) can be adjusted to the target value. Note that the taper amount is a value set depending on the condensation rate of the slab.

しかして、鋳造中であっても随時モールド幅を変更する
ことができ、これによって、多品種少量の鋳片需要に対
応できる。
Therefore, the mold width can be changed at any time even during casting, thereby making it possible to meet the demand for a wide variety of slabs in small quantities.

第5図は鋳片中心3を基準にして短片1を移動させ、モ
ールド幅を広げる場合の具体的な手順を示したものであ
る。すなわち、TOP先端6がLT  にあり、807
70M先端5がLBoにある状態から、TOP先端6が
LT4にあり、80770M先端5がLB4にある状態
に移動させるとき、短片1をステップ1,2,3.4の
順に移動させる。この場合、ステップ1でTOP先端6
の位置LT、、80770M先端5の位置LB1および
TOP駆動軸7の移動速度V T tを設定するとBO
TTOM駆動軸10の移動速度V B tは次式に従っ
て決められる。
FIG. 5 shows a specific procedure for widening the mold width by moving the short piece 1 with respect to the center 3 of the slab. That is, the TOP tip 6 is at LT and 807
When moving from a state where the 70M tip 5 is at LBo to a state where the TOP tip 6 is at LT4 and the 80770M tip 5 is at LB4, the short piece 1 is moved in the order of steps 1, 2, and 3.4. In this case, in step 1, the TOP tip 6
80770M When setting the position LB1 of the tip 5 and the moving speed V T t of the TOP drive shaft 7, BO
The moving speed V B t of the TTOM drive shaft 10 is determined according to the following equation.

また、他のステップj(i −2,3,4)においても
、これと同様にして、TOP先端6の位置LT、、[1
0TTOM先端5の位置LB、およびTOP駆動軸7の
移動速度をVBIを設定するとBOTTOM駆動輔10
の移動速度VBIは次式によって決められる。
Also, in other steps j (i -2, 3, 4), the position LT of the TOP tip 6, , [1
When the position LB of the 0TTOM tip 5 and the moving speed of the TOP drive shaft 7 are set to VBI, the BOTTOM drive shaft 10
The moving speed VBI of is determined by the following equation.

ただし、i −2,3,4である。However, i-2, 3, 4.

この場合、モールド幅変更時のTOP先端6の目標値L
T4および80770M先端5の目標値LB4は次式の
関係を満たすようにして決められる。
In this case, the target value L of the TOP tip 6 when changing the mold width
T4 and the target value LB4 of the 80770M tip 5 are determined so as to satisfy the following relationship.

LT4−LB4x (110904x    )・・・
(4) ただし W :鋳片の幅 α:収縮率 に:テーパー量 である。
LT4-LB4x (110904x)...
(4) Where W: Width α of slab: Shrinkage rate: Taper amount.

しかして、鋳片の幅W 、溶湯が凝固する際の収縮率α
により目標値LT4および80770M先端5の目標値
LB4が演算によって求められ、さらに、ステップ毎の
TOP先端6の位置、80770M先端5の位置および
TOP駆動軸7の移動速度を設定することにより、+3
07TOM駆動軸10の移動速度が演算により求められ
るため、TOP位置検出器9、BOTTOM位置検出器
位置検出器内2参照してTOP駆動電動機8およびBO
TTOM駆動電動機11を速度制御すれば、第5図に示
したモールド幅変更ができることになる。
Therefore, the width W of the slab, the shrinkage rate α when the molten metal solidifies
The target value LT4 and the target value LB4 of the 80770M tip 5 are obtained by calculation, and further, by setting the position of the TOP tip 6 for each step, the position of the 80770M tip 5, and the moving speed of the TOP drive shaft 7, +3
07 Since the moving speed of the TOM drive shaft 10 is calculated, the TOP drive motor 8 and BO are determined by referring to the TOP position detector 9 and BOTTOM position detector 2.
By controlling the speed of the TTOM drive motor 11, the mold width can be changed as shown in FIG.

(発明が解決しようとする課題) 上記の方法によって短片1を移動させた場合、モールド
中心から見たメニスカス2の位置と、80770M先端
5の位置はそれぞれ第6図に示したように変化する。す
なイ)ち、横軸に時間tを、縦軸にモールド中心3から
の距離Wをとると、メニスカス2の位置は折れ線13に
従って変化し、80770M先端5の位置は折れ線14
に従って変化する。
(Problem to be Solved by the Invention) When the short piece 1 is moved by the above method, the position of the meniscus 2 and the position of the 80770M tip 5 as seen from the center of the mold change as shown in FIG. 6, respectively. In other words, if time t is plotted on the horizontal axis and distance W from the mold center 3 is plotted on the vertical axis, the position of the meniscus 2 changes according to the polygonal line 13, and the position of the 80770M tip 5 changes along the polygonal line 14.
changes according to

ここで、折れ線13および14間の幅はステップ2、ス
テップ3の範囲で一定であるが、ステップ1.ステップ
4の範囲では、中間部分が狭くなっている。これは、幅
変更動作において、短片1のテーパーが常に一定でない
ことを意味し、幅拡げ時には過少テーパー(下部に隙間
が生じる)となり、逆に、幅狭め時には過大テーパー(
上部から押し付は圧力が加わる)となって、いずれも湯
の殻が破れる事故、すなわち、ブレークアウトの要因に
なることがあった。
Here, the width between the polygonal lines 13 and 14 is constant in the range of steps 2 and 3, but in step 1. In the range of step 4, the middle portion is narrow. This means that the taper of the short piece 1 is not always constant during the width changing operation, and when the width is widened, there is an insufficient taper (a gap is created at the bottom), and conversely, when the width is narrowed, there is an excessive taper (a gap is created at the bottom).
Pressure is applied from above), which could lead to an accident in which the hot water shell ruptures, that is, a breakout.

なお、このことは、第5図に示したモールド幅変更動作
に限らず、鋳片の幅を拡げる最初の工程と幅を縮める最
終の工程とにそれぞれ前記短片の傾斜変更動作を含む殆
どのモールド幅変更方法に共通する問題でもあった。
Note that this is not limited to the mold width changing operation shown in FIG. 5, but is applicable to most molds that include the short piece inclination changing operation in the initial process of expanding the width of the slab and the final process of reducing the width. This was also a common problem with width changing methods.

この発明は、上記の問題点を解決するためになされたも
ので、短片の移動に起因する鋳片のブレークアウトを確
実に防止することのできるモールド幅変更方法を提供す
ることを目的とする。
The present invention was made to solve the above problems, and an object of the present invention is to provide a mold width changing method that can reliably prevent breakout of the slab due to movement of the short piece.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、モールドを構成する短片の頂部先端と底部先
端からそれぞれ所定の寸法だけ隔たった位置に頂部駆動
軸と底部駆動軸を有し、鋳片の幅の変更に際して前記頂
部駆動軸および底部駆動軸を別個に駆動すると共に、前
記鋳片の幅を拡げる最初の工程と幅を縮める最終の工程
とにそれぞれ前記短片の傾斜変更動作を含むモールド幅
変更方法において、前記短片の傾斜変更に際し、前記頂
部駆動軸の移動速度に対して前記短片の底部先端位置が
変化しないような前記底部駆動軸の移動速度を求め、こ
れらの移動速度に従ってそれぞれ前記頂部駆動軸および
底部駆動軸を駆動することを特徴としている。
(Means for Solving the Problem) The present invention has a top drive shaft and a bottom drive shaft at positions separated by a predetermined dimension from the top and bottom tips of the short pieces constituting the mold, and In a mold width changing method, the top drive shaft and the bottom drive shaft are driven separately during the change, and the inclination change operation of the short piece is performed in an initial step of widening the width of the slab and a final step of reducing the width, respectively. , when changing the inclination of the short piece, find a moving speed of the bottom drive shaft such that the bottom tip position of the short piece does not change with respect to the moving speed of the top drive shaft, and adjust the top drive shaft and the top drive shaft respectively according to these moving speeds. It is characterized by driving the bottom drive shaft.

(作 用) この発明においては、短片の傾斜変更に際し、底部先端
位置が変化しないような頂部駆動軸の移動速度と底部駆
動軸の移動速度とを求め、これらの移動速度に従って頂
部駆動軸および底部駆動軸を同時に駆動するので、幅拡
げ時に過少テーパーになったり、幅狭め時には過大テー
パーになったりすることが防止でき、これによって、ブ
レークアウトの危険性を除去することができる。
(Function) In this invention, when changing the inclination of the short piece, the moving speed of the top drive shaft and the moving speed of the bottom drive shaft are determined so that the bottom tip position does not change, and the top drive shaft and the bottom drive shaft are adjusted according to these moving speeds. Since the drive shafts are driven at the same time, it is possible to prevent the taper from becoming too small when widening the width or too much when narrowing the width, thereby eliminating the risk of breakout.

(実施例) 第1図はこの発明の詳細な説明するための説明図であり
、モールド幅を拡げるべく、TOP先端6がLT  の
位置にあり、80770M先端5がLBoの位置にある
短片1をステップ1. 2. 3.4. 5の順に移動
させて、TOP先端6がLT5の位置に、80770M
先端5がLB5の位置にくるようにする。
(Example) Fig. 1 is an explanatory diagram for explaining the present invention in detail, and in order to expand the mold width, a short piece 1 with the TOP tip 6 at the LT position and the 80770M tip 5 at the LBo position is used. Step 1. 2. 3.4. 5, and move the TOP tip 6 to the LT5 position, 80770M.
Make sure that the tip 5 is at the LB5 position.

このうち、ステップ1ではメニスカス2から鋳片が降下
するまで、主にTOP駆動軸7を最大速度で移動させ、
この移動に伴う80770M先端5の変動分が零になる
ように80770M駆動軸10を僅かに移動させている
。ステップ2では鋳片のメニスカス2にある部分が80
770M先端5に達する理想的な傾きになるまでTOP
駆動軸7および80770M駆動軸10の両方を移動さ
せる。ステップ3においてはTOP先端6が最終目標で
あるLT5に到達するまで、TOP駆動軸7および80
770M駆動軸10を同量だけ移動させる。また、ステ
ップ4では80770M駆動軸10のみをステップ3に
おけるメニスカスの移動速度で移動させる。また、ステ
ップ5ではTOP駆動軸7を固定して、80770M駆
動軸10のみを、メニスカスの移動速度で移動させる。
In step 1, the TOP drive shaft 7 is mainly moved at maximum speed until the slab descends from the meniscus 2.
The 80770M drive shaft 10 is slightly moved so that the fluctuation of the 80770M tip 5 due to this movement becomes zero. In step 2, the part at meniscus 2 of the slab is 80
TOP until the ideal slope reaches 770M tip 5
Both drive shaft 7 and 80770M drive shaft 10 are moved. In step 3, the TOP drive shaft 7 and 80 are rotated until the TOP tip 6 reaches the final target LT5.
The 770M drive shaft 10 is moved by the same amount. Further, in step 4, only the 80770M drive shaft 10 is moved at the meniscus movement speed in step 3. Further, in step 5, the TOP drive shaft 7 is fixed, and only the 80770M drive shaft 10 is moved at a meniscus movement speed.

第2図はかかるステップ1〜5の移動操作により、短片
1の80770M先端5およびメニスカス2の変化状況
を示した線図であり、第6図と同様に横軸に時間tを、
縦軸に鋳片中心3からの距@Wをとったものである。
FIG. 2 is a diagram showing how the 80770M tip 5 and the meniscus 2 of the short piece 1 change due to the movement operations of steps 1 to 5. As in FIG. 6, the horizontal axis represents time t;
The distance @W from the slab center 3 is plotted on the vertical axis.

この図から明らかなように、モールド幅の変更に際して
、メニスカス2の時間的変化を表した折れ線13と、8
0770M先端5の時間的変化を表した折れ線14との
幅は常に一定となり、これによってブレークアウトが生
じる危険性を除去することができる。
As is clear from this figure, when changing the mold width, the polygonal line 13 and 8
The width of the 0770M tip 5 with respect to the polygonal line 14 representing the temporal change is always constant, thereby eliminating the risk of breakout.

なお、上記のステップ1の操作では、80770M先端
5を固定し、メニスカス2から鋳片が下がるまで主にT
OP駆動軸7を移動させ、80770M駆動軸10を僅
かに移動させているが、この理由を以下に説明する。
In addition, in the operation of step 1 above, the 80770M tip 5 is fixed and the T is mainly used until the slab comes down from the meniscus 2.
The OP drive shaft 7 is moved and the 80770M drive shaft 10 is slightly moved, and the reason for this will be explained below.

TOP駆動軸7およびI30TTOM駆動軸10がTO
P先端6および130TTOM先端5から離隔した位置
に設けられているため、130TTOM駆動軸10を固
定してTOP駆動軸7のみを駆動すると、80770M
先端5が内側に食い込むことになる。従って、この食い
込み分を零にするべく 、80770M駆動軸10を僅
かに駆動する必要がある。
TOP drive shaft 7 and I30TTOM drive shaft 10 are TO
Since it is provided at a position separated from the P tip 6 and the 130TTOM tip 5, if the 130TTOM drive shaft 10 is fixed and only the TOP drive shaft 7 is driven, the 80770M
The tip 5 will bite inward. Therefore, it is necessary to drive the 80770M drive shaft 10 slightly in order to reduce this biting amount to zero.

第3図はこの関係を示したもので、先ず、TOP駆動軸
7のみを移動させた場合の、80770M先端5のモー
ルド中心方向への移動量11を次式で演算することがで
きる。
FIG. 3 shows this relationship. First, when only the TOP drive shaft 7 is moved, the amount of movement 11 of the 80770M tip 5 toward the center of the mold can be calculated using the following equation.

ただし、 ■T二TOP駆動軸7の最大移動速度 t:単位時間 r B: 80770M駆動軸10とBOTTOM先端
5との直線距離 α: 80770M駆動軸10から見たBOTTOM先
端5と短片1の外側面との角 α: TOP駆動軸7および80770M駆動軸10か
ら見た短片1の外側面と鉛直面との角L : TOP駆
動軸7と80770M駆動軸10との距離である。
However, ■Maximum moving speed t of T2 TOP drive shaft 7: Unit time r B: Straight distance α between 80770M drive shaft 10 and BOTTOM tip 5: Outer surface of BOTTOM tip 5 and short piece 1 as seen from 80770M drive shaft 10 Angle α between the TOP drive shaft 7 and the 80770M drive shaft 10 Angle L between the outer surface of the short piece 1 and the vertical plane as seen from the TOP drive shaft 7 and the 80770M drive shaft 10 L: Distance between the TOP drive shaft 7 and the 80770M drive shaft 10.

次に、TOP駆動軸7を速度V、で駆動したとき1、:
 BOTTOM先端5が移動する速度VBテBOTTO
M駆動軸10を移動すると共に、TOP駆動軸7を固定
した時のBOTTOM先端5のモールド中心方向の移動
量1゜は次式で演算することができる。
Next, when the TOP drive shaft 7 is driven at a speed V, 1:
Speed at which the BOTTOM tip 5 moves VBte BOTTO
When the M drive shaft 10 is moved and the TOP drive shaft 7 is fixed, the amount of movement 1° of the BOTTOM tip 5 in the mold center direction can be calculated using the following equation.

ただし vB: BOTTOM先端5が固定となる速度r T 
: TOP駆動軸7とBOTTOM先端5との直線距離 βゴOP駆動軸7から見たBOTTOM先端5と短片1
の外側面との角 である。
However, vB: Speed r T at which the BOTTOM tip 5 is fixed
: Straight line distance between TOP drive shaft 7 and BOTTOM tip 5 β Go BOTTOM tip 5 and short piece 1 seen from OP drive shaft 7
It is the corner with the outer surface of.

上記(5)式と(6)式とが等しいときBOTTOM先
端5が固定となるから、次式が成立する。
When the above equations (5) and (6) are equal, the BOTTOM tip 5 is fixed, so the following equation holds true.

上述したように、メニスカス2から鋳片が下がるまで、
TOP駆動軸7をTOP移動時の最大速度VTで駆動さ
せると共に、80770M駆動軸10を(8)式により
求められた移動速度VBで駆動させることにより、BO
TTOM先端5を固定することができる。
As mentioned above, until the slab falls from meniscus 2,
The BO
The TTOM tip 5 can be fixed.

なお、上記実施例では、モールド幅を拡げるときの最初
の工程について説明したが、モールド幅を縮める最終の
工程についてもこれと同様にして、頂部駆動軸7の移動
速度に対して短片1の底部先端位置5が変化しないよう
な底部駆動軸10の移動速度を求め、これらの移動速度
に従ってそれぞれ頂部駆動軸7および底部駆動軸10を
駆動すればよいことは、言うまでもない。
In addition, in the above embodiment, the first step when expanding the mold width was explained, but the final step of reducing the mold width is also done in the same way, and the bottom of the short piece 1 is It goes without saying that it is sufficient to find the moving speed of the bottom drive shaft 10 such that the tip position 5 does not change, and drive the top drive shaft 7 and the bottom drive shaft 10 in accordance with these moving speeds.

なおまた、上記実施例では、ステップ1〜5で示した、
いわゆる、5つの工程を踏んでモールド幅を拡げる場合
について説明したが、本発明はこれに限定されるもので
はなく、モールドを構成する短片の頂部先端と底部先端
からそれぞれ所定の寸法だけ隔たった位置に頂部駆動軸
と底部駆動軸を有し、鋳片の幅の変更に際して頂部駆動
軸および底部駆動軸を別個に駆動すると共に、鋳片の幅
を拡げる最初の工程と幅を縮める最終の工程とにそれぞ
れ短片の傾斜変更動作が含まれる殆どのモールド幅変更
に適用することができる。
Furthermore, in the above embodiment, the steps shown in steps 1 to 5 are
Although the case where the mold width is expanded through so-called five steps has been described, the present invention is not limited to this. It has a top drive shaft and a bottom drive shaft, and when changing the width of the slab, the top drive shaft and the bottom drive shaft are driven separately, and the first step to widen the width of the slab and the final step to shorten the width. can be applied to most mold width changes that involve a short strip tilt change operation, respectively.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかなように、この発明によれば
、短片の傾斜変更に際し、底部先端位置が変化しないよ
うな頂部駆動軸の移動速度と底部駆動軸の移動速度とを
求め、これらの移動速度に従って頂部駆動軸および底部
駆動軸を同時に駆動するので、幅拡げ時に過少テーパー
になったり、幅狭め時に過大テーパーになったりするこ
とか防止でき、これによって、ブレークアウトの危険性
を除去することができる。
As is clear from the above explanation, according to the present invention, when changing the inclination of the short piece, the moving speed of the top drive shaft and the moving speed of the bottom drive shaft are determined so that the bottom tip position does not change, and these moving speeds are determined. Since the top drive shaft and the bottom drive shaft are simultaneously driven according to the above, it is possible to prevent the taper from becoming too small when widening the width, or too much when narrowing the width, thereby eliminating the risk of breakout. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明するための説明図、第2
図はこの発明の詳細な説明するために、短片の底部先端
およびメニスカスの鋳片中心からの距離と時間との関係
を示した線図、第3図はこの発明の詳細な説明するため
に短片の各部の寸法を示した図、第4図は一般的なモー
ルドの概略構成図、第5図は従来のモールド幅変更方法
を示した説明図、第6図はこの方法に従った場合の短片
の底部先端およびメニスカスの鋳片中心からの距離と時
間との関係を示した線図である。 1・・・短片、2・・・メニスカス、3・・・鋳片中心
、4・・・鋳片、5・・・底部先端、6・・・頂部先端
、7・・・頂部駆動軸、8・・・頂部駆動電動機、9・
・・頂部位置検出器、10・・・底部駆動軸、11・・
・底部駆動電動機、12・・・底部位置検出器。 嶌30 寛1図 的 算2図 間を− 算5図 箆6図 間t→
FIG. 1 is an explanatory diagram for explaining the invention in detail, and FIG.
The figure is a line diagram showing the relationship between the distance from the bottom tip of the short piece and the meniscus from the center of the slab and time, and FIG. Figure 4 is a schematic configuration diagram of a general mold, Figure 5 is an explanatory diagram showing the conventional mold width changing method, and Figure 6 is a short piece when this method is followed. FIG. 3 is a diagram showing the relationship between time and the distance from the bottom tip of the meniscus and the center of the slab. 1... Short piece, 2... Meniscus, 3... Center of slab, 4... Slab, 5... Bottom tip, 6... Top tip, 7... Top drive shaft, 8 ...Top drive motor, 9.
...Top position detector, 10...Bottom drive shaft, 11...
- Bottom drive motor, 12...bottom position detector.嶌30 Kan 1 diagram 2 diagrams - calculation 5 diagrams 6 diagrams t →

Claims (1)

【特許請求の範囲】[Claims] モールドを構成する短片の頂部先端と底部先端からそれ
ぞれ所定の寸法だけ隔たった位置に頂部駆動軸と底部駆
動軸を有し、鋳片の幅の変更に際して前記頂部駆動軸お
よび底部駆動軸を別個に駆動すると共に、前記鋳片の幅
を拡げる最初の工程と幅を縮める最終の工程とにそれぞ
れ前記短片の傾斜変更動作を含むモールド幅変更方法に
おいて、前記短片の傾斜変更に際し、前記頂部駆動軸の
移動速度に対して前記短片の底部先端位置が変化しない
ような前記底部駆動軸の移動速度を求め、これらの移動
速度に従ってそれぞれ前記頂部駆動軸および底部駆動軸
を駆動することを特徴とするモールド幅変更方法。
A top drive shaft and a bottom drive shaft are provided at positions separated by a predetermined distance from the top and bottom ends of the short pieces constituting the mold, respectively, and when the width of the slab is changed, the top drive shaft and the bottom drive shaft are separately operated. In the method for changing the width of the mold, the method includes an operation of changing the inclination of the short piece in an initial step of widening the width of the slab and a final step of reducing the width of the slab. A mold width characterized in that a moving speed of the bottom drive shaft such that the bottom tip position of the short piece does not change with respect to the moving speed is determined, and the top drive shaft and the bottom drive shaft are respectively driven according to these moving speeds. Modification method.
JP63212019A 1988-08-26 1988-08-26 Mold width changing method Expired - Lifetime JPH084892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63212019A JPH084892B2 (en) 1988-08-26 1988-08-26 Mold width changing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63212019A JPH084892B2 (en) 1988-08-26 1988-08-26 Mold width changing method

Publications (2)

Publication Number Publication Date
JPH0259158A true JPH0259158A (en) 1990-02-28
JPH084892B2 JPH084892B2 (en) 1996-01-24

Family

ID=16615531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63212019A Expired - Lifetime JPH084892B2 (en) 1988-08-26 1988-08-26 Mold width changing method

Country Status (1)

Country Link
JP (1) JPH084892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203199A (en) * 2015-04-20 2016-12-08 新日鐵住金株式会社 Cast slab width changing method during continuous casting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102353A (en) * 1980-01-17 1981-08-15 Kawasaki Steel Corp Method of changing ingot width in continuous casting
JPS619956A (en) * 1984-06-25 1986-01-17 Nippon Steel Corp Method for reducing billet width in continuous casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102353A (en) * 1980-01-17 1981-08-15 Kawasaki Steel Corp Method of changing ingot width in continuous casting
JPS619956A (en) * 1984-06-25 1986-01-17 Nippon Steel Corp Method for reducing billet width in continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203199A (en) * 2015-04-20 2016-12-08 新日鐵住金株式会社 Cast slab width changing method during continuous casting

Also Published As

Publication number Publication date
JPH084892B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US5052467A (en) Control device and a control method for twin-roll continuous caster
JP2021535838A (en) Light reduction method by combining flat roll and convex roll for bloom continuous casting
US4702303A (en) Width adjustment of molds for continuously casting slab ingots
EP0931608B1 (en) Continuous casting mold
JPH0259158A (en) Method for changing width of mold
US4105059A (en) Method of reducing the casting width during continuous casting
JPH05277657A (en) Method for controlling inclined angle of columnar crystal structure in cast strip in twin roll casting
JPH02207945A (en) Mold for continuous casting of round cast billet
JPH10193067A (en) Method for continuously casting steel
EP0134030A1 (en) Method for reducing or widening mold width during continuous casting
US3698466A (en) Method for continuous casting of steel
SU1537355A1 (en) Continuously-cast ingot
JP2993868B2 (en) Continuous casting mold
JP2598356B2 (en) Twin roll continuous casting method
JPH02147150A (en) Mold for continuous casting
JPH0569088A (en) Method for continuously casting complex metal material
JP2647729B2 (en) How to change the width of continuous cast slab during casting
JPH0219745B2 (en)
JPS63171251A (en) Method and apparatus for producing continuously cast metal strip
JPH0441061A (en) Method for changing width of cast slab in continuous casting of steel
JPS6138739A (en) Horizontal continuous casting method of metal
JPS6219935B2 (en)
JP2004042080A (en) Mold for continuous casting
SU1219241A1 (en) Centrifugal casting process
JPH02197359A (en) Continuous casting method