JPH0259138A - Resin coated sand for shell mold - Google Patents

Resin coated sand for shell mold

Info

Publication number
JPH0259138A
JPH0259138A JP20894588A JP20894588A JPH0259138A JP H0259138 A JPH0259138 A JP H0259138A JP 20894588 A JP20894588 A JP 20894588A JP 20894588 A JP20894588 A JP 20894588A JP H0259138 A JPH0259138 A JP H0259138A
Authority
JP
Japan
Prior art keywords
resin
weight
parts
coated sand
sand grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20894588A
Other languages
Japanese (ja)
Inventor
Masaharu Kato
正治 加藤
Noriaki Suzuki
鈴木 法明
Yasunao Kamiya
保尚 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP20894588A priority Critical patent/JPH0259138A/en
Publication of JPH0259138A publication Critical patent/JPH0259138A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To enable the effect of lowering odor and the improvement of mold strength by forming resin coated sand composing of molding sand, phenol resin and ferrous salt. CONSTITUTION:At the time of executing the molding by using the resin coated sand using the phenol resin, after coating the molding sand with novolak type phenol resin (novolak), at the time of using hexamethylene tetramine (hwxamine) as curing agent, this hexamine is heat-decomposed and offensive odor components of ammonia, formaldehyde, etc., are generated. In the case of using solid resol type phenol resin (resol) without using the hexamine, the offensive ordor component of the ammonia, etc., is generated only at a little quantity. By containing the ferrous salt reacting with these offensive odor component in the resin coated sand, the offensive odor is caught, and the working environment is improved, and not only the effect of lowering the odor, but also the improvement of mold strength are served.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はシェルモールド法に用いる樹脂被覆砂粒に関す
る。特に造型時の臭気を低減するシェルモールド法に用
いる樹脂被覆砂粒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to resin-coated sand grains used in shell molding. In particular, the present invention relates to resin-coated sand grains used in shell molding to reduce odor during molding.

[従来の技術] 従来のシェルモールド用樹脂被覆砂粒は、ノボラック型
フェノール樹脂(以下ノボラックという)で鋳物砂を被
覆したのち、硬化剤としてヘキサメチレンテトラミン(
以下へキサジンという)をノボラックに対して約15重
量部を添加し、さらに滑材としてステアリン酸カルシウ
ムを添加して製造される。
[Prior art] Conventional resin-coated sand grains for shell molds are made by coating molding sand with a novolac-type phenolic resin (hereinafter referred to as novolac), and then using hexamethylenetetramine (as a hardening agent).
It is produced by adding about 15 parts by weight of hexazine (hereinafter referred to as hexazine) to novolac, and further adding calcium stearate as a lubricant.

この樹脂被覆砂粒は、鋳型造型時に硬化剤であるヘキサ
ミンの熱分解によりアンモニア1、ホルムアルデヒドの
悪臭ガスを発生し、作業環境を悪化させるばかりでなく
、公害の原因ともなる。
These resin-coated sand grains generate foul-smelling gases such as ammonia 1 and formaldehyde due to thermal decomposition of hexamine, a hardening agent, during mold making, which not only deteriorates the working environment but also causes pollution.

これらの悪臭ガスの発生を減少させたり、低臭化するた
めに硬化剤であるヘキサミンを使用しないフェノール樹
脂として固形状のレゾール型フェノール樹脂(以下レゾ
ールという)、特にアンモニアを主体とした触媒の存在
下で縮合反応して得られるレゾールによる樹脂被覆砂粒
が提案されている(特公昭52−12658号公報)。
In order to reduce the generation of these foul-smelling gases and reduce the odor, solid resol-type phenolic resin (hereinafter referred to as resol) is used as a phenol resin that does not use the curing agent hexamine, especially the presence of a catalyst mainly based on ammonia. Resin-coated sand grains using a resol obtained by the condensation reaction described below have been proposed (Japanese Patent Publication No. 12658/1983).

また他の方法としてレゾールで被覆した砂粒とノボラッ
クで被覆した砂粒を混合したノーへキサジンまたはロー
へキサジンの砂粒に焼成後においてもなおかつ揮散物が
残留する脱臭剤(例えばインターナショナル・マーケッ
ト・ディベロップメント・グループ・インコーポレーシ
ョン製の商品名“5top 0dor”を添加した鋳型
材が提案されている(特開昭55−94751号公報)
Another method is to apply a deodorizing agent (for example, International Market Development) to Norhexazine or Rawhexazine sand grains, which are a mixture of sand grains coated with resol and sand grains coated with novolac, and which retain volatile matter even after firing. A molding material containing the product name "5top 0dor" manufactured by Group Inc. has been proposed (Japanese Unexamined Patent Publication No. 55-94751).
.

[発明が解決しようとする問題点] しかしながら、ノボラックの硬化剤であるヘキサミンを
使用しない、または減少させるため、レゾールを単独ま
たは混合した樹脂被覆砂粒は低臭化には効果のある方法
であるが、鋳型強度とくに低温硬化時の硬化が遅く、鋳
型造型直後の強度が低いため、生産性向上への要請が強
い。
[Problems to be Solved by the Invention] However, resin-coated sand grains containing resol alone or in combination are an effective method for reducing odor, since hexamine, which is a curing agent for novolac, is not used or is reduced. There is a strong need to improve productivity, as the mold strength, especially during low-temperature curing, is slow and the strength immediately after mold molding is low.

また、特開昭55−94751号公報に使用されている
脱臭剤の“St、op 0dor”はそれ自体強い臭気
を持つものであり、無臭の脱臭剤が要請されている。
Furthermore, the deodorizing agent "St, op 0dor" used in Japanese Patent Application Laid-open No. 55-94751 has a strong odor itself, and an odorless deodorizing agent is required.

[問題点を解決するための手段] 本発明の目的は、上記の問題点を解決し、鋳型強度等の
鋳型物性を向上させるとともに、造型時の臭気を低減で
きるシェルモールド用樹脂被覆砂粒を提供することにあ
る。
[Means for Solving the Problems] An object of the present invention is to solve the above problems and provide resin-coated sand grains for shell molds that can improve mold physical properties such as mold strength and reduce odor during molding. It's about doing.

すなわち、本発明は鋳物砂、フェノール樹脂および第1
鉄塩からなることを特徴とするシェルモールド用樹脂被
覆砂粒である。
That is, the present invention uses foundry sand, phenolic resin and first
This is a resin-coated sand grain for shell molding characterized by being made of iron salt.

本発明のフェノール樹脂は、例えば、フェノール、キシ
レノール、クレゾール、カテコール、ビスフェノールA
等のフェノール類1モルと、ホルマリン、バラホルムア
ルデヒド等のホルムアルデヒドを1モル未満を塩酸、硫
酸、シュウ酸、パラトルエンスルホン酸等の酸、または
酢酸亜鉛、硼酸マグネシウム等の2価金属の酢酸塩、硼
酸塩などを触媒とし縮合反応させ、濃縮親水させて得ら
れるノボラックがヘキサミン等の硬化剤と共に用いられ
る。あるいは上記フェノール類1モルとホルムアルデヒ
ド類1モル以上をアンモニア、第1級アミン、第2級ア
ミンまたはへキサジンを主な触媒としたレゾールが使用
される。
The phenolic resin of the present invention includes, for example, phenol, xylenol, cresol, catechol, bisphenol A
1 mole of phenols such as formalin, less than 1 mole of formaldehyde such as formalin and paraformaldehyde, and an acid such as hydrochloric acid, sulfuric acid, oxalic acid, para-toluenesulfonic acid, or an acetate of a divalent metal such as zinc acetate or magnesium borate, A novolak obtained by condensation reaction using a borate as a catalyst and concentrated hydrophilicity is used together with a curing agent such as hexamine. Alternatively, a resol containing 1 mole of the above phenol and 1 mole or more of formaldehyde as a main catalyst of ammonia, a primary amine, a secondary amine or hexazine is used.

上記のノボラック、レゾールのフェノール樹脂は、適宜
油、アクリル、ビスフェノールA製造時の副生成物等で
変性することも可能である。さらにアミノシラン、エポ
キシシラン等のシランカップリング剤、サリチル酸、安
息香酸等の有機酸、ステアリン酸亜鉛、エチレンビスア
マイド等の滑剤などの各種添加剤を添加することができ
る。
The above-mentioned novolak and resol phenolic resins can also be modified with oil, acrylic, by-products from the production of bisphenol A, etc., as appropriate. Furthermore, various additives such as silane coupling agents such as aminosilane and epoxysilane, organic acids such as salicylic acid and benzoic acid, and lubricants such as zinc stearate and ethylene bisamide can be added.

本発明で用いる第1鉄塩は、例えば硫酸第1鉄、硝酸第
1鉄、リン酸第1鉄、炭酸第1鉄等の無機第1鉄塩、ま
たは酢酸第1鉄、シュウ酸第1鉄、クエン酸第1鉄等の
有機第1鉄塩の1種または混合物が用いられる。
The ferrous salt used in the present invention is, for example, an inorganic ferrous salt such as ferrous sulfate, ferrous nitrate, ferrous phosphate, or ferrous carbonate, or ferrous acetate, or ferrous oxalate. , ferrous citrate, or a mixture of organic ferrous salts such as ferrous citrate.

この第1鉄塩の配合割合は、フェノール樹脂100@量
部に対して5〜30重量部であり、好ましくは10〜2
0重惜部である。
The blending ratio of this ferrous salt is 5 to 30 parts by weight, preferably 10 to 2 parts by weight, per 100 parts of phenolic resin.
This is a huge disappointment.

[発明の作用および効果] フェノール樹脂を用いた樹脂被覆砂粒を使用して鋳型造
型を行う際、ノボラックの場合は、硬化剤であるヘキサ
ミンが加熱分解され、アンモニアやホルムアルデヒド等
の悪臭成分を発生する。
[Operations and Effects of the Invention] When molding is performed using resin-coated sand grains using phenolic resin, in the case of novolac, the hardening agent hexamine is thermally decomposed and generates malodorous components such as ammonia and formaldehyde. .

またアンモニアレゾールの場合は、樹脂中の−(: H
−N −G H□−等の含窒素化合物がメチレン結合を
形成する時にノボラック同様アンモニアやホルムアルデ
ヒド等の悪臭成分をわずかだが発生する。
In addition, in the case of ammonia aresol, -(: H
When a nitrogen-containing compound such as -N-G H□- forms a methylene bond, it generates a small amount of malodorous components such as ammonia and formaldehyde, similar to novolak.

本発明のシェルモールド用樹脂被覆砂粒は、これらの悪
臭成分と反応する第1鉄塩を含有しているため、鋳型造
型時に発生する悪臭成分を補足し、悪臭成分の発生量を
減少させ、作業環境を改みする。この脱臭機構は次式の
反応によるものである。 Fc”+6NH3−+  [
Fe(NH3)6]”また本発明のシェルモールド用樹
脂被覆砂粒は、低臭化の効果のみならず、鋳型強度向−
トにも役立つものである。
The resin-coated sand grains for shell molds of the present invention contain ferrous salts that react with these malodorous components, so they can supplement the malodorous components generated during mold making, reduce the amount of malodorous components generated, and improve the workability. Change the environment. This deodorizing mechanism is based on the following reaction. Fc"+6NH3-+ [
In addition, the resin-coated sand grains for shell molds of the present invention not only have the effect of reducing odor, but also improve mold strength.
It is also useful for

[実施例] 以下本発明の実施例を示すが、本発明はこれに限定され
るものではない。
[Example] Examples of the present invention will be shown below, but the present invention is not limited thereto.

[樹脂Aの製造方法] フェノール100重量部、37%ホルマリン80重量部
を温度計、コンデンサー付きの反応缶に仕込み、ざらに
シュウ酸1,5重量部を加え、還流下で縮合反応を気泡
粘度計で「Z」まで進め、その後−60〜−70cmH
gの減圧下で脱水を200℃まで行う。さらに攪拌をつ
づけながらエチレンビスアマイドを1.7重量部および
サリチル酸0.9重量部を添加溶解させ88重量部のノ
ボラック(樹脂Aという)を得た。
[Production method for resin A] 100 parts by weight of phenol and 80 parts by weight of 37% formalin were placed in a reaction vessel equipped with a thermometer and a condenser, 1.5 parts by weight of oxalic acid was added to the colander, and the condensation reaction was carried out under reflux until the bubble viscosity was reduced. Proceed to "Z" in total, then -60 to -70cmH
Dehydration is carried out to 200° C. under a reduced pressure of 100 g. Furthermore, while stirring was continued, 1.7 parts by weight of ethylene bisamide and 0.9 parts by weight of salicylic acid were added and dissolved to obtain 88 parts by weight of novolac (referred to as resin A).

[実施例1コ 温度150〜160℃に加熱した砂粒をスビードミキサ
ーに仕込み、珪砂100重量部に対して樹脂Aを2.0
重量部添加し20秒混練した。さらにヘキサミン0.3
重量部と硫酸第1鉄0.2重量部を冷却水1.5重量部
に溶解して添加し、その後ステアリン酸カルシウム0.
1重量部添加し20秒混練した後排砂、冷却してシェル
モールド用樹脂被覆砂粒を得た。
[Example 1] Sand grains heated to a temperature of 150 to 160°C were charged into a speed mixer, and 2.0 parts of resin A was added to 100 parts by weight of silica sand.
Parts by weight were added and kneaded for 20 seconds. In addition, hexamine 0.3
parts by weight and 0.2 parts by weight of ferrous sulfate are dissolved in 1.5 parts by weight of cooling water, and then 0.2 parts by weight of calcium stearate is added.
After adding 1 part by weight and kneading for 20 seconds, the sand was removed and cooled to obtain resin-coated sand grains for shell molds.

[実施例2コ 硫酸第1鉄0.2重量部を硫酸第1鉄0.4重量部に替
えた以外は、実施例1と同様にしてシェルモールド用樹
脂被覆砂粒を得た。
[Example 2] Resin-coated sand grains for shell molding were obtained in the same manner as in Example 1, except that 0.2 parts by weight of ferrous cosulfate was replaced with 0.4 parts by weight of ferrous sulfate.

[樹脂Bの製造方法] フェノール100重量部、86%バラホルムアルデヒド
12重量部、37%ホルマリン25重量部を温度計、コ
ンデンサー付きの反応缶に仕込み、酢酸亜鉛1重量部を
添加したのち、100〜105℃で4時間線合反応させ
、次に−65〜70 crnHgの減圧下で脱水を17
0℃まで行い、2.0重量部のエチレンビスアマイドお
よび0゜3重量部のアミノシランを添加溶解させ108
重量部のノボラック(樹脂Bという)を得た。
[Production method of resin B] 100 parts by weight of phenol, 12 parts by weight of 86% formaldehyde, and 25 parts by weight of 37% formalin were placed in a reaction vessel equipped with a thermometer and a condenser, and 1 part by weight of zinc acetate was added. Linearization reaction was carried out at 105°C for 4 hours, and then dehydration was carried out for 17 hours under reduced pressure of -65 to 70 crnHg.
The temperature was raised to 0°C, and 2.0 parts by weight of ethylene bisamide and 3 parts by weight of aminosilane were added and dissolved.
Parts by weight of novolak (referred to as Resin B) were obtained.

[実施例3コ 樹脂Aを樹脂Bに替えた以外は実施例1と同様にしてシ
ェルモールド用樹脂被覆砂粒を得た。
[Example 3] Resin-coated sand grains for shell molding were obtained in the same manner as in Example 1 except that resin A was replaced with resin B.

[実施例4] 樹脂Aを樹脂Bに、および硫酸第1鉄0.2重量部を硫
酸第1鉄0.4重量部に替えた以外は実施例1と同様に
してシェルモールド用樹脂被覆砂粒を得た。
[Example 4] Resin-coated sand grains for shell molds were produced in the same manner as in Example 1, except that resin A was replaced with resin B and 0.2 parts by weight of ferrous sulfate was replaced with 0.4 parts by weight of ferrous sulfate. I got it.

[樹脂Cの製造方法] フェノール100重量部、86%パラホルムアルデヒド
56重量部を温度計、コンデンサー付きの反応缶に仕込
み、50%水酸化ナトリウム水溶液1.0重量部添加し
、90〜95℃で60分間反応させ、次に50℃まで冷
却し28%アンモニア水溶液18重量部を冷却しながら
徐々に添加し65〜70℃の温度で気泡粘度計でrX−
YJまで反応させる。
[Production method for resin C] 100 parts by weight of phenol and 56 parts by weight of 86% paraformaldehyde were placed in a reaction vessel equipped with a thermometer and a condenser, 1.0 part by weight of a 50% aqueous sodium hydroxide solution was added, and the mixture was heated at 90 to 95°C. The reaction was carried out for 60 minutes, then cooled to 50°C, 18 parts by weight of a 28% ammonia aqueous solution was gradually added while cooling, and the rX-
Even YJ reacts.

続いて−65〜−70cmHgの減圧下で脱水を70℃
まで行い、さらに常圧でメタノールを40重量部仕込み
、冷却しながら均一に混合する。この樹脂メタノール溶
液をスプレードライヤーにて190〜200℃の温風に
て造粒乾燥し粒状のレゾールを得た。このレゾール10
0重量部に対して3.0重量部のステアリン酸カルシウ
ムを添加混合し、粒径が400〜600μの粒状レゾー
ル(樹脂Cという)を得た。
Subsequently, dehydration was performed at 70°C under a reduced pressure of -65 to -70 cmHg.
Then, 40 parts by weight of methanol was added at normal pressure and mixed uniformly while cooling. This resin methanol solution was granulated and dried with warm air at 190 to 200°C using a spray dryer to obtain a granular resol. This resol 10
3.0 parts by weight of calcium stearate was added and mixed to 0 parts by weight to obtain a granular resol (referred to as resin C) having a particle size of 400 to 600 μm.

[実施例5] 温度140〜150℃に加熱した珪砂をスピードミキサ
ーに仕込み珪砂100重量部に対して樹脂Cを2.0重
量部添加し30秒間混練した。次いで硫酸第1鉄を0.
2重量部を冷却水1.5重量部に溶解して添加し、砂粒
が崩壊するまで混練し、さらに0.1ii部のステアリ
ン酸カルシウムを添加し、20秒間混練したのち、排砂
、冷却してシェルモールド用樹脂被覆砂粒を得た。
[Example 5] Silica sand heated to a temperature of 140 to 150° C. was charged into a speed mixer, and 2.0 parts by weight of resin C was added to 100 parts by weight of silica sand and kneaded for 30 seconds. Then ferrous sulfate was added to 0.
Add 2 parts by weight dissolved in 1.5 parts by weight of cooling water, knead until the sand grains disintegrate, further add 0.1ii part of calcium stearate, knead for 20 seconds, remove the sand and cool. Resin-coated sand grains for shell molding were obtained.

[実施例6] 硫酸第1鉄0.2重量部を硫酸第1鉄0.4重量部に替
えた以外は、実施例5と同様にしてシェルモールド用樹
脂被覆砂粒を得た。
[Example 6] Resin-coated sand grains for a shell mold were obtained in the same manner as in Example 5, except that 0.2 parts by weight of ferrous sulfate was replaced with 0.4 parts by weight of ferrous sulfate.

[比較例1] 温度150〜160℃に加熱した珪砂をスピードミキサ
ーに仕込み、珪砂1001,17部に対して樹脂Aを2
.0重量部添加し20秒混練、さらにヘキサミン0.3
重量部を1.5重量部の冷却水に溶解して添加し、砂粒
が崩壊するまで混練し、その後ステアリン酸カルシウム
0.1重量部を添加し20秒間混練する。排砂、冷却し
てシェルモールド用樹脂被覆砂粒を得た。
[Comparative Example 1] Silica sand heated to a temperature of 150 to 160°C was charged into a speed mixer, and 2 parts of resin A were added to 1001.17 parts of silica sand.
.. Added 0 parts by weight and kneaded for 20 seconds, then added 0.3 parts by weight of hexamine.
Part by weight was dissolved in 1.5 parts by weight of cooling water and added, and kneaded until the sand grains disintegrated. Thereafter, 0.1 part by weight of calcium stearate was added and kneaded for 20 seconds. The sand was removed and cooled to obtain resin-coated sand grains for shell molding.

[比較例2] 樹脂Aを樹脂Bに替えた以外は比較例1と同様にしてシ
ェルモールド用樹脂被覆砂粒を得た。
[Comparative Example 2] Resin-coated sand grains for shell molding were obtained in the same manner as in Comparative Example 1, except that resin A was replaced with resin B.

[比較例3コ 温度140〜150℃に加熱した珪砂をスピードミキサ
ーに仕込み、珪砂100重量部に対し樹脂Cを2.0重
量部添加し30秒混練、冷却水1.5重量部を添加し砂
粒が崩壊するまで混練したのち、ステアリン酸カルシウ
ムを0.1重量部添加し20秒混練する。排砂・冷却し
てシェルモールド用樹脂被覆砂粒を得た。
[Comparative Example 3] Silica sand heated to a temperature of 140 to 150°C was charged into a speed mixer, 2.0 parts by weight of resin C was added to 100 parts by weight of silica sand, kneaded for 30 seconds, and 1.5 parts by weight of cooling water was added. After kneading until the sand grains disintegrate, 0.1 part by weight of calcium stearate is added and kneaded for 20 seconds. The sand was removed and cooled to obtain resin-coated sand grains for shell molding.

実施例1〜6、比較例1〜3で得たシェルモールド用樹
脂被覆砂粒について融着点、常温曲げ強度、温間曲げ強
度およびアンモニア濃度を試験評価し、その結果を表に
示した。
The resin-coated sand grains for shell molds obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were tested and evaluated for fusion point, normal temperature bending strength, warm bending strength, and ammonia concentration, and the results are shown in the table.

表 試験結果 (3)温間曲げ強度: JACT試験法5M−5に準拠
(4)アンモニア濃度:樹脂被覆砂粒1gを正確に燃焼
ボートにn量する。この燃焼ボー トを300℃に保たれた管状電気 炉の中央部に入れ、乾燥エアー をin/minの流量で通気させ、 発生ガスをサンプリングバック に10分間採取した。これを直ち に北用式検知管を用いてアンモ ニア濃度を測定する。
Table Test results (3) Warm bending strength: Based on JACT test method 5M-5 (4) Ammonia concentration: Accurately place 1 g of resin-coated sand grains into a combustion boat. This combustion boat was placed in the center of a tubular electric furnace maintained at 300°C, dry air was passed through at a flow rate of in/min, and the generated gas was collected using a sampling bag for 10 minutes. Immediately measure the ammonia concentration using a kita-type detector tube.

この表の試験結果によれば、実施例1〜6のシェルモー
ルド用樹脂被覆砂粒は比較例1〜3に比べ、硫酸第1鉄
の添加により、常温強度、温間強度が高く、かつアンモ
ニア濃度が低減されていることがわかる。
According to the test results in this table, the resin-coated sand grains for shell molds of Examples 1 to 6 have higher room temperature strength and warm strength due to the addition of ferrous sulfate, and have higher ammonia concentration than Comparative Examples 1 to 3. It can be seen that this has been reduced.

試験方法 (1)融着点: JACT試験法C−1に準拠(2)常
温曲げ強度: JIS K−6910に準拠特許出願人
 アイシン化工株式会社 代表者宮地治夫
Test method (1) Fusion point: Based on JACT test method C-1 (2) Room temperature bending strength: Based on JIS K-6910 Patent applicant Haruo Miyaji, representative of Aisin Kako Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、鋳物砂、フェノール樹脂および第1鉄塩からなるこ
とを特徴とするシェルモールド用樹脂被覆砂粒。
1. Resin-coated sand grains for shell molds, characterized by comprising foundry sand, phenolic resin, and ferrous salt.
JP20894588A 1988-08-23 1988-08-23 Resin coated sand for shell mold Pending JPH0259138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20894588A JPH0259138A (en) 1988-08-23 1988-08-23 Resin coated sand for shell mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20894588A JPH0259138A (en) 1988-08-23 1988-08-23 Resin coated sand for shell mold

Publications (1)

Publication Number Publication Date
JPH0259138A true JPH0259138A (en) 1990-02-28

Family

ID=16564743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20894588A Pending JPH0259138A (en) 1988-08-23 1988-08-23 Resin coated sand for shell mold

Country Status (1)

Country Link
JP (1) JPH0259138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1864728A4 (en) * 2005-02-16 2008-10-15 Asahi Organic Chem Ind Resin-coated sand for multilayered casting mold
CN104889313A (en) * 2015-04-24 2015-09-09 北京仁创科技集团有限公司 Coated sand preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1864728A4 (en) * 2005-02-16 2008-10-15 Asahi Organic Chem Ind Resin-coated sand for multilayered casting mold
CN104889313A (en) * 2015-04-24 2015-09-09 北京仁创科技集团有限公司 Coated sand preparation method

Similar Documents

Publication Publication Date Title
JP5125061B2 (en) Resin composition for shell mold and resin coated sand
CA1119341A (en) Binder for dry hot coat foundry process
US4196114A (en) Process for producing resin-coated foundry sand
US4766949A (en) Hot box process for preparing foundry shapes
JPH0259138A (en) Resin coated sand for shell mold
JP4106212B2 (en) Phenolic resin composition for shell mold and resin coated sand for shell mold mold
JPH11244991A (en) Manufacture of resin coated sand
JPS5978745A (en) Resin coated sand for casting
JPS62127140A (en) Resin coated sand for shell mold
JPH0347942B2 (en)
JP3933794B2 (en) Binder composition for carbon dioxide gas curing
JPS6240948A (en) Binder for molding sand
JPH03128143A (en) Manufacture of resin coated sand granule for shell mold and itself
JP2002102999A (en) Resin coated sand for shell mold
JPS6240949A (en) Resin composition for coated sand
JP2005095932A (en) Phenolic resin composition for shell mold, and resin-coated sand
JPS58224038A (en) Composition of coated sand and its production
JP2647254B2 (en) Method for producing novolak type phenol resin for shell mold
JPH01135814A (en) Novolak-type phenolic resin for use in shell mold
JPS5835039A (en) Binder for shell mold
JPH01154843A (en) Manufacture of resin coated sand for gas hardening mold
JPH0394952A (en) Resin-coated sand grain for hot box
JPS63188442A (en) Resin coating sand grain for shell mold
JPS61108445A (en) Production of resin coated sand grain for shell mold
JP4221632B2 (en) Binder for shell mold